GRACE Data Explore Moho Change Characteristics Beneath the South America Continent near the Chile Triple Junction
Abstract
:1. Introduction
2. Motivation and the Study Objective
3. Data and Methods
3.1. GRACE Data Processing
3.2. Hydrological Models
3.2.1. GLDAS Hydrological Model
3.2.2. CPC Hydrological Model
3.2.3. Water GAP Hydrological Model
3.3. Precipitation Data
3.4. Remote Sensing Data Results for Glaciers
3.5. Vertical Velocities Caused by Surface Movement
3.6. Hydrologic and Remote Sensing Data Processing Methods
3.7. Tectonic Information Acquisition
3.8. Mass Changes Caused by Surface Movement
3.9. Estimation of Moho Interface Changes
4. Results
4.1. The Impact of Filtering and Truncation on Data
4.2. GRACE Observations
4.3. Hydrological Results
4.4. Mass Changes Caused by Surface Movement
4.5. Moho Changes Beneath the Study Area
5. Discussion
5.1. Interpretation of Moho Deformation
5.2. Erosion and Sedimentation Effects
5.3. Isostatic Status of the Study Area
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forsythe, R.; Nelson, E. Geological manifestations of ridge collision: Evidence from the Golfo de Penas-Taitao Basin, southern Chile. Tectonics 1985, 4, 477–495. [Google Scholar] [CrossRef]
- Cande, S.C.; Leslie, R.B. Late Cenozoic tectonics of the southern Chile trench. J. Geophys. Res. Solid Earth 1986, 91, 471–496. [Google Scholar] [CrossRef]
- Maksymowicz, A.; Contreras-Reyes, E.; Grevemeyer, I.; Flueh, E.R. Structure and geodynamics of the post-collision zone between the Nazca–Antarctic spreading center and South America. Earth Planet. Sci. Lett. 2012, 345–348, 27–37. [Google Scholar] [CrossRef]
- Tebbens, S.; Cande, S.; Kovacs, L.; Parra, J.; LaBrecque, J.; Vergara, H. The Chile ridge: A tectonic framework. J. Geophys. Res. Solid Earth 1997, 102, 12035–12059. [Google Scholar] [CrossRef]
- Bourgois, J.; Guivel, C.; Lagabrielle, Y.; Calmus, T.; Boulègue, J.; Daux, V. Glacial-interglacial trench supply variation, spreading-ridge subduction, and feedback controls on the Andean margin development at the Chile triple junction area (45–48 S). J. Geophys. Res. Solid Earth 2000, 105, 8355–8386. [Google Scholar] [CrossRef]
- Suárez, R.; Sue, C.; Ghiglione, M.; Guillaume, B.; Ramos, M.; Martinod, J.; Barberón, V. Seismotectonic implications of the south chile ridge subduction beneath the patagonian andes. Terra Nova 2021, 33, 364–374. [Google Scholar] [CrossRef]
- Georgieva, V.; Melnick, D.; Schildgen, T.F.; Ehlers, T.A.; Lagabrielle, Y.; Enkelmann, E.; Strecker, M.R. Tectonic control on rock uplift, exhumation, and topography above an oceanic ridge collision: Southern Patagonian Andes (47°S), Chile. Tectonics 2016, 35, 1317–1341. [Google Scholar] [CrossRef] [Green Version]
- Angermann, D.; Klotz, J.; Reigber, C. Space-geodetic estimation of the Nazca-South America Euler vector. Earth Planet. Sci. Lett. 1999, 171, 329–334. [Google Scholar] [CrossRef]
- Kendrick, E.; Bevis, M.; Smalley, R., Jr.; Brooks, B.; Vargas, R.B.; Laurıa, E.; Fortes, L.P.S. The Nazca–South America Euler vector and its rate of change. J. S. Am. Earth Sci. 2003, 16, 125–131. [Google Scholar] [CrossRef]
- Wang, K.; Hu, Y.; Bevis, M.; Kendrick, E.; Smalley, R., Jr.; Vargas, R.B.; Lauría, E. Crustal motion in the zone of the 1960 Chile earthquake: Detangling earthquake-cycle deformation and forearc-sliver translation. Geochem. Geophys. Geosyst. 2007, 8, Q10010. [Google Scholar] [CrossRef] [Green Version]
- DeMets, C.; Gordon, R.G.; Argus, D.F. Geologically current plate motions. Geophys. J. Int. 2010, 181, 1–80. [Google Scholar] [CrossRef] [Green Version]
- Guillaume, B.; Martinod, J.; Husson, L.; Roddaz, M.; Riquelme, R. Neogene uplift of central eastern Patagonia: Dynamic response to active spreading ridge subduction? Tectonics 2009, 28, TC2009. [Google Scholar] [CrossRef] [Green Version]
- Ramos, V.A. Seismic ridge subduction and topography: Foreland deformation in the Patagonian Andes. Tectonophysics 2005, 399, 73–86. [Google Scholar] [CrossRef]
- Haschke, M.; Sobel, E.; Blisniuk, P.; Strecker, M.; Warkus, F. Continental response to active ridge subduction. Geophys. Res. Lett. 2006, 33, L15315. [Google Scholar] [CrossRef] [Green Version]
- Feng, M.; Assumpçao, M.; Van der Lee, S. Group-velocity tomography and lithospheric S-velocity structure of the South American continent. Phys. Earth Planet. Inter. 2004, 147, 315–331. [Google Scholar] [CrossRef]
- Tassara, A.; Swain, C.; Hackney, R.; Kirby, J. Elastic thickness structure of South America estimated using wavelets and satellite-derived gravity data. Earth Planet. Sci. Lett. 2007, 253, 17–36. [Google Scholar] [CrossRef]
- Lloyd, S.; Van Der Lee, S.; França, G.S.; Assumpção, M.; Feng, M. Moho map of South America from receiver functions and surface waves. J. Geophys. Res. Solid Earth 2010, 115, B11315. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, R.; Ivins, E.; Casassa, G.; Lange, H.; Wendt, J.; Fritsche, M. Rapid crustal uplift in Patagonia due to enhanced ice loss. Earth Planet. Sci. Lett. 2010, 289, 22–29. [Google Scholar] [CrossRef]
- Stern, C.R. Subduction erosion: Rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Res. 2011, 20, 284–308. [Google Scholar] [CrossRef]
- Richter, A.; Ivins, E.; Lange, H.; Mendoza, L.; Schröder, L.; Hormaechea, J.L.; Casassa, G.; Marderwald, E.; Fritsche, M.; Perdomo, R.; et al. Crustal deformation across the Southern Patagonian Icefield observed by GNSS. Earth Planet. Sci. Lett. 2016, 452, 206–215. [Google Scholar] [CrossRef]
- Bagherbandi, M.; Bai, Y.; Sjöberg, L.E.; Tenzer, R.; Abrehdary, M.; Miranda, S.; Alcacer, S.J.M. Effect of the lithospheric thermal state on the Moho interface: A case study in South America. J. S. Am. Earth Sci. 2017, 76, 198–207. [Google Scholar] [CrossRef]
- Barberón, V.; Sue, C.; Ghiglione, M.; Ronda, G.; Aragón, E. Late Cenozoic brittle deformation in the Southern Patagonian Andes: Record of plate coupling/decoupling during variable subduction? Terra Nova 2018, 30, 296–309. [Google Scholar] [CrossRef]
- Rodriguez, E.; Russo, R. Southern Chile crustal structure from teleseismic receiver functions: Responses to ridge subduction and terrane assembly of Patagonia. Geosphere 2020, 16, 378–391. [Google Scholar] [CrossRef]
- Warren, C.R.; Sugden, D.E. The Patagonian icefields: A glaciological review. Arct. Alp. Res. 1993, 25, 316–331. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D.; Blankenship, D.D.; Ivins, E.R. Patagonia Icefield melting observed by Gravity Recovery and Climate Experiment (GRACE). Geophys. Res. Lett. 2007, 34, L22501. [Google Scholar] [CrossRef]
- Aniya, M.; Sato, H.; Naruse, R.; Skvarca, P.; Casassa, G. Recent glacier variations in the Southern Patagonia icefield, South America. Arct. Alp. Res. 1997, 29, 1–12. [Google Scholar] [CrossRef]
- Rignot, E.; Rivera, A.; Casassa, G. Contribution of the Patagonia Icefields of South America to sea level rise. Science 2003, 302, 434–437. [Google Scholar] [CrossRef] [Green Version]
- Foresta, L.; Gourmelen, N.; Weissgerber, F.; Nienow, P.; Williams, J.J.; Shepherd, A.; Drinkwater, M.R.; Plummer, S. Heterogeneous and rapid ice loss over the Patagonian ice fields revealed by CryoSat-2 swath radar altimetry. Remote Sens. Environ. 2018, 211, 441–455. [Google Scholar] [CrossRef]
- Willis, M.J.; Melkonian, A.K.; Pritchard, M.E.; Rivera, A. Ice loss from the Southern Patagonian ice field, South America, between 2000 and 2012. Geophys. Res. Lett. 2012, 39, L17501. [Google Scholar] [CrossRef] [Green Version]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Steffen, H.; Gitlein, O.; Denker, H.; Müller, J.; Timmen, L. Present rate of uplift in Fennoscandia from GRACE and absolute gravimetry. Tectonophysics 2009, 474, 69–77. [Google Scholar] [CrossRef]
- Cazenave, A.; Chen, J. Time-variable gravity from space and present-day mass redistribution in theEarth system. Earth Planet. Sci. Lett. 2010, 298, 263–274. [Google Scholar] [CrossRef]
- Ivins, E.R.; Watkins, M.M.; Yuan, D.N.; Dietrich, R.; Casassa, G.; Rülke, A. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009. J. Geophys. Res. Solid Earth 2011, 116, B02403. [Google Scholar] [CrossRef]
- Zhao, S. Lithosphere thickness and mantle viscosity estimated from joint inversion of GPS and GRACE-derived radial deformation and gravity rates in North America. Geophys. J. Int. 2013, 194, 1455–1472. [Google Scholar] [CrossRef] [Green Version]
- Yi, S.; Sun, W. Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models. J. Geophys. Res. Solid Earth 2014, 119, 2504–2517. [Google Scholar] [CrossRef]
- Li, B.; Rodell, M.; Kumar, S.; Beaudoing, H.K.; Getirana, A.; Zaitchik, B.F.; de Goncalves, L.G.; Cossetin, C.; Bhanja, S.; Mukherjee, A. Global GRACE data assimilation for groundwater and drought monitoring: Advances and challenges. Water Resour. Res. 2019, 55, 7564–7586. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Li, X. Estimating terrestrial water storage changes in the Tarim river basin using GRACE data. Geophys. J. Int. 2017, 211, 1449–1460. [Google Scholar] [CrossRef]
- Guo, J.; Li, W.; Chang, X.; Zhu, G.; Liu, X.; Guo, B. Terrestrial water storage changes over Xinjiang extracted by combining Gaussian filter and multichannel singular spectrum analysis from GRACE. Geophys. J. Int. 2018, 213, 397–407. [Google Scholar] [CrossRef]
- Zou, F.; Tenzer, R.; Jin, S. Water storage variations in Tibet from GRACE, ICESat, and hydrological data. Remote Sens. 2019, 11, 1103. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Song, Z.; Luo, Z.; Zhong, B.; Wang, X.; Zou, Z. Comparison of terrestrial water storage changes derived from GRACE/GRACE-FO and swarm: A case study in the amazon river basin. Water 2020, 12, 3128. [Google Scholar] [CrossRef]
- Rzepecka, Z.; Birylo, M. Groundwater storage changes derived from GRACE and GLDAS on smaller river basins—A case study in Poland. Geosciences 2020, 10, 124. [Google Scholar] [CrossRef] [Green Version]
- Mikhailov, V.; Tikhotsky, S.; Diament, M.; Panet, I.; Ballu, V. Can tectonic processes be recovered from new gravity satellite data? Earth Planet. Sci. Lett. 2004, 228, 281–297. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D.; Grand, S. GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake. Geophys. Res. Lett. 2007, 34, L13302. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Shum, C.; Simons, F.J.; Tapley, B.; Dai, C. Coseismic and postseismic deformation of the 2011 Tohoku-Oki earthquake constrained by GRACE gravimetry. Geophys. Res. Lett. 2012, 39, L07301. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, Y.; Heki, K.; Matsuo, K.; Shestakov, N.V. Crustal subsidence observed by GRACE after the 2013 Okhotsk deep-focus earthquake. Geophys. Res. Lett. 2015, 42, 3204–3209. [Google Scholar] [CrossRef] [Green Version]
- Qu, W.; Han, Y.; Lu, Z.; An, D.; Zhang, Q.; Gao, Y. Co-seismic and post-seismic temporal and spatial gravity changes of the 2010 Mw 8.8 maule chile earthquake observed by GRACE and GRACE follow-on. Remote Sens. 2020, 12, 2768. [Google Scholar] [CrossRef]
- Shafiei, J.M.S.; Sjöberg, L.E.; Bagherbandi, M. Use of GRACE data to detect the present land uplift rate in Fennoscandia. Geophys. J. Int. 2017, 209, 909–922. [Google Scholar] [CrossRef]
- Sjöberg, L.E.; Bagherbandi, M. Upper mantle density and surface gravity change in Fennoscandia, determined from GRACE monthly data. Tectonophysics 2020, 782, 228428. [Google Scholar] [CrossRef]
- Riva, R.E.M.; Gunter, B.C.; Urban, T.J.; Vermeersen, B.L.A.; Lindenbergh, R.C.; Helsen, M.M.; Bamber, J.L.; van de Wal, R.S.W.; van den Broeke, M.R.; Schutz, B.E. Glacial isostatic adjustment over Antarctica from combined ICESat and GRACE satellite data. Earth Planet. Sci. Lett. 2009, 288, 516–523. [Google Scholar] [CrossRef]
- Sutterley, T.C.; Velicogna, I.; Csatho, B.; van den Broeke, M.; Rezvan-Behbahani, S.; Babonis, G. Evaluating Greenland glacial isostatic adjustment corrections using GRACE, altimetry and surface mass balance data. Environ. Res. Lett. 2014, 9, 014004. [Google Scholar] [CrossRef] [Green Version]
- Yi, S.; Freymueller, J.T.; Sun, W. How fast is the middle-lower crust flowing in eastern Tibet? A constraint from geodetic observations. J. Geophys. Res. Solid Earth 2016, 121, 6903–6915. [Google Scholar] [CrossRef]
- Jiao, J.; Zhang, Y.; Yin, P.; Zhang, K.; Wang, Y.; Bilker-Koivula, M. Changing moho beneath the Tibetan plateau revealed by GRACE observations. J. Geophys. Res. Solid Earth 2019, 124, 5907–5923. [Google Scholar] [CrossRef]
- Rao, W.; Sun, W. Moho interface changes beneath the Tibetan plateau based on GRACE data. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020605. [Google Scholar] [CrossRef]
- Bettadpur, S. UTCSR Level-2 Gravity Field Product User Handbook; GRACE 327-734Rep.; Center for Space Research, The Universtiy of Texas at Austin: Austin, TX, USA, 2007. [Google Scholar]
- Chen, J.; Tapley, B.; Rodell, M.; Seo, K.W.; Wilson, C.; Scanlon, B.R.; Pokhrel, Y. Basin-scale river runoff estimation from GRACE gravity satellites, climate models, and in situ observations: A case study in the Amazon basin. Water Resour. Res. 2020, 56, e2020WR028032. [Google Scholar] [CrossRef]
- Swenson, S.; Chambers, D.; Wahr, J. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res. Solid Earth 2008, 113, B08410. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.; Tapley, B.D. Variations in the Earth’s oblateness during the past 28 years. J. Geophys. Res. Solid Earth 2004, 109, B09402. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R. Low degree gravity changes from GRACE, Earth rotation, geophysical models, and satellite laser ranging. J. Geophys. Res. 2008, 113, B06402. [Google Scholar] [CrossRef] [Green Version]
- Swenson, S.; Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 2006, 33, L08402. [Google Scholar] [CrossRef]
- Geruo, A.; Wahr, J.; Zhong, S. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: An application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys. J. Int. 2013, 192, 557–572. [Google Scholar] [CrossRef]
- Chen, J.; Wilson, C.; Li, J.; Zhang, Z. Reducing leakage error in GRACE-observed long-term ice mass change: A case study in West Antarctica. J. Geod. 2015, 89, 925–940. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D. Contribution of ice sheet and mountain glacier melt to recent sea level rise. Nat. Geosci. 2013, 6, 549–552. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Van Den Dool, H. Climate prediction center global monthly soil moisture data set at 0.5 resolution for 1948 to present. J. Geophys. Res. Atmos. 2004, 109, D10102. [Google Scholar] [CrossRef] [Green Version]
- Alcamo, J.; Döll, P.; Henrichs, T.; Kaspar, F.; Lehner, B.; Rösch, T.; Siebert, S. Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol. Sci. J. 2003, 48, 317–337. [Google Scholar] [CrossRef]
- Döll, P.; Kaspar, F.; Lehner, B. A global hydrological model for deriving water availability indicators: Model tuning and validation. J. Hydrol. 2003, 270, 105–134. [Google Scholar] [CrossRef]
- Müller, S.H.; Cáceres, D.; Eisner, S.; Flörke, M.; Herbert, C.; Niemann, C.; Peiris, T.A.; Popat, E.; Portmann, F.T.; Reinecke, R. The global water resources and use model WaterGAP v2. 2d: Model description and evaluation. Geosci. Model Dev. 2021, 14, 1037–1079. [Google Scholar] [CrossRef]
- Chen, M.; Xie, P.; Janowiak, J.E.; Arkin, P.A. Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeorol. 2002, 3, 249–266. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Sci. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Kusche, J.; Schrama, E. Surface mass redistribution inversion from global GPS deformation and gravity recovery and climate experiment (GRACE) gravity data. J. Geophys. Res. Solid Earth 2005, 110, B09409. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Yuan, L.; Fan, D.; You, W.; Su, Y. Seasonal crustal vertical deformation induced by environmental mass loading in mainland China derived from GPS, GRACE and surface loading models. Adv. Space Res. 2017, 59, 88–102. [Google Scholar] [CrossRef]
- Pan, Y.; Shen, W.-B.; Shum, C.K.; Chen, R. Spatially varying surface seasonal oscillations and 3-D crustal deformation of the Tibetan Plateau derived from GPS and GRACE data. Earth Planet. Sci. Lett. 2018, 502, 12–22. [Google Scholar] [CrossRef]
- Su, G.; Zhan, W. Seasonal and long-term vertical land motion in Southwest China determined using GPS, GRACE, and surface loading model. Earth Planets Space 2021, 73, 131. [Google Scholar] [CrossRef]
- Farrell, W. Deformation of the Earth by surface loads. Rev. Geophys. 1972, 10, 761–797. [Google Scholar] [CrossRef]
- Han, D.; Wahr, J. The viscoelastic relaxation of a realistically stratified earth, and a further analysis of postglacial rebound. Geophys. J. Int. 1995, 120, 287–311. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Wang, Q.; Li, H.; Wang, Y.; Okubo, S.; Shao, D.; Liu, D.; Fu, G. Gravity and GPS measurements reveal mass loss beneath the Tibetan Plateau: Geodetic evidence of increasing crustal thickness. Geophys. Res. Lett. 2009, 36, L02303. [Google Scholar] [CrossRef]
- Laske, G.; Masters, G.; Ma, Z.; Pasyanos, M. Update on CRUST1. 0—A 1-degree global model of Earth’s crust. Geophys. Res. Abst. 2013, 15, 2658. [Google Scholar]
- Jin, S.; Feng, G. Large-scale variations of global groundwater from satellite gravimetry and hydrological models, 2002–2012. Glob. Planet. Chang. 2013, 106, 20–30. [Google Scholar] [CrossRef]
- Muto, M.; Furuya, M. Surface velocities and ice-front positions of eight major glaciers in the Southern Patagonian Ice Field, South America, from 2002 to 2011. Remote Sens. Environ. 2013, 139, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Malz, P.; Meier, W.; Casassa, G.; Jaña, R.; Skvarca, P.; Braun, M. Elevation and mass changes of the Southern Patagonia icefield derived from TanDEM-X and SRTM Data. Remote Sens. 2018, 10, 188. [Google Scholar] [CrossRef] [Green Version]
- Richter, A.; Groh, A.; Horwath, M.; Ivins, E.; Marderwald, E.; Hormaechea, J.L.; Perdomo, R.; Dietrich, R. The rapid and steady mass loss of the patagonian icefields throughout the GRACE era: 2002–2017. Remote Sens. 2019, 11, 909. [Google Scholar] [CrossRef] [Green Version]
- Minowa, M.; Schaefer, M.; Sugiyama, S.; Sakakibara, D.; Skvarca, P. Frontal ablation and mass loss of the Patagonian icefields. Earth Planet. Sci. Lett. 2021, 561, 116811. [Google Scholar] [CrossRef]
- Wang, L.; Khan, S.A.; Bevis, M.; Broeke, M.R.; Kaban, M.K.; Thomas, M.; Chen, C. Downscaling GRACE predictions of the crustal response to the present day mass changes in Greenland. J. Geophys. Res. Solid Earth 2019, 124, 5134–5152. [Google Scholar] [CrossRef]
- Braitenberg, C.; Shum, C. Geodynamic implications of temporal gravity changes over Tibetan Plateau. Ital. J. Geosci. 2017, 136, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Braitenberg, C.; Serpelloni, E. Interference of tectonic signals in subsurface hydrologic monitoring through gravity and GPS due to mountain building. Glob. Planet. Chang. 2018, 167, 148–159. [Google Scholar] [CrossRef]
- Carretier, S.; Tolorza, V.; Regard, V.; Aguilar, G.; Bermúdez, M.A.; Martinod, J.; Guyot, J.L.; Hérail, G.; Riquelme, R. Review of erosion dynamics along the major NS climatic gradient in Chile and perspectives. Geomorphology 2018, 300, 45–68. [Google Scholar] [CrossRef]
- Arendt, A.; Bliss, A.; Bolch, T.; Cogley, J.; Gardner, A.; Hagen, J.-O.; Hock, R.; Huss, M.; Kaser, G.; Kienholz, C. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 6.0; Technical Report; Global Land Ice Measurements from Space: Boulder, CO, USA, 2017. [Google Scholar]
- Breitsprecher, K.; Thorkelson, D.J. Neogene kinematic history of nazca–antarctic–phoenix slab windows beneath patagonia and the antarctic peninsula. Tectonophysics 2009, 464, 10–20. [Google Scholar] [CrossRef]
- Airy, G.B., III. On the computation of the effect of the attraction of mountain-masses, as disturbing the apparent astronomical latitude of stations in geodetic surveys. Philos. Trans. R. Soc. Lond. 1855, 145, 101–104. [Google Scholar] [CrossRef] [Green Version]
- Turcotte, D.L.; Schubert, G. Geodynamics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2002; pp. 216–219. [Google Scholar]
- Feng, W. GRAMAT: A comprehensive Matlab toolbox for estimating global mass variations from GRACE satellite data. Earth Sci. Inf. 2018, 12, 389–404. [Google Scholar] [CrossRef]
Region | Moho Depth Changes Rates |
---|---|
1 | −2.12 ± 0.67 |
2 | 0.18 ± 0.19 |
3 | −6.46 ± 1.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, P.; Guo, C.; Wei, D. GRACE Data Explore Moho Change Characteristics Beneath the South America Continent near the Chile Triple Junction. Remote Sens. 2022, 14, 924. https://doi.org/10.3390/rs14040924
Sun P, Guo C, Wei D. GRACE Data Explore Moho Change Characteristics Beneath the South America Continent near the Chile Triple Junction. Remote Sensing. 2022; 14(4):924. https://doi.org/10.3390/rs14040924
Chicago/Turabian StyleSun, Pengchao, Changsheng Guo, and Dongping Wei. 2022. "GRACE Data Explore Moho Change Characteristics Beneath the South America Continent near the Chile Triple Junction" Remote Sensing 14, no. 4: 924. https://doi.org/10.3390/rs14040924
APA StyleSun, P., Guo, C., & Wei, D. (2022). GRACE Data Explore Moho Change Characteristics Beneath the South America Continent near the Chile Triple Junction. Remote Sensing, 14(4), 924. https://doi.org/10.3390/rs14040924