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Abstract: Computer vision for large scale building detection can be very challenging in many
environments and settings even with recent advances in deep learning technologies. Even more
challenging is modeling to detect the presence of specific buildings (in this case schools) in satellite
imagery at a global scale. However, despite the variation in school building structures from rural to
urban areas and from country to country, many school buildings have identifiable overhead signatures
that make them possible to be detected from high-resolution imagery with modern deep learning
techniques. Our hypothesis is that a Deep Convolutional Neural Network (CNN) could be trained
for successful mapping of school locations at a regional or global scale from high-resolution satellite
imagery. One of the key objectives of this work is to explore the possibility of having a scalable model
that can be used to map schools across the globe. In this work, we developed AI-assisted rapid school
location mapping models in eight countries in Asia, Africa, and South America. The results show
that regional models outperform country-specific models and the global model. This indicates that
the regional model took the advantage of having been exposed to diverse school location structure
and features and generalized better, however, the global model was the worst performer due to
the difficulty of generalizing the significant variability of school location features across different
countries from different regions.

Keywords: computer vision; deep learning; school mapping; high resolution satellite imagery

1. Introduction

Reliable and accurate data about school locations have become vital to many humani-
tarian agencies and governments to effectively plan, manage, and monitor the provision of
quality education and learning in accordance to the UN sustainable development goal 4
(SDG4 [1]) that ensure equal access to opportunity (SDG10 [1]) [2]. For example, UNICEF
and ITU (International Telecommunication Union) launched a program named Giga [3]
which is a global initiative to connect every school in the world to the internet and every
student to information, opportunity, and choice by 2030. Lack of internet connectivity
does not just limit students’ ability to connect online, it prevents and isolates them from
competing in the modern economy. Connecting schools to the internet starts by mapping
the locations and other attributes of these schools. In addition, understanding the location
of schools can help governments and international organizations gain critical insights
into the needs of vulnerable populations, and better prepare and respond to exogenous
shocks such as disease outbreaks or natural disaster development programs aiming to
provide internet connection to schools in developing countries which requires accurate and
comprehensive datasets of school locations [2]. However, in many countries, data about
educational facilities is often inaccurate, incomplete, outdated, or even non-existent. Open
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data sources such as the OpenStreetMap (OSM) have been very useful for many large-scale
land use mapping projects including school locations [4,5], however, we have discovered
sparse and even no coverage of OSM school location data in many developing countries of
our interest. Some of the available OSM data points formed part of our training dataset as
described in Table 1.

Table 1. School data sources for this study from UNICEF Office of Innovation and OpenStreetMap
(OSM). Before and after training dataset validation.

Country Total Points before Validation Total Points after Validation Total Points per Tag after Validation
Unicef OSM Total Unicef OSM Total Yes Unrecognized No

Rwanda 4233 363 4596 4233 85 4318 3207 908 203
Sierra
Leone 9516 1909 11,425 9516 268 9784 7699 2027 58

Niger 0 1430 1430 0 1328 1328 1062 226 40
Mali 0 11,411 11,411 0 8299 8299 2474 4335 1490
Chad 0 363 363 0 294 294 274 18 2
Sudan 0 438 438 0 405 405 292 112 1

Honduras 17,534 1064 18,598 17,534 187 17,721 4265 12,400 1056
Kazakhstan 7410 2973 10,383 7410 480 7890 5998 1487 405

Kenya 20,381 32,485 52,866 20,381 14,985 35,366 20,422 10,377 4567

A recent study demonstrated that Deep Neural Network (DNN)-based models can
deliver high accuracy and precision in identifying school buildings from high resolution
satellite imagery [6]. Studies have shown that humans can be trained to identify school
buildings in high resolution image tiles, and they do that effectively with over 90% accuracy,
however, to do this at a global scale is unrealistic.

Despite the varying structure of school location features, many school structures have
identifiable overhead signatures that make them detectable in high-resolution imagery
with modern deep learning techniques. Some of the identifiable features from space
include building size, shape, and facilities. Compared to the surrounding buildings, school
structures are usually bigger in size, and the shapes vary from U, O, H, E, or L as shown in
Figure 1.

This study aims at developing rapid and scalable Artificial Intelligence (AI) models
that can deliver automated and swift mapping of schools using high resolution satellite
imagery in eight different countries from Asia, Africa, and South America. To achieve this
goal, we develop and test DNN models based on the Xception [7] and the MobileNetV2 [8]
models modified for application on satellite imagery at country, regional, and global scales.

These models are tile-based classifiers based on high-performance and accurate binary
classification Convolutional Neural Network (CNN). The models could scan through
71 million zoom 18 tiles (256 × 256 pixels per tile in 60 cm meter high-resolution Maxar
Vivid imagery) and identify schools in near real-time. This study developed and tested six
specific country models that were tuned to perform well within the country’s territorial
boundaries, two regional models, and a global model. The two regional models were the
East African model that was trained with school location data from Kenya and Rwanda,
and the West African model that was trained with datasets from Sierra Leone and Niger.
The global models were trained with all countries’ school datasets. Both regional and global
models were trained to generalize well in the geo-diverse landscape. By testing the East
African regional and Kenya tile-based school classifier models in Kenya, we found the
regional model outperformed the country-specific model. It indicates that the model that
was exposed to diverse looks and school features can outperform the model that only trains
with limited features.
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Figure 1. School location structure showing identifiable signatures on overhead imagery.

In summary, there has recently been a lot of research on the use of DNN to identify
and extract different objects and infrastructure from overhead satellite imagery [9,10],
however, the applicability, generalizability, and scalability of deep learning techniques on
overhead satellite imagery in the context of school mapping at scale especially in developing
countries has not yet been explored which is indeed the gap that inspires this paper. The
major contributions of this study are two-fold:

1. The development of scalable deep learning models to automatically map school
locations at global, regional, and country-level scales in near real-time considering
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the variability in school structure from rural to urban and from country to country.
From our literature review, no study has been carried out in this area with the context
of providing a contribution to the research communities and school infrastructure
mapping at scale for humanitarian and open-source projects.

2. Exploring the generalizability of deep learning models in the context of transfer
learning of school features where a DNN model trained in a given geolocation can
generalize to detect schools in another geolocation without been re-trained with
new datasets.

2. Background

Deep Neural Networks (DNNs) have proven to be very effective compared to tradi-
tional approaches, particularly object extraction from overhead satellite imagery at scale and
speed [11–16]. On the other hand, the traditional approaches for object detection depend
majorly on manual extraction processes which are inefficient and inadequate for generaliza-
tion requirements and computationally exhausting. For deep learning algorithms, visual
perception to extract feature hierarchies and generalization ability is enhanced on several
levels [12]. These algorithms have shown that traditional techniques are slow and erro-
neous; they require extensive post-processing to differentiate infrastructure [17]. However,
automatic school detection and mapping from overhead imagery requires very advanced
DNN classifiers that work beyond task-based methods for object recognition and can carry
out adaptive and deep learning from multi-resolution imagery for object detection.

Methods utilizing DNNs are now deemed to be conventional for image segmen-
tation [18–20] based on the wide adoption and many studies utilizing different DNN
architecture for object detection such as in [21–27]. This is an evolving area, and new stud-
ies are frequently published on different approaches to deal with some of the shortcomings
of DNNs. These include, for example, methods for evaluating biases in DNN for infrastruc-
ture mapping [6], the large computing and memory requirements [28], large training data
requirement, difficulty in generalizing and adapting models to varying conditions [29], and
so on. The U-Net DNN [30] architecture became very popular and the standard model for
semantic segmentation in many applications won the IEEE International Symposium on
Biomedical Imaging cell tracking challenge in 2015. The popularity of this DNN architec-
ture stems from its contracting path for capturing context and the symmetric expanding
path that enables precise localization, partly due to its speed, and its ability to be trained
end-to-end with very few images [6]. Different variants of U–Net have been developed for
different applications including for building and road detection [31–34]. However, new
DNN architecture with greater speed and accuracy requiring less training images have
emerged in recent times as described below.

Amongst the earliest works on object detection based on deep learning that achieved
a mean Average Precision (mAP) of 98.7% with pre-trained AlexNet on a 1000 image set is
the work of Zhao et al. [35].

One fundamental issue in school building detection using DNN is training data inade-
quacy because for DNN models to generalize efficiently, there is a large number of school
structure variants to train on. Different approaches have been proposed in the literature to
deal with deficiency in training samples such as in [36–41]. Other studies have explored the
use of transfer learning and few-shot learning to boost training sample variation. Examples
include Bai et al. [42] where they utilized the transfer learning technique on the ImageNet
data kit, however, these studies dealt with items that have well defined structures, colors,
shapes, and sizes such as insulator faults, road cracks, solar farms, etc., unlike school
buildings that have varying structures, colors, sizes, and shapes.

One interesting approach for specific object detection from a group of objects is the
two-step object detection technique. First is to identify, for example, buildings from non-
buildings afterwards to detect the building structure of interest from a group of detected
buildings. In view of this, Tao et al. [43] developed two separate backbone models for
electricity transmission line fault detection, namely Defect Detector Network (DDN) and



Remote Sens. 2022, 14, 897 5 of 22

Insulator localizer Network (ILN) for insulator detection based on the Visual Geometry
Group (VGG) model and Residual Network (ResNet) model. respectively. We explored
this approach further in this study.

Convolutional Neural Networks (CNNs) have emerged as one of the most popular
DNN architectures developed for 2D images. CNNs have become very popular for many
deep learning tasks including image classification, object detection [21], and image seg-
mentation, as well as edge detection [44]. The Deep CNN was initially utilized for image
classification problems due to the capabilities of deep convolution layers to recognize
edges, patterns, context, and shapes which gives rise to more features with spatial dimen-
sions smaller and deeper than the original [45]. AlexNet feature extractor developed by
Krizhevsky et al. [46] with an 8-layer CNN, 5 convolutional layers + 3 fully connected
layers won the ImageNet challenge of 2012 and could be seen as the precursor to image
classification architecture. Different variants of Krizhevsky et al. architecture have been
developed over the years to improve the model based on narrower receptive windows and
increasing the network depth.

The ImageNet challenge 2014 gave rise to the VGGNet deep learning network ar-
chitecture which is deemed to be an improvement to the Krizhevsky et al. model. The
VGG won the challenge in the object localization task and gained second place in the
classification task [47]. Convolutional network has achieved high performance accuracy in
image classification and object identification through the gradient-based learning process,
especially through the use loss computation and the loss function [42]. The complexity
in image classification problems such as in this case study of school building detection
increasingly calls for deeper CNNs. However, deeper CNNs with tens of layers can be
difficult to train because of the problem of vanishing and exploding gradients. To deal with
this problem of exploding and vanishing gradients, the residual network architecture called
the ResNet started to gain attention. Residual network architecture is designed based on
the skipping concept to the VGG networks [48]. ResNet proposes a shallower network
depth using shortcut connections, directly connecting the early layer’s input to a later layer.
This creates a significant capability to train very deep CNNs of up to 50, 101, and 152 layers
with improved speed [49], thanks to the regular cut-off’s connection (skipping) among the
Deep CNN blocks.

Based on these CNN performances in image classification and the necessity to utilize
the method for more complex image classification problems such as in this case study, the
object detection variant of the CNN was developed [21]. The Faster R-CNN came to light as
a region-based CNN for discrete object detection. Faster R-CNN carries out object detection
based on two modules: the Regional Proposal Network (RPN) for detecting regions, and the
Region-CNN (R-CNN) detector for classifying regions and refining bounding boxes [50,51].
This DNN architecture utilizes the CNN model pretrained for classification to generate the
necessary activation feature map [52]. Afterwards, the extracted feature maps are passed
through the RPN to generate the object proposal [21]. Each object proposal is then employed
by the network to generate the fixed feature maps of objects of interest. Thereafter, the
final Region-based CNNs (R-CNN) combines the prior output and the class details based
on region proposals. Utilizing the object proposals extracted through RPN as well as the
extracted features of the proposals (via ROI pooling), the final class and object localization
is accomplished [53]. Although faster R-CNN is exceptionally reliable, it appears to be
slower in training speed when compared with MobileNet.

For real-time object detection purposes which requires a balance between time, speed,
and accuracy, many multiple single-phase DNN architectures have been developed which
includes MobileNet [8], the ‘You Only Look Once’ (YOLO) [54] and Single-shot detector
(SSD) [55] frameworks.

There have recently been several alterations to the SSD framework which has resulted
in its better performance than the YOLO. Some of these changes include the prediction of
multi-feature maps from the subsequent networking stage to allow multiscale detection
prediction of object classes and offsets at bounding box locations using smaller convolu-
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tional filters, and generating the final feature map by using different predictors to identify
objects at varying aspect ratios in the form of feature pyramids [56].

For low-latency applications such as for mobile and embedded systems, Howard [8]
developed a lightweight deep neural network model referred to as Mobile Networks
(MobileNets). MobileNets and its derivatives have been developed to improve speed
constraint associated with deeper networks for real-time applications. This idea is that
the regular neural network convolution layer is broken down into two filters, depth-wise
convolution and pointwise convolution. The conventional convolutional filter is more
computationally expensive when compared to the depth-wise and point-wise convolutions.
In MobileNets, each channel is convolved with its kernel, called a depth-wise convolution.
Afterwards, the pointwise (1 × 1) convolution is processed to abstract and integrate the
individual intermediate output from the depth-wise convolution into a single feature layer.

In view of this, we utilized the ResNet152 and SSD MobileNet in this study for school
building detection and the Xception CNN for tile-based school image classification. These
are, relatively, the most suitable models based on our approach and objectives. This
Xception [57] architecture has 36 convolutional layers forming the feature extraction base
of the network. In this architecture, cross-channel correlations and spatial correlations
in the feature maps of convolutional neural networks can be entirely decoupled. The
36 convolutional layers are structured into 14 modules, all of which have linear residual
connections around them, except for the first and last modules. In other words, the
Xception architecture is a linear stack of depth-wise separable convolution layers with
residual connections which makes it relatively faster to train. The Xception architecture is
easier to define and modify as it takes only few lines of code based on the high-level library
called Keras [58].

3. Materials and Methods

This section outlines the workflow and methods utilized for model training and devel-
opment at scale. It also provides a description of the algorithm architecture and components.

Figure 2 describes the workflow design for scalable development and deployment
of the school classifier models. The school classifier models are developed based on the
Xception deep learning backbone whose architecture is described in Figure 3.

Figure 2. Model development and deployment workflow.

This workflow is designed to quickly train, transfer-learn, and hyper-tune image
classifiers on Google Cloud Kubernetes Engine (GKE) running Kubeflow. The model
training and hyper-parameter tuning runs on a Fob YAML file deployment [59].

Figure 3 depicts the Xception network architecture that we adopted from [57]. School
and non-school image tiles of 224 × 224 are passed through the network where the first
go through the entry flow, through the middle flow which is repeated eight times, and
finally through the exit flow for output. An important thing to keep in mind with respect to
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the Xception network model is that the Convolution and SeparableConvolution layers are
followed by batch normalization [7] which were not included in this diagram. Additionally,
all SeparableConvolution layers utilizes a depth multiplier of 1 with no depth expansion.

Figure 3. The Xception network architecture [57].

3.1. Datasets

We used a high-resolution satellite image tile of 224 by 224 pixels with zoom level
18 (0.6 m spatial resolution) for each training sample location. The imagery was collected
from MAXAR’s imagery archive under NextView license. The imagery collected from
Worldview3 sensor was composited with R, G, and B bands using the natural composite
method. Numbers of image tiles in various zoom levels used in this study are presented in
Section 3.3.

3.2. Training Image Data Preparation

A high-quality training dataset is essential for deep learning approaches to accurately
learn through varying object features and generalize precisely. Figure 4 describes the 4-step
process of preparing the TFRecords of training image sets for model training.

Figure 4. Steps followed to generate the model training dataset (TFRecords).
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Our first step in this regard is to prepare a set of verified school locations, as well as a
set of non-school locations in 300 × 300 m image tiles.

Step 1: Data sources

A preliminary list of school locations (coordinates) was acquired from UNICEF Pro-
jectConnect [3] database including data from Rwanda (4233 schools), Sierra Leone (9516),
Honduras (17,534), Kazakhstan (7410), and Kenya (20,381). An additional dataset was
added (>52,000 schools) from OpenStreetMap from nine different countries as shown in
Table 1 below.

Step 2: Training data validation

Five expert mappers reviewed the dataset and compared it to high-resolution satellite
imagery. The locations were classified into those where (1) satellite image tiles clearly
contain schools as ‘confirmed’, (2) satellite image tiles clearly do not contain a school as
‘not-school’, and (3) it is uncertain whether satellite image tiles contain a school or not as
‘unrecognized’ school, see “Total Point After Validation”, Table 1.

The ‘YES’ school class shows clear school features, e.g., building size, shape, and
facilities from the high-resolution satellite imagery. Figure 5 contains some examples of the
school features that were used as criteria for schools and that can be used to label the tiles
as “confirmed” schools.
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The ‘UNRECOGNIZED’ school class refers to school locations that were part of the
original country school datasets but that had no clear school features, especially in urban
areas with high building density or, in rural areas that cannot be distinguished from
residential buildings [2]. Another case of unrecognized schools is school building(s) that
cannot be seen on satellite imagery because of cloud/tree cover as shown in Figure 6.

Figure 6. Examples of verified ‘UNRECOGNIZED’ school image tiles. (A) All buildings look
similar, (B) All buildings look similar, (C) School location on the highway, (D) All buildings look as
residential (rural).

The ‘No’ schools refer to locations from the original country school datasets where the
expert mappers could not find any school-like buildings at the provided school geolocations.
As an example, some of the schools were mislocated in the middle of the ocean, desert,
dense forest. This can be caused by the school geolocation being recorded incorrectly or
because the satellite imagery has been updated in particular areas of the selected countries
after schools were built. Examples are shown in Figure 7 below.
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Figure 7. Examples of verified ‘No’ school image tiles. (A) School location far from residential areas,
(B) School location in forest areas, (C) School location in farm fields, (D) School location in the ocean.

Step 3: Training data generation

Training data generated were used for both tile-based image classification and direct
school detection. A tile-based school classifier is a binary image classification based on the
Xception deep learning backbone from ImageNet [60]. The direct school detection model is
an Object Detection model that we based on SSD MobileNet and ResNet101 [61] models.

Tile-based School Classifier

For the tile-based school classifier model, two categories of datasets were generated,
‘school’ and ‘not-school’, as the training dataset for the deep learning model training. The
category ‘school’ tiles were downloaded based on the geolocation of schools that were
tagged as “YES” after training data validation (Table 1). Though, the category of “not-
school” is more diverse than “school”, because it includes the categories except schools,
e.g., forest, desert, critical infrastructure (places of worship, government offices, hospitals,
marketplaces, factories), residential buildings, oceans, other water bodies, etc., as shown
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in Table 2 below. To enrich the data sets for ‘not-school’, we queried all the categories
mentioned above from OSM using OSM Map Features [62].

Table 2. Training datasets for country models that include negative (not-school) and positive (school)
categories. Not-school includes buildings from urban and rural, forest, desert, water, and “NO”
school tag list in Table 1.

Country Urban Rural Forest Desert Water Not-School Total Negative Total Positive

Chad 137 54 27 27 27 272 274
Sierra Leone 3849 1539 769 769 769 7695 7699

Niger 530 212 106 106 106 1060 1060
Sudan 146 58 29 29 29 291 292

Rwanda 1603 641 320 320 320 3204 3207
Mali 1237 494 247 247 247 2472 2474

Honduras 2132 853 639 0 639 4263 4265
Kazakhstan 2999 1199 599 599 599 5995 5998

Kenya 6785 3431 1697 1738 1698 4565 19,914 19,822

3.3. Supertile Generation

The tile-based school classifier models are trained with the image chips/tiles of OSM
slippy map tiles. From our previous experience with an AI school mapping task in Colom-
bia, we found that when a tile is in Zoom 17 [63], the classification model performed the
best. The tiles in Zoom 17 are about 300 × 300 m and in the spatial resolution of 1.2 m/pixel.
In this study, we maximized the spatial resolution of the satellite image and instead of
using Zoom 17, we created a supertile that is made up of 4 zoom 18 tiles as shown in
Figure 8. The supertile still represents 300 × 300 m, but by using zoom 18, we have satellite
image tiles in the spatial resolution of 0.6 m instead of 1.2 m. Therefore, the school classifier
models can learn more image features from high-resolution supertiles.

Figure 8. A sample image supertile.
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One important factor we put into consideration in generating the training dataset
was ‘geodiversity’ of the training image set. This represents the diversity of landscapes
that can be captured by the satellite. When it comes to optical images, they are a set of
image features that include mountains, vegetation distribution, hurricanes, and smoke
patterns. Then we can compare the dataset to the area we want to generalize over based
on image similarity metrics such as the t-Distributed Stochastic Neighbor Embedding
(t-SNE) [64]. This will help to evaluate whether our training images for the deep learning
models are a representative sample of the desired deployment region. In this context, for
‘geodiversity’ of school and not-school for the countries of interest the supertiles can be
plotted to showcase the distribution of the data classes from lush-like to desert-like as
shown in Figure 9. This is done simply by reducing the image to a single feature vector
which is the average RGB value. These vectors are passed to the t-SNE algorithm which
is trying to map data to two dimensions (in this case) by computing ‘similarity scores’ to
cluster the data, creating a good visual approximation of the original dimension of the data.

Figure 9. School location diversity analysis through t-SNE shows that the school supertiles stretch
from lush-like to desert-like in Kazakhstan and Niger. (A) School location diversity for Kazakhstan,
(B) School location diversity for Niger.

To assess the model performance fairly, our training dataset of two categories, school,
and not-school tiles, is then split into a 70:20:10 ratio as train, validation, and test datasets.
These three sets of data were generated as TFRecords. TFrecords is a data format that stores
a sequence of binary records for Tensorflow [65] to read images and label data efficiently
during the model training. The randomly selected 70% of tiles are used to train the model,
the remaining 20% are used to validate the model. However, the last 10% of the test dataset
which had not been seen by the model acts as the golden standard dataset to evaluate the
model performance. For the direct school detection model, the training dataset was created
using the Computer Vision Annotation Tool (CVAT) to generate bounding boxes around
the school building complex. The resultant XML files were then exported from CVAT and
TFRecords were generated for model development as described in Figure 10 below.
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Figure 10. Training data generation for Kenya direct school detection.

We relied on population data to improve the diversity of training data as well as
to identify areas of interest (AOI) to run inference over. This allows us to be efficient in
our inference and validation processes. One of the considerations in the training data
preparation was to ensure that samples are selected from populated areas. We used a
combination of WorldPop [66] and OpenStreetMap. WorldPop is a 100 m spatial resolution
contemporary dataset on human population distributions. We translated WorldPop raster
pixels as points, and extracted highway, buildings, sports, amenity, leisure, landuse (resi-
dential) from OSM and merged the layers and converted them to get zoom 16 populated
tiles (see the following Table 3).

Table 3. Populated tiles in zoom 16 were generated using OSM data and WorldPop.

Country Zoom 16 Tiles Zoom 18 Tiles Zoom 19 Tiles

Kenya 726,749 11,627,984 2,906,996
Rwanda 60,846 973,536 243,384

Sierra Leone 169,095 2,705,520 676,380
Niger 697,118 11,153,888 2,788,472

Honduras 233,336 3,733,376 933,344
Kazakhstan 1,346,330 21,541,280 5,385,320
Ghana (test) 506,143 8,098,288 2,024,572

Uzbekistan (test) 705,648 11,290,368 2,822,592
Total 4,445,265 71,124,240 17,781,060

We end up having 71 million zoom 18 tiles and 18 million supertiles of zoom 17 tiles
for all the countries that we needed to run the model inference over.

4. Results

The process of developing the tile-based school classifier model followed a stepwise
process by firstly developing and training the global model and assessing the accuracy of
generalization based on a dataset from eight countries. The F1 score of the global model is
0.85 over the validation dataset after several hyper-parameter tuning. The need for higher
accuracy scores prompted the development of the regional and the country specific models.

The regional model was trained with country datasets that are geo-physically close
to each other. For instance, the East African regional model was trained with Kenya and
Rwanda datasets, and the West African regional model was trained with Niger, Sudan,
Mali, Chad, and Sierra Leone datasets. The regional models outperformed the global
and the country-specific models, which indicates that the models were exposed to more
diverse school features affirming the fact that the greater variability in the dataset the
better the models. The F1 scores of the regional models were greater than 0.91 over the
validation dataset.

The trained country models performed well with the validation dataset such that their
F1 scores were above 0.9 except for the Niger country model (0.87). The detailed model
evaluation metrics, including precision, recall, and F1 scores for each model are tabulated
in Table 4 below.
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Table 4. Model evaluation metric report for all the tile-based school classifier models.

Model Training Best Scores from Model Evaluation

Honduras 8528 F1_Score: 0.90, Precision: 0.90, Recall: 0.90
Sierra Leone 15,394 F1_Score: 0.91, Precision: 0.92, Recall: 0.91

Niger 8195 F1_Score: 0.87, Precision: 0.89, Recall: 0.89
Rwanda 6411 F1_Score: 0.94, Precision: 0.94, Recall: 0.94

Kazakhstan 11,993 F1_Score: 0.92, Precision: 0.93, Recall: 0.92
Kenya 12,200 F1_Score: 0.90, Precision: 0.92, Recall: 0.92

West Africa 23,589 F1_Score: 0.91, Precision: 0.91, Recall: 0.91
East Africa 18,611 F1_Score: 0.92, Precision: 0.91, Recall: 0.92

Global model 62,721 F1_Score: 0.85, Precision: 0.85, Recall: 0.84

All the country models as well as the regional model performed better than the global
model over the validation datasets. Part of the reason is that eight countries alone is not
sufficient to train a global model with greater diversity in school structures and features.
For a more accurate global model, a dataset from many countries of the world is needed to
train the model to increase feature variability and enable the model to generalize well at
a global level. However, despite their varying structures, many schools have identifiable
overhead signatures that make them possible to detect in high-resolution imagery with
deep learning techniques. Approximately 18,000 previously unmapped schools across five
African countries (Kenya, Rwanda, Sierra Leone, Ghana, and Niger), were found in satellite
imagery with a deep learning classification model. These 18,000 schools were validated by
expert mappers and added to the map. We also added and validated nearly 4000 unmapped
schools to Kazakhstan and Uzbekistan in Asia, and an additional 1100 schools in Honduras.
In addition to finding previously unmapped schools, the models were able to identify
already mapped schools up to 80% depending on the country. Figures 11 and 12 show the
maps of AI-discovered schools in yellow, existing school locations on OSM reconfirmed by
the model shown in blue, and original school locations used to train the models in red.

Figure 11. Map showing AI-discovered schools in Sierra Leone and Rwanda.
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Figure 12. Map showing AI-discovered schools in Honduras and Kazakhstan.

The detailed findings from tile-based school classifier country models are in the
following Table 5.

Table 5. Model inference summary across different countries.

Country Known
School

Total
Detected ML Output Validation True

Capture Difference Double
Confirmed Unmapped

Yes Un-Reg No

Kenya 20,422 36,792 17,616 18,582 594 57% 7100 9968 7648
Rwanda 3207 6510 3669 2726 115 58% 1400 2139 1530

Niger 1060 4885 1733 1569 1583 79% 1542 151 1582
Sierra Leone 9784 16,940 5002 8963 2975 75% 703 3730 1272
Ghana (test) 2943 15,485 6427 8645 413 17% 5768 509 5918
Kazakhstan 5998 8282 3989 4256 37 61% 1273 2433 1556

Uzbekistan (test) 3646 10,013 3141 6860 12 29% 2184 894 2247
Honduras 4265 14,410 1915 12,402 93 43% 876 818 1097
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The column “Known school” presents validated school geolocations that have clear
school features. The column “Total detected” shows the total number of detected schools
with the given ML threshold scores. The “ML output validation” indicates after the
expert mapper’s validation of the ML outputs. The number of confirmed schools “Yes”,
unrecognized schools “Un-reg”, and “No” schools. The “True capture” column presents
the percentage of known schools that are correctly predicted by ML model and then
confirmed by our expert mappers. The higher the percentage means the country ML model
performed better.

“Difference” is the number of schools that ML models did not find but are in “Known
school”. “Reconfirmed” is the number of schools detected by ML models, validated by
the expert mappers, and are also in the “Known school”. The Unmapped schools are the
schools that currently are NOT on the map or in “Known school” but detected by ML
models and validated by the expert mappers.

Differences in Model Performances

Kenya is the only country that has over 20,000 known schools that have been validated
by expert mappers. Only 6000 schools in Kenya were randomly selected to train the Kenya
country model.

It means that there are more than 14,000 known schools left over as “test data” that
were never exposed to the model. Therefore, Kenya is the perfect country to answer
questions including:

# How do regional and country models perform differently?
# Is it necessarily true to build country-specific models or can we rely on only the

regional model that is generalized well across countries?

Figure 13 shows the true positive and negative of the model performance in Kenya
(on the left); the model was able to separate the two categories well. The ROC curve (on
the right) for the Kenya country model tells us that when we use the DNN threshold of 1.0,
there will only be a 6% false-positive rate.

Figure 13. True positive, true negative scores, and ROC curve of the Kenyan model.

By plotting the results from the Kenya model, inferences with the Kenya country, East
African regional and global models, we found that the regional model outperformed the
country model in that it produced fewer ML-detected schools (Figure 14-blue bar), which
means fewer false positives. It was able to detect more schools (the red bar) that fell under
unknown schools.
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Figure 14. Model performance in Kenya.

- Both country and regional models performed very well even though the models
were only exposed to a quarter of the available known schools in Kenya. Figure 13
also showed that the global model had more false negatives with less true and false
positives when compared with the country and regional models, respectively. There is
only the blue bar for the global model in the figure because the model result validation
has not been done yet due to the lack of man-hours, but we have plans to do that as
soon we have the capacity.

- In the future, model transfer-learning or fine-tuning will be used to train a regional
model instead of developing country-specific models.

5. Discussion

In this section, we discuss some of the challenges that were faced in terms of model
scalability, pros and cons of the AI models, the roadmap for the future work that may
involve human-in-the-loop and active learning methods.

5.1. Model Scalability

To develop global scale school classifier, the scalability context is non-trivial.
Some of the scalability challenges in developing models that can generalize from

country to country, urban to rural from diverse school features and millions of image tiles
were handled from the context of hyper-parameter optimization by exploring variations
in model architecture, loss functions, regularization, pre-training and post-processing to
increase the model performance.

Additionally, data tooling, best practices in model training, and inference speed helped
to increase the scalability of the models across the globe. Massive data validation exercises
over geo-diverse landscapes and varying school structures from rural to urban, from
culture to culture, and nation to nation were important factors that positively influenced
the model’s generalizability and scalability. The models were trained with diverse selected
school features to create a generalized model that can search for school-like building
complexes from millions of satellite image tiles across the regions. We also made some
important contributions around the technical challenges of scaling school classifiers in
very high-resolution imagery to the country- and continent-wide applications. We were
able to solve model technical scalability issues by mindfully designing the internal data
validation, model training on Google Kubernetes Cluster Engines (GKE) with Kubeflow,
and model inference with our open-sourced tools. We have also started working on a
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roadmap for addressing remaining technical challenges around model generalizability
especially with the global model which could not be generalized as well as the regional
and country models. This roadmap includes increasing the global sample training data to
encompass diverse school structures from each country of the world, more hyperparameter
optimization, human-in-the-loop, and active learning methods.

5.2. Comparative Performance of Our Xception Network Model

We further carried out a performance comparative analysis of our Xception network
model with other two state-of-the-art deep learning networks, the MobileNet and ResNet
152 which have been ranked on par with the Xception Network [60]. This exercise became
essential to scientifically justify our choice of the Xception network model and to ascertain
the claim from ImageNet [60] literature that Xception was better than the rest in terms of
performance accuracy. This test was carried out on the Sudan school training dataset of
over 16,400 image tiles (6400 schools and 10,000 non-schools) of 224 × 224 size, and ran on
the same AzureML GPU configuration over 25 training epochs.

Though all three networks produced great accuracy as well as their F1 score, precision,
and recall, our Xception network performed slightly better as shown in Table 6. This
0.003 improvement in accuracy means a lot to us in terms of the number of false positives
and false negatives we were able to reduce as compared to using MobileNet and RestNet
networks. The Xception network reduced the number of false positives from the MobileNet
model by 15%, that of ResNet by 11%, and the false negative was reduced by 19% and
14% for MobileNet and ResNet networks, respectively. For humanitarian purposes where
higher accuracy is paramount [6] and efforts are made to minimize false positives and
negatives, this is significant.

Table 6. Xception comparative performance against MobileNet-v2 and ResNet 152.

Model Architecture F1_Score Precision Recall Overall Accuracy False Positives False Negatives

Xception 0.955 0.951 0.959 0.945 91 74
ResNET-152 0.928 0.934 0.922 0.942 102 86

MobileNet-v2 0.924 0.930 0.918 0.939 107 91

5.3. AI-Assisted School Mapping Pros and Cons

AI and ML models are particularly good at recognizing the image features they have
been exposed to. Schools are like other building infrastructure, and they have their primary
purpose. They provide functions such as public gatherings, public recreation, shelter, and
even polling stations. Therefore, schools may have unique features that other buildings
do not have. From overhead imagery they can show as U, O, I, H shapes, as they have
basketball courts, playgrounds, swimming pools or a cluster of buildings with same roof
color. The building size is bigger compared to surrounding residential buildings. AI models
can be trained to recognize school buildings very well. At the same time, we can utilize
cloud computing and modern deep learning techniques to speed up model training and
inference that can scan and search for schools rapidly. However, distinguished school
features that have been feature engineered to train the models could introduce human
bias to the model. In the end, the model may be able to recognize schools that are in
distinguished building complexes, have similar building rooftops, swimming pools, or
basketball courts, but are really bad at recognizing schools that have smaller building sizes
and in poorer neighborhoods or even densely populated urban areas.

A limitation of our approach, therefore, is that it relies on human validators for both
the training data creation and school validation. As a result, we acknowledge that we
introduced a bias for schools that follow common patterns and are recognizable from space.
In the end, the model may be able to recognize schools that are in distinguished building
complexes, have similar building rooftops, swimming pools, or basketball courts, but may
perform poorly at recognizing schools that have smaller building sizes, are in densely pop-
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ulated urban areas, or are housed in “non-traditional” structures. It is reasonable to assume
that this bias might disproportionately miss schools that serve poorer neighborhoods or
already underrepresented communities. This bias would not exist in alternative (and likely
more costly) approaches such as field surveys and supporting community mapping.

Using a human-in-the-loop process is critical, especially leveraging people with local
knowledge about local school features. Such knowledge is harder to transfer to expert
mappers who may grow up in a different culture and architectural context of schools.
We engaged in active research and development of human-in-the-loop active learning
methods that allow non-expert human mappers and AI to work more efficiently together
and improve the model’s prediction power. By creating greater accessibility to providing
human input into these models, we hope to increase the diversity of human knowledge
contributing to these models and reduce sources of bias. An active learning platform that
allows human–AI to work together and improve the model prediction power is the next
phase of this study, considering that we have developed all the necessary tooling and
technology under this phase of the work that will help us to achieve the next goal.

5.4. Conclusions

This study aimed at developing rapid and scalable AI models that can deliver auto-
mated and swift mapping of schools using high resolution satellite imagery at country-wide,
regional, and even global scales. The study was designed to apply scalable deep learning
techniques over high-resolution satellite imagery to map schools globally with the aim to
help accelerate the Giga (UNCEF and ITU) initiative and mission to connect every school
to the internet and reduce the global digital divide across schools.

In spite of the varying features of school locations across countries and regions, this
study proved that there are still yet identifiable overhead signatures common to school
locations that made it possible to detect schools from high-resolution satellite imagery with
modern deep learning techniques.

Furthermore, one of the contributions of this study is also to test the generalizability
of different DNN models in identifying the presence of these school features from satellite
image snapshots. For example, we were interested in finding out if the digital signature of
school locations in Colombia are close enough to those of neighboring countries such that a
model trained on Colombia data can be used to identify school locations in neighboring
countries. We tested this by using the model developed in Colombia to detect schools in
11 Eastern Caribbean nations including Anguilla, Antigua, Barbuda, British Virgin Islands,
Dominica, Grenada, The Grenadines, Montserrat, St Kitts and Nevis, St Lucia, and St
Vincent. The model did not only find already mapped schools in these Caribbean nations
but was also able to identify previously unmapped schools with more than 80% precision
and recall.

The DNN models we developed in this study which are based on the Xception archi-
tecture produced satisfactory performance for the target use, especially at regional and
country level inferences. As future work, we plan to improve the global model using an
object-based (vectorized training dataset instead of image tile) approach.
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