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Abstract: The optical diameter of the surface snow grains impacts the amount of energy absorbed by
the surface and therefore the onset and magnitude of surface melt. Snow grains respond to surface
heating through grain metamorphism and growth. During melt, liquid water between the grains
markedly increases the optical grain size, as wet snow grain clusters are optically equivalent to large
grains. We present daily surface snow grain optical diameters (dopt) retrieved from the Greenland ice
sheet at 1 km resolution for 2017–2019 using observations from Ocean and Land Colour Instrument
(OLCI) onboard Sentinel-3A. The retrieved dopt are evaluated against 3 years of in situ measurements
in Northeast Greenland. We show that higher dopt are indicative of surface melt as calculated from
meteorological measurements at four PROMICE automatic weather stations. We deduce a threshold
value of 0.64 mm in dopt allowing categorization of the days either as melting or nonmelting. We
apply this simple melt detection technique in Northeast Greenland and compare the derived melting
areas with the conventional passive microwave MEaSUREs melt flag for June 2019. The two flags
show generally consistent evolution of the melt extent although we highlight areas where large
grain diameters are strong indicators of melt but are missed by the MEaSUREs melt flag. While
spatial resolution of the optical grain diameter-based melt flag is higher than passive microwave, it is
hampered by clouds. Our retrieval remains suitable to study melt at a local to regional scales and
could be in the future combined with passive microwave melt flags for increased coverage.

Keywords: Greenland ice sheet; Sentinel-3; OLCI; optical remote sensing; snow optical grain diameter;
surface melt

1. Introduction

The darkening of snow and ice surfaces in the industrial era has caused the increased
absorption of solar energy by the Earth surface [1] and accelerated the mass loss from polar
ice caps and glaciers and their contribution to sea level rise [2–4]. On the Greenland ice
sheet, a highly reflective snow cover accumulates on the surface each winter. Surface snow
then undergoes melt in the spring and summer, until it either melts away and exposes
a dark underlying glacial ice [5,6], or until the melt stops. The surface melt intensity is
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governed by sensible heat flux and absorption of solar radiation at the surface [7] and the
latter is largely controlled by the snow optical properties: the shape and size of its grains,
the presence of water and the concentration of light-absorbing impurities [8–11].

Among the snow optical characteristics, the size of the ice grains within the top layer
of snow has a direct impact on the snow albedo and on how much solar energy is absorbed
by the snowpack [9]. Larger grains increase the incoming light-path length within ice
crystals and therefore increase the probability for the light to be absorbed. Conversely,
snow with smaller grains increases the probability of light exiting the snowpack. Beyond its
importance for the snow shortwave reflectivity, snow grain size can be important for passive
microwave remote sensing, radar and laser altimetry and snow physical and hydrological
modelling. Indeed, microwave emissivity of snow can be used to estimate snow surface
melt [12] or snow wetness [13] but such retrievals are complicated by the development of
large grains at or under the surface [14]. Knowledge of snow grain size is also required
to interpret radar altimetry data as the penetration of laser and radar signals into snow
depends on grain size [15–17]. Eventually, multilayer snow models are usually used in
combination with climate models to simulate surface melt and meltwater infiltration and
runoff. These models need surface snow grain size at the surface as boundary conditions.
Therefore, snow models would benefit from increased knowledge and observation of the
surface grain size [18].

Due to the diversity of snow grain shapes found in natural snowpacks, the geometrical
snow grain size is ambiguous and difficult to determine in the field [19–21]. On the contrary,
the effective optical grain diameter (dopt) is defined as the diameter of spheres which have
the same volume-to-surface ratio as the nonspherical snow particles [22,23]. Those spheres
are usually referred to as optically equivalent spheres. dopt is commonly used in remote
sensing [24,25] and as a prognostic variable in snow models [26]. dopt is interchangeable
with the snow-specific surface area (SSA) through:

SSA =
6

dopt ρice
, (1)

where ρice is the ice density (917 kg m−3). dopt increases and SSA decreases with time
through dry and wet metamorphisms [27]. Under the action of wind, large snow grains
can be broken into smaller grains resulting in a decrease of dopt and increase in SSA [28].
When surface melt occurs, some meltwater is held between the surface snow grains. Since
water and ice have similar refractive index, this sudden appearance of water around the
grain reduces air/ice interface scattering and translates into a sharp increase in dopt. The
potential of using remotely sensed dopt to map surface melt has been mentioned in previous
studies (e.g., [24,29]) but no grain-diameter-based surface melt detection method has been
presented to date.

Retrievals of snow grain size and albedo from spaceborne multispectral observations
usually rely on snow radiative transfer models [30]. These models can directly, or af-
ter inversion, calculate the snow grain size and impurity concentration from reflectance
measurements at certain wavelengths given certain assumptions about the snow surface.
For instance, numerous models assumed spherical snow grains and used Mie scattering
theory and radiative transfer equation to retrieve the snow optical characteristics [21,31–36].
The spherical grain assumption was motivated by the successful estimation of spectral
hemispherical reflectances of snow with nonspherical ice particles when representing them
as spherical grains of a similar volume-to-surface-area [37]. While this technique has been
widely applied, it has been noted that the spherical assumption was limited in accounting
for the directional variation of snow reflectance [38–45] and therefore would lead to errors
when used on remotely sensed directional reflectance. Several models using the nonspheri-
cal grains assumption have been applied to snow characteristics retrievals, for example on
data from the Sea and Land Surface Temperature Radiometer (SLSTR) onboard the Sentinel-
3 satellites [43,44] or on data from the Moderate Resolution Imaging Spectroradiometer
(MODIS) onboard the Terra and Aqua satellites [29,38]. The asymptotic radiative transfer
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theory allows the retrieval of the snow albedo and optical grain diameter for snow with
nonspherical grains and has been applied to MODIS data [24,30,46–48], AATSR and MERIS
data from the ENVISAT satellite [47,49] and OLCI data from Sentinel-3 satellites [50,51].
These studies have carefully presented the theoretical background of their snow retrieval
algorithms and validated their output against the available in situ measurements. However,
little emphasis was brought to the description of estimated dopt, its temporal and spatial
variations and its capacity to indicate surface melt.

The detection of surface melt on the Greenland ice sheet has been performed us-
ing passive microwave remote sensing [12,52–55]. The evaluation of these surface melt
detection algorithms was nevertheless limited by the scarcity of in situ surface melt es-
timation. Remotely sensed melt maps consequently relied on positive air temperature
periods at few automatic weather station locations and regional climate model output for
evaluation [12,54]. Additionally, the spacing of passive microwave observations along a
scan is coarse (2.5–25 km, [56]) and requires grid enhancement to achieve higher spatial
resolution [55]. The use of optical remote sensing to map surface melt, using the response
of grain size to the presence of meltwater, can achieve a much higher spatial resolution
(10 m–1 km) than from passive microwave observations.

Here, we present the dopt retrieved via the Pre-operational Sentinel-3 Snow and Ice
(SICE) toolchain [57] from the OLCI instrument onboard the Sentinel-3A satellite. We
present the SICE dopt dataset in Greenland for 2017–2019 and evaluate it against ground ob-
servations. We describe the response of dopt to surface warming and melt using Automatic
Weather Stations (AWS) observations and build a surface melt flag based on dopt at a 1 km
spatial resolution. Eventually, we compare our melt flag with available melt maps derived
from passive microwave measurements.

2. Methods
2.1. OLCI Instrument and Data Pre-Processing

The OLCI instrument, onboard the European Space Agency (ESA) Sentinel-3 A and B
satellites, is an along-track multispectral imager recording the Earth’s radiance in the visible
to near-infrared spectrum at 21 bands ranging from 400 to 1020 nm with a 2% radiometric
accuracy [58]. It is composed of 5 cameras arranged in fan with a combined field of view of
68.6◦, producing a 1270 km across-track image swath on the ground. To minimize sun glint,
OLCI is tilted across track 12.58◦ away from the sun. The cameras cumulate 3700 detectors
across-track, allowing a spatial resolution of ~350 m at nadir. Scenes containing Greenland
between years 2017 and 2019 are identified and the corresponding OLCI L1B products [59]
are obtained through the Copernicus Open Access Hub (https://scihub.copernicus.eu/,
accessed on 3 January 2022).

We convert the satellite top of the atmosphere (TOA) radiance measurement L(λ) into
TOA reflectances RTOA(λ) via SNAP software [60] as:

RTOA(λ) =
πL(λ) z2

z02F0(λ)cosθs
, (2)

where the reference solar irradiance F0(λ) is from [61], adjusted for the wavelength and
sensitivity of each of the OLCI detectors and for the Earth–Sun distance [62]. In Equation (2),
F0(λ) which is measured at solar noon, is scaled by the cosine of the solar zenith angle θs
and adjusted for the Earth–Sun distance z at acquisition day compared to the reference
solar irradiance measurement at the reference distance z0 [63]. F0(λ)z0

2/z2 is provided for
each pixel in the L1B product.

2.2. Cloud Identification

Cloud masking is performed after the Simple Cloud Detection Algorithm (SCDA)
v2.0 that consists of five tests using reflectances at 0.55 µm (R1) and 1.6 µm (R5) and
brightness temperatures at 11 µm (BT8), 12 µm (BT9), 3.7 µm (BT7) from the Sentinel-3 Sea
and Land Surface Temperature Radiometer (SLSTR) after [64], implemented in the SICE

https://scihub.copernicus.eu/
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toolchain after [65]. A main cloud discrimination test exploits the brightness–temperature
(BT) difference between 11 µm and 3.7 µm that yields negative values for clouds given
the strong 3.7 µm solar reflection. A radiometric “vicarious calibration” factor of 1.12 was
applied to R5 after [66].

The Normalized-Difference Snow Index is taken as:

NDSI =
R1− R5
R1 + R5

, (3)

Then, a pixel is considered cloudy if at least one of the following four tests is positive:

[1] R1 > 0.30 and
NDSI

R1
< 0.8 and BT9 ≤ 290 K

[2] BT8 − BT7 < −13 K and R1 < 0.15 and NDSI ≥ −0.30 and R16 > 0.10 and BT9 ≤ 293K

[3] BT8 − BT7 < −30K

[4] BT8 − BT7 < THR and
NDSI

R1
< S and− 0.02 ≤ NDSI ≤ 0.75 and BT9 ≤ 270 K and R1 > 0.18

with
S = 1.1 if R1 > 0.75; 1.5 otherwise

THRmax = −5.5 K if (R1 < 0.75 and BT9 > 265); −8 K otherwise

THR = min (0.5 × BT9 − 133, THRmax)

The OLCI TOA reflectances are filtered from the identified clouds with an additional
buffer radius of 5 km in effort to remove shadows and reflected illumination due to the
presence of clouds.

2.3. Mosaic Construction

Swath data are combined into 1 km EPSG:3413 projection daily mosaics over the
Greenland ice sheet. When a region is covered by multiple OLCI scenes the same day, the
pixel that is cloud-free and presents the minimal solar zenith angle is used in the mosaic.
A lookup table identifies the scene ID of each pixel in each daily mosaic. Grids of solar
zenith and azimuth angles, viewing zenith and azimuth angles and ozone are extracted
from each OLCI scene and assembled according to the same look-up table as the daily
reflectance mosaics [57].

2.4. The SICE Retrieval of Snow Albedo and Optical Grain Size

The SICE dopt retrieval uses the asymptotic radiative transfer (ART) theory [50,51,67].
The ART considers a vertically homogeneous, semi-infinite snow layer seen as a horizontally
homogeneous plane parallel turbid medium, where geometrical optics can be used to derive
local optical snow characteristics. Only pixels completely covered by snow are considered.
Impurities (dust, soot, etc.) are assumed to be located outside of ice grains. Given those
assumptions, the ART provides an analytical solution to the radiative transfer equation
and relates the snow surface reflectance and albedo to the snow-grain diameter dopt and
impurity concentration and type [39,45,68,69].

The SICE retrieval uses wavelengths that are not significantly affected by water vapor,
ozone or oxygen light-absorption effects. The TOA reflectances measured by OLCI at
λ1 = 865 nm (band 17) and λ2 = 1020 nm (band 21) wavelengths are well suited for this
purpose and can be used as estimation of surface reflectance after the correction for the
minor light absorption by ozone:

RTOA,cor O3(λ) = RTOA TO3(λ), (4)
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where the ozone transmittance TO3(λ) is estimated from the European Centre for Medium-
range Weather Forecasts (ECMWF) total column ozone level provided for each OLCI pixel
and a reference ozone optical depth spectrum defined by [51].

The pure snow reflectance Rs, which for our two wavelengths of interest equals
RTOA,cor O3 , can be decomposed into the reflectance R0 of a nonabsorbing snow surface and
a factor that accounts for the light absorption in ice, for the shape of the ice crystals, and for
the dependence of reflectance on illumination and observation angles [39,45,50,67–70]:

Rs(λ) = R0 exp
(
−u(µ0)u(µ)

R0
y(λ)

)
, (5)

where u, the escape function, is evaluated at the cosine of the solar or observation zenith
angles (µ0 and µ, respectively). We use the following approximation [71]

u(µ)=
3
7
(1 + 2µ). (6)

The similarity parameter y can be presented as

y = 4

√
kabs/kext

3 (1− g)
, (7)

for weakly absorbing media in the visible and near infrared regions of the electromagnetic
spectrum such as snow. In Equation (7), kabs and kext are the coefficients of absorption and
extinction of the snow and g is the asymmetry parameter defined as the average cosine
of the scattering angle inside the snowpack. kabs and kext can be expressed, using the
geometrical optics approximation for weakly absorbing grains [69], as: kabs = B α(λ) Cv
and kext = 3 Cv

dopt
where Cv is the volumetric concentration of ice grains, dopt is the effective

optical diameter, B is the absorption enhancement factor that accounts for the grain shape
and α(λ) is the bulk absorption coefficient of ice. α(λ) is calculated at a given wavelength
(λ) from the imaginary part of the ice’s refractive index (χ) compiled by [72]:

α(λ) =
4πχ

λ
. (8)

In our formulation, the effective optical diameter dopt is defined as dopt = 3v/2s [69],
where v is the average volume of ice grains and s is their geometrical cross section per-
pendicular to the incident light direction (equal to A/4 for convex particles in random
orientation, where A is the surface area of particles). For monodispersed spherical snow
grains, dopt equals the physical grain diameter while for other shapes dopt is the diameter of
spheres that have similar volume to surface ratio (also called Sauter diameter). Using the
definitions of kabs and kext, Equation (7) can be rewritten as:

y =

√
α(λ)

16 B
9 (1− g)

dopt=
√

α(λ) l, (9)

where
l =

16 B
9 (1− g)

dopt, (10)

is the effective absorption length as used by [50,51,67]. It is the effective absorption length
l that is retrieved from the OLCI reflectance measurements. Indeed, using the ozone-
corrected observed surface reflectance Rs and Equation (5) at λ1 = 865 nm and λ2 = 1020 nm
we can derive R0 and l as [50]:

R0 = Rs(λ1)
1

1−
√

α(λ1)/α(λ2) Rs(λ2)
1

1−
√

α(λ2)/α(λ1) , (11)
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l = [
ln
(

Rs(λ2)
R0

)
u(µ0)u(µ)

R0

]

2

1
α(λ2)

. (12)

In Equations (11) and (12) above, the snow reflectances Rs are derived from satel-
lite measurements, α can be calculated using Equation (8), u(µ0)u(µ) can be calculated
using Equation (6). Eventually, the optical grain diameter dopt can be calculated from
Equation (12):

dopt = l
9 (1− g)

16 B
= [

ln
(

Rs(λ2)
R0

)
u(µ0)u(µ)

R0

]

2

1
α(λ2)

9 (1− g)
16 B

, (13)

While l in Equation (13) is derived from the OLCI measurements, the fraction B
(1−g)

cannot be retrieved from the observed reflectances. The value of B
(1−g) depends on the grain

shape and ranges from 7.4 for fractal particles to 11.5 for spherical grains [73]. The author
of [74] derived the value of B

(1−g) from an experiment conducted by [75]: simultaneous
measurements of shortwave infrared reflectance and specific surface area of snow samples
(spanning from fresh dendritic to aged faceted grains) allowed the calculation of both l and
dopt and consequently the ratio B

(1−g) , which had an average value of 9.2. We use this value
as in [50]. Similar values were also used by [39].

The SICE retrievals also include surface albedo, which variation can then be compared
to the variation in retrieved dopt. The planar (blue sky) albedo is the integral of Rs for all
viewing zenith and azimuthal angles and for a given angle of incident light from the Sun,
i.e. for clear sky conditions, when remote sensing is possible. The planar albedo can be
simplified to a function of the bulk absorption coefficient α(λ) and absorption length l:

rp = exp
(
−
√

α(λ) l u(µ0)

)
(14)

If the retrieved grain size is smaller than 0.1 mm, a residual cloud contamination
is possible, and we flag the pixel accordingly. Due to limitation of the ART for low sun
conditions, pixels that have a solar zenith angle greater than 75◦ are not considered for
retrieval. We also limit our retrieval to the snow covered part of the ice sheet and for the
pixels that have been classified as “clean snow” by the SICE retrieval [51]. An extension of
this retrieval for polluted snow pixels [50] is also included in the SICE dataset.

2.5. Comparison with Ground Optical Measurements of Snow Grain Diameter

As part of the surface program at EastGRIP in Northeast Greenland [76], the SSA was
measured daily using the IceCube instrument [77] in the summers of 2017 (81 days), 2018
(92 days) and 2019 (65 days). The IceCube device measures the reflectance of a 6.0 cm
diameter, 2.5 cm depth cylindrical surface snow sample when illuminated with a 1310 nm
laser diode underneath an integrating sphere. The reflectance is then converted into SSA
and dopt (see Equation (1)). The snow samples were taken every 10 m along a 90 m-long
transect, producing 10 daily samples. The IceCube has a reported accuracy of 10–12% for
SSA [77]. The IceCube dopt measurements are compared the retrieved dopt.

2.6. Surface Melt and Snowfall Detection
2.6.1. Automatic Weather Station Data and Surface Energy Balance Modelling

To study the response of dopt to the meteorological forcing and surface melt, we used
data from the PROMICE AWSs [78]. Out of the 20 PROMICE AWSs on the Greenland ice
sheet, we could not use: (i) the AWSs located in cloudy regions such as eastern Greenland,
because retrievals are infrequent in those regions; (ii) the AWSs that are buried during the
winter and that cannot capture the onset of melt; (iii) the AWSs located in regions where
either a thin snowpack or intense melt expose the underlying glacial ice shortly after the
onset of melt. The highest elevation AWSs (KPC_U, KAN_U, EGP and CEN, Table 1) were
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therefore selected and provided data over 3 years (2017–2019) to evaluate the response of
dopt to surface melt.

Table 1. Automatic weather station used for the investigation of surface melt.

Station Latitude (deg. N) Longitude (deg. E) Elevation (m a.s.l.)

KAN_U 67.0003 −47.0243 1840
KPC_U 79.8345 −25.1665 870

EGP 75.6247 −35.9748 2700
CEN 77.1826 −61.1127 1886

The surface melt rates are calculated using the GEUS surface energy balance (SEB) and
firn model [79]. This used, as input, a gapless time series of air temperature, humidity, wind
speed, downward and upward shortwave radiation and downward longwave radiation,
along with instrument heights and snowfall. To increase the coverage of the AWS during
2017–2019, we gap-filled the AWS data with adjusted data from the nearest cell of the
regional climate model RACMO2.3p2 [4]. We did not account for rainfall as no in situ data
are currently available. Snowfall was calculated from increments in surface height and
adjusted to springtime snow pit measurements as detailed in [79,80].

The SEB model initially developed by [81] was then used and evaluated in [79,80,82].
The model closes the energy budget iteratively by adapting the surface temperature. The
budget at the surface is defined as the sum of downward and upward shortwave radiation,
downward and upward longwave radiation, latent and sensible heat fluxes, and subsurface
conductive heat flux. The first three energy fluxes are given as input while the other energy
fluxes are calculated as a function of surface temperature and other input meteorological
variables, according to, respectively, the Stefan–Boltzmann Law, Monin–Obukhov similarity
theory and Fourier law across the top layer of the firn model. Subsurface shortwave
radiation penetration is neglected, as the top layer of the snow model has a minimum
water equivalent (w.e.) thickness of 4 cm. If it is not possible to find a subfreezing surface
temperature that nullifies the sum of energy fluxes, then surface temperature is set to 0 ◦C
and the sum of all energy fluxes is then used to melt surface snow or ice. The SEB model
is coupled to the GEUS firn model, a multilayer snow and firn model that calculates the
temperature, density, grain size and water content for each model layer. At each time
step, the model column is updated for snow accumulation, temperature diffusion, firn
compaction, grain growth and meltwater infiltration. Further SEB and firn model details
appear in [79,80,82] and references therein.

2.6.2. Passive Microwave Remote Sensing of Surface Melt and Melt Flag Comparison

To map surface melt over the Greenland ice sheet between 2017 and 2019, we used the
MEaSUREs Greenland daily surface melt flag [12,83]. It used, for that period, data from the
SSM/I F17 and F19 sensors on board the Defense Meteorological Satellite Program (DMSP)
satellites [84] and a snowpack microwave emission model and dynamic threshold adjusted
for each year to detect melting/nonmelting surface conditions. It is available at a 25 km
resolution on an EASEv2 grid and only fully glaciated pixels are considered.

For each year, between 1st of May and 30th of September, we compared the detected
melt from remotely sensed dopt and MEaSUREs melt flag to the reference melt calculated at
the PROMICE AWS, using four metrics. The yearly coverage of a melt flag is the fraction of
days between 1st of May and 30th of September for which a flag value is available. The
accuracy of a melt flag is the fraction of available days that is accurately classified, either as
melt or nonmelt. The omission error is the fraction of true melt days, as estimated from
AWS data, that are not detected by a given flag. The commission error is the fraction of
true nonmelt days, as estimated from AWS data, that are classified as melt by a given flag.
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3. Results
3.1. Evaluation of the Grain Size Rretrieval

The SICE retrievals of dopt ranged from 0.10 to 0.47 mm while the measured dopt de-
rived from in situ SSA measurements at EGP ranged from 0.08 to 0.30 mm corresponding to
SSA between 22 and 85 m2 kg−1 (Figure 1). The retrieved dopt is on average 0.06 mm (30%)
larger than the in situ measurements (Table 2, Figure 1). The daily standard deviation of
measurements (error bars in Figure 1) relates to the spatial variability of dopt along the 90 m
transect and has an average of 0.03 mm. The spatial variability within the 90 m transect
is therefore insufficient to explain the difference between the in situ measurements and
retrieved dopt. This difference could also be due to the deeper penetration of light within the
snow at the 865 nm wavelength used for the SICE retrieval (down to ~3 cm, Figure 1 in [85]).
The IceCube device uses a laser at a wavelength (1310 nm) corresponding to a sampling
depth of less than 2 cm below the surface. In springtime, dopt is minimal at the surface and
increases with depth when snow grains have time to undergo metamorphism [29,86,87].
Consequently, a systematic difference of sampling depth in the SICE retrieval and IceCube
measurement will lead to a systematic difference in the grain size they estimate. Measure-
ments and retrievals show linear correlation with Pearson’s correlation (r) ranging from
0.50 to 0.62 depending on the year (Table 2).
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Figure 1. Observed and retrieved snow optical grain diameter (dopt) at EastGRIP during May–October
2017–2019. Error bars indicate the daily standard deviation along the 90 m transect for observation
and within a 2 km radius for the retrieval. Sonic ranger-derived snowfall and melt rate calculated
from the PROMICE EGP AWS data.



Remote Sens. 2022, 14, 932 9 of 22

Table 2. Comparison statistics between the measured and retrieved snow optical grain diameter
at EastGRIP: Mean difference (MD), Root Mean Squared Difference (RMSD), Pearson’s correlation
coefficient (r) and number of days used for comparison (N).

Year MD (mm) RMSD (mm) r N

all 0.06 0.17 0.68 145
2017 0.07 0.20 0.62 59
2018 0.05 0.14 0.59 57
2019 0.05 0.16 0.50 29

A short and low intensity (2 mm w.e.) surface melt episode on 22 June 2017 is
associated with an increase in both the ground observation and the satellite retrieval optical
snow grain diameter (Figure 1). The ground observation and retrieved dopt continued to
increase for the 2–3 following days when melt was not calculated but warm temperatures
continued to heat the surface. This melt event is small, with less than 2 mm w.e. for
the full day. Such surface melt rates represent minor changes at the surface and limited
generation of liquid water. Consequently, the dopt increases on 22 June 2017 were only
slightly more pronounced than other increases that occurred during periods when melt was
not calculated at the weather station. Major snowfall events recorded by the AWS led to a
decrease of grain size by a factor of two or more (Figure 1). In some occurrences (e.g., 18 July
2018), the dopt decreased without the AWS recording any precipitation. A possible cause is
wind transporting small grains to the site, as also hypothesized by [29]. However, no clear
covariation of dopt and wind speed measured at the AWS could be found at EastGRIP.

3.2. The SICE Snow Optical Grain Diameter Dataset

The SICE toolchain provides daily snapshots of optical snow grain diameter at a 1 km
resolution. The main challenge for shortwave optical remote sensing is the impossibility of
retrieval during cloudy conditions. The average cloud-free coverage was 45% in 2017, 31.8%
in 2018 and 40% in 2019 (Figure 2). The ice-sheet-wide snow-covered area-only mean dopt
was around 0.3 mm at the beginning of the season and peaked above 0.6 mm around late
July or early August, when surface melt is widespread. The smaller standard deviation in
May indicates the relative homogeneity of cold, dry snow grains at the surface in the early
melt season. As melt starts on the southern and low-lying ice sheet, the standard deviation
increases and reaches its maximum synchronously with the average dopt, at the peak of the
melt season. The warm year of 2019, during which melt was well above average [88], also
had the highest Greenland-wide average dopt: 0.45 mm compared to 0.36 mm for both 2017
and 2018. That year (2019) also has the maximum daily mean value (1.08 mm on 31 July
2019; Figure 2), as compared to a respective maximum of 0.71 mm and 0.81 mm in 2017
and 2018.

During the melting season, the melt is triggered initially in southern and low-elevation
areas before it spreads northward and to more-elevated areas. dopt follows a similar evo-
lution (Figure 3 and Supplementary Figure S1). At the beginning of the season, before
the melt onset, the retrieved dopt is relatively low and homogeneous across the ice sheet
(e.g., low standard deviation of grain diameters in May 2018, Figure 2) and does not
show a visible gradient with elevation (e.g., northern and western regions in Figure 3
and Supplementary Figure S1). Where and when surface warming and melting started,
the lowermost areas saw an increase of dopt and of its spatial heterogeneity (Figure 3 and
Supplementary Figure S1), while higher areas still had a relatively low and homogeneous
dopt. In the southern areas and in warm years such as 2019, the grain diameter spatial gra-
dients are visible already in May, when the first retrievals are available (e.g., southwestern
regions in Figure 3). As the surface heating and melt progresses to higher elevations, the
dopt increase propagates to the ice sheet interior (Figure 3 and Supplementary Figure S1).
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3.3. Optical Grain Diameter as an Indicator of Melt Affected Snow

At the four PROMICE AWS (Table 1), the calculated melt rates can be compared to
the median dopt retrieved within a 2 km radius of each AWS (Figure 4). The magnitude
of melt calculated from the AWSs allows a better understanding of the covariation of dopt
and surface melt than at EastGRIP alone (Figure 1). The retrieved dopt reacted closely to
the presence and absence of surface melting. At most sites, the dopt had values at or below
0.5 mm at the beginning of the season, when no melt was calculated. At melt onset, dopt
jumps above its premelt values at all sites (Figure 4). Some exceptions such as large dopt in
the absence of melt or small dopt retrieved during the melt period can be noticed. These
punctual decoupling of surface grain diameter and surface melt can be caused by errors in
the retrieval, for instance due to cloud contamination or errors in the melt calculation due
to inaccurate AWS measurements. A last potential explanation for mismatch cases is that
the satellite retrieval may have been taken at an hour of the day when the surface was not
melting, (Sentinel 3 overpass time is 10 am local time at nadir), but surface melt occurred
later on that day.
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The relation between the retrieved snow dopt and the surface melt rate is complex.
Pearson’s coefficient of correlation is 0.49, which reveals a co-variation of the two variables
although a linear regression is incomplete in explaining the relationship. As an alternative,
we look for the dopt value that is most representative of melting conditions and so plot
the calculated daily melt as a function of retrieved dopt for our four sites over 2017–2019
(Figure 5). An analysis of variance indicates that a threshold of 0.64 mm in dopt splits the
samples into two coherent classes. The samples that have retrieved dopt below 0.64 mm
have a median melt of 0 mm w.e. and an average that is not significantly different from
zero. The samples that have a retrieved dopt > 0.64 mm have an average daily melt of
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7.11 mm w.e., significantly greater than zero and greater than the average of the first
class (p-value < 0.001, Figure 5). Additionally, 81.3% of the dopt retrieval above 0.64 mm
corresponds to daily melt greater than 1 mm w.e. and 95.2% of the dopt retrieval below or
equal to 0.64 mm corresponds to daily melt lower than 1 mm w.e. This simple threshold
approach classifies appropriately the majority of the days, either as melt days, when the
retrieved dopt is above that threshold, and non- or low-melt days when the retrieved dopt
is below that threshold. This stepwise approach nevertheless misclassifies 18.8% (12 out
of 64) of samples as melt days when no or little melt was calculated those days. Similarly,
4.8% (32 out of 660) of days classified as non- or low-melt actually had more than 1 mm of
melting calculated from the AWS data.
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Figure 5. Daily melt calculated at the PROMICE AWSs and the retrieved snow optical grain diameter.
Boxplots present statistics for 0.32 mm wide bins of optical grain diameter. The optical grain diameter
threshold for melt detection is the dashed red line. In each boxplot, the whiskers represent the 5th
and 95th percentiles, the edge of the box the 25th and 75th percentile and the solid red line represents
the mean.

To assess the robustness of this threshold, we fitted similar stepwise functions to
(i) each station-year (except CEN and EGP which did not present sufficient melt), (ii) all
samples but removing each station iteratively and (iii) 2017, 2018 and 2019 separately
(Supplementary Table S1). The thresholds found in these test cases have an average of
0.61 mm and a standard deviation of 0.10 mm, consistent with the threshold found when
pooling all samples. However, the threshold found for these subsets are more sensitive
to the errors that occur at each site arising from the difference of footprint between the
satellite retrieval and the AWS measurements, erroneous measurements from the AWS that
lead to improper melt calculation as well as cloud contamination that leads to improper
dopt estimation. We expect that by pooling all these measurements, random noise will be
reduced, and a more robust threshold value can be found.
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3.4. Application to a Heat Wave in Northeast Greenland and Comparison to the MEaSUREs
Melt Flag

We now focus on the 10–18 July 2019 in Northeast Greenland (Figure 6), in the vicinity
of the Northeast Greenland Ice Stream (NEGIS). In this area, warm air masses from the
northern Atlantic are being pushed onto the Greenland ice sheet through the surface
depression created by the NEGIS [90]. As an independent estimate of melting areas, the
MEaSUREs melt flag, derived from passive microwave remote sensing, is also considered
and compared to our dopt-based melt flag.
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Figure 6. Optical snow grain diameter retrieval and associated surface melt flag (areas within the
black line) and MEaSUREs melt flag for a 10–18 June 2019 heat wave in Northeast Greenland along
with AWS locations (red stars) and elevation contours (gray lines, 1000 and 2000 m a.s.l.).

On the 10th, the majority of the area shows relatively small dopt. Only a narrow band
below 650 m a.s.l. has a larger dopt (Figure 6). KPC_L is located below that elevation
and already showed a too thin snowpack by this point of the season and could not be
used for this analysis. KPC_U is located at 870 m a.s.l. and was still snow-covered and
untouched by melt as can be seen from the high albedo (~0.8) and the subfreezing air
temperature measured before the start of the event (Figure 7). The MEaSUREs melt flag
also indicates nonmelting conditions at KPC_U (Figure 6). On the 11th, both melt flags
indicate nonmelting conditions at KPC_U. However, the AWS starts to detect minor melt
for that day (Figure 7). This amount of melt is either below the detection limit of both
melt flags or occurred during a narrow timespan and was missed by both satellites. On
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the 12th and the following days, the warming continues and the AWS, the dopt-based flag
and the MEaSUREs flag all indicate melt at KPC_U (Figures 6 and 7). However, different
spatial patterns can be seen in the two melt flags. On the 12th, MEaSUREs flag reaches
altitudes up to 2000 m a.s.l. The dopt-based flag shows a main melting area reaching up to
1600 m a.s.l. and isolated melting patches up to 1800 m a.s.l. On the 13th and 14th, it is in
turn the dopt-based melt flag that reaches the highest altitudes (up to 2400 m a.s.l.) while
the MEaSUREs melting area does not reach higher than 2200 m a.s.l. (Figure 6). On the
18th, the melt stops at higher elevation and continues at below 1600 m a.s.l. According
to the MEaSUREs flag and below 1200 m a.s.l. for the dopt-based flag. During the entire
period, the EGP AWS did not show any sign of melt either as calculated from the AWS data
(Figure 1) or according to the two melt flags (Figure 6).
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Figure 7. Retrieved snow grain optical diameter, plane broadband albedo, melt and air temperature
at KPC_U AWS during the Northeast Greenland heat wave of June 2019.

From this specific case, the SICE dopt-based flag agrees with MEaSUREs melt flag on
the overall spatial variation of the surface melting area. However, substantial differences
between the two were highlighted. Unfortunately, no in situ melt data is available in the
area where the two melt flags disagree. Additionally, the KPC_U AWS quickly loses its
snowpack which limits the number of days for which both dopt-based and MEaSUREs
melt flags are available. At KAN_U however, melt is frequent, and the snow never melts
out, making it an appropriate location to evaluate the two melt flags against the melt
estimated from AWS data (Figure 8). As expected, there are more days where retrieval
was impossible for the dopt-based flag because of cloud cover: retrieval was possible for
only 45% of days during May-September of 2017–2019. Considering the AWS-derived melt
estimate as ground truth, accurate melt flagging, false positives and false negatives can
be found for both melt flags (Figure 8, Table 3). The dopt-based melt flag has a very low
commission error, indicating very few false positives. The higher omission error indicate
that some melt events are not flagged, but apart for 2018, omissions of the dopt flag are
comparable with the ones of MEaSUREs flag.
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Figure 8. Comparison of three melt flags at KAN_U: (i) from MEaSUREs dataset; (ii) derived from
a 0.64 mm threshold on the retrieved snow optical grain diameter (dopt); and (iii) derived from the
energy budget at the KAN_U AWS. The melting/nonmelting binary flag is shown in the upper
part of each panel while retrieved snow optical grain diameter (purple dots), its 0.64 mm threshold
value (dashed gray line) and the hourly AWS-derived melt (red line) are shown in the lower part of
each panel.

Table 3. Comparison statistics of dopt-based and MEaSUREs melt flags. AWS-derived daily melt
greater than 1 mm w.e. is taken as ground reference. The coverage is the fraction of days between 1st
May and 30th of September for which a flag value is available. The accuracy is the fraction of days
correctly classified by a flag. The omission error is the fraction of true melt days not detected by a
flag. The commission error is the fraction of nonmelt days classified as melt by a flag.

MEaSUREs Melt Flag dopt Melt Flag

Year Coverage
(%)

Accuracy
(%)

Omission
Error (%)

Commission
Error (%)

Coverage
(%)

Accuracy
(%)

Omission
Error (%)

Commission
Error (%)

2017 99.2 77.7 65.6 6.7 51.6 90.5 27.8 2.2
2018 94.3 82.6 26.8 12.2 31.1 76.3 81.8 0
2019 98.4 63.3 56.4 0 52.5 60.9 53.2 0
All 97.3 74.4 50.3 7.3 45.1 75.8 51.3 1.1
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4. Discussion

To achieve a reasonable processing time and memory use, we resampled the OLCI
images from ~350 m to a 1 km resolution. This spatial resolution is comparable to other
snow optical grain diameter or SSA products [24,44]. When using the retrieved dopt to
identify surface melt, the resulting 1 km resolution melt map represents a significant
improvement compared to the 25 km resolution of surface melt maps produced from
passive microwave data [12,53]. Recent efforts were made to enhance the resolution of
the passive microwave observations [55]. Nevertheless, the in situ validation, at one AWS
in [55], remained limited and the contamination of coarse passive microwave observations
by land near the ice sheet margin remains problematic.

Our approach reveals spatially discontinuous and patchy melt areas (Figure 6). Never-
theless, even at the relatively fine 1 km resolution, melt may be spatially inhomogeneous
within a pixel. This spatial heterogeneity complicates the comparison with pointwise AWS
observations. Additionally, the nonmelting/melting binary flagging cannot represent the
transformation of a melt-free pixel to a pixel where different snow patches can be melting
at various intensities and finally to a fully melting pixel. Further, most of the PROMICE
stations are located in lower ablation areas where the snowpack rapidly ablates and glacial
ice is revealed, reducing the time over which spaceborne retrieval is relevant. CEN and
EGP AWS are exceptional by being in the accumulation area and rarely seeing melt. Only
two AWS, KPC_U and KAN_U, are located close to the equilibrium line and allow to assess
the response of dopt to surface melt. Future in situ estimation of surface melt, from AWS
or other techniques, at the equilibrium line altitude could help to further document the
relation between dopt and either the presence or the intensity of surface melt.

The threshold that was found to identify melting conditions, dopt = 0.64 mm, cor-
responds to an SSA of 0.11 m2 kg−1. It is consistent with previous values identified for
melting surfaces such as 0.6 mm by [29] and ~0.5 mm in [24] (Figure 6 therein). Previous
studies also used the optical characteristics of snow, such as albedo, as a proxy for melt and
mass loss [91,92]. But such an approach only worked on annual averages. In our study, we
have related daily changes in dopt as a response to the presence or absence of meltwater at
the surface estimated using the high-temporal-resolution AWS data.

In theory, it is possible that large melt-affected snow grains remain at the surface after
the melt stops and consequently that our melt flag would show false positives after the
end of the melt event. Although it is a plausible scenario, we do not see this occurring
often in our dataset, potentially for two reasons. First, the pervasive action of wind on
the ice sheet may quickly erode the surface layer. Small windblown snow grains then
cover the melted snow and the dopt-based flag is reset to nonmelting. Second, the end of
the melt period coincides with cooler temperatures and consequently solid precipitation.
The reflective fresh snow deposited at the surface has the potential to shut down the melt.
In that situation, once the site becomes cloud-free again, our retrieval will identify fine
grained fresh snow and nonmelting conditions. We note again that the presented flag only
works for snow surfaces with low light-absorbing particle concentrations. More in situ
observation will be needed to assess the performance of our dopt retrieval for melting and
non-melting polluted snow and to assess whether the same threshold on dopt can be used
to identify melt. Little is known about the optical properties of natural glacier ice surfaces,
even less under melting conditions, and further research is needed to constrain radiative
transfer models in those areas.

The penetration of solar radiation into surface snow implies that the SICE retrieval
samples the first centimeters below the surface. The penetration depth also depends
on the grain size [86] and shape [40] and on snow density. As a result, the thickness
of the layer that is being sampled by our retrieval evolves throughout the season. Our
retrieval assumes a vertically homogeneous snowpack, but since the near-surface snow
grain size may vary vertically [21], multilayer snow models may be more suitable [38].
Nevertheless, multilayer radiative transfer models are computationally expensive and not
convenient for near-real-time retrievals. Our retrieval also assumes a nonspherical grain
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shape (characterized by a shape factor B
(1−g) = 9.2 as in [50]). Although this assumption

has been producing satisfactory results, it is far from the diversity of snow grain shapes in
natural snowpacks [20,43,44]. Recent remote sensing efforts have included diverse grain
shapes within the radiative transfer model [38,43,44]. Unfortunately, in situ measurements
of grain shape at the relevant spatial scale for remote sensing product evaluation are not
readily available to this day. In this absence of ground truth, the grain shape could only be
used as a tuning parameter within radiative transfer models to minimize the difference
between calculated and observed surface reflectances.

A recent report from the European Organisation for the Exploitation of Meteoro-
logical Satellites (EUMETSAT) evaluated the accuracy of the OLCI instruments onboard
Sentinel-3A and B when measuring ocean reflectance [93]. They concluded that the OLCI
measurements of surface reflectance at wavelength 865 nm were within the 2% accuracy
defined in the mission requirements. However, the measured reflectances at 1020 nm were
~9% and ~6% too bright for Sentinel-3A and Sentinel-3B, respectively. These biases have
been derived over dark ocean surfaces and cannot be used over bright snowy surfaces.
No reference dataset is currently available for a vicarious calibration of OLCI over bright
surfaces. The magnitude of this systematic bias should be subject of future research. How-
ever, since our melt detection threshold is chosen empirically, the melt maps derived here
should remain unchanged by any future change of calibration, as the threshold could be
accordingly re-evaluated.

When comparing our retrievals at 1 km resolution to in situ measurements, either for
dopt or for surface melt, the spatial representativity of these observations can be questioned.
At EastGRIP, the surface type is relatively homogeneous, stemming from a smooth topog-
raphy: the elevation does not vary by more than 7 m and the slope by more than 0.24◦ in
the 1 km2 surrounding the station (derived from the GIMP DEM, [89]) suggesting uniform
temperatures and incident shortwave radiation. At this site, the standard deviation of
the dopt along the 90 m observation transect, representative of the spatial heterogeneity,
was 0.03 mm, which is significantly smaller than the difference between the observed and
retrieved dopt: 0.06 mm on average. Capturing the spatial heterogeneity in these dry snow
regions is therefore less important than addressing the assumptions made in the retrieval
procedure (e.g., grain shape or radiometric calibration). In the areas where surface melting
is more prevalent, no in situ observation of dopt, and of its spatial heterogeneity, is currently
available for the Greenland ice sheet. Regarding the detection of surface melt, no obser-
vation currently allows bridging between point estimations at AWS sites and microwave
melt flags at 12–25 km resolution [12,54]. We consequently compare point observations to
gridded retrievals and let to future work bridging these scale gaps such as recently done
for surface albedo measurements [94,95].

5. Conclusions

We presented the optical snow grain diameter (dopt) retrieved for 3 years of Sentinel-3
OLCI observations over the Greenland ice sheet. After ensuring that the remotely sensed
dopt matches with in situ observations at EastGRIP, we analyzed the response of retrieved
dopt to surface warming and melt at four PROMICE automatic weather stations where melt
can be calculated from meteorological measurements. We established that the retrieved
dopt and the in situ estimation of melt covary, which leads to a binary melt flag that can be
constructed around the threshold dopt of 0.64 mm with a high likelihood of melting above
this threshold. We applied this threshold to our dopt dataset and derived melt maps for
daily 1 km mosaics of Greenland. We found that the spatiotemporal evolution of our melt
flag compares well with the passive microwave MEaSUREs melt flag during a heat wave in
Northeast Greenland and at the KAN_U PROMICE AWS. Although the two flags identify
the same general periods and areas as melting, some spatial and temporal mismatches
remain. For the dates when dopt and the melt flag could be retrieved, it showed comparable
accuracy (fraction of correct flags, 76%), omission (fraction of false negative, 51%) and
commission (fraction of false positive, 1%) as the MEaSUREs melt flag (74%, 50% and 7%



Remote Sens. 2022, 14, 932 18 of 22

for the same metrics). Although our retrieval is not possible under cloud cover, which limits
the coverage of the dataset, its 1 km spatial resolution is a great improvement compared to
the MEaSUREs melt flag. dopt can therefore be used at a regional scale or in combination
with passive microwave to describe melt dynamics on the Greenland ice sheet at high
spatial resolution.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14040932/s1. Reference [96] is cited in the Supplementary Materi-
als. Our Supplementary Figure S1 presents the retrieved optical snow grain diameter distribution
on 1 June 2017 and 14 June 2017 for different elevation bins and in different drainage basins of the
ice sheet.

Author Contributions: B.V. conceptualized the project, conducted the formal analysis, investigation
and visualization. J.E.B. secured funding and administered the project and its resources. A.A.K.
developed the retrieval methodology. B.V., J.E.B., A.W. and A.A.K. developed the retrieval software.
A.W. curated data. M.H., A.-K.F., H.C.S.-L. and M.N. provided in situ data for retrieval validation.
B.V., J.E.B., M.N. and G.P. drafted the original manuscript and all authors reviewed and edited the
final manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Space Agency project “Scientific Exploitation
of Operational Missions, Sentinel-3 Snow (Sentinel-3 for Science, Land Study 1: Snow)” (ESRIN
contract No. 4000118926/16/I-NB, 2016–2019) EO Sci for Society (ESRIN contract No. 4000125043—
ESA/AO/1-9101/17/I-NB, 2018–2020, and CCN 4000125043/18/I-NB, 2022–2023) and PRODEX,
(2020–2022, technical officer: T. Ridder). Additional support came from the Program for the Monitor-
ing of the Greenland Ice Sheet (PROMICE.dk), funded by the Danish Energy Agency through the
DANCEA program. HCSL received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program: Starting Grant-SNOWISO (grant
agreement 759526).

Data Availability Statement: The daily mosaics of retrieved optical grain diameter, SSA and albedo
are available at https://doi.org/10.22008/FK2/OIAJVO [97]. The scripts of the retrievals are available
at https://doi.org/10.5281/zenodo.5179529 [57]. The PROMICE AWS data are available at https:
//doi.org/10.22008/promice/data/aws [78] and the scripts of the SEB model are available at https:
//doi.org/10.5281/zenodo.4542767 [98].

Acknowledgments: We thank Alexandra Zuhr, Sonja Wahl, Sepp Kipfstuhl and Melanie Behrens for
their participation in the measurements of SSA at EastGRIP, Ken Mankoff for his contribution to the
SICE project and our ESA technical officer Michael Kern.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Flanner, M.G.; Shell, K.M.; Barlage, M.; Perovich, D.K.; Tschudi, M.A. Radiative forcing and albedo feedback from the Northern

Hemisphere cryosphere between 1979 and 2008. Nat. Geosci. 2011, 4, 151–155. [CrossRef]
2. Van Den Broeke, M.R.; Enderlin, E.M.; Howat, I.M.; Kuipers Munneke, P.; Noël, B.P.Y.; Jan Van De Berg, W.; Van Meijgaard, E.;

Wouters, B. On the recent contribution of the Greenland ice sheet to sea level change. Cryosphere 2016, 10, 1933–1946. [CrossRef]
3. Fettweis, X.; Box, J.E.; Agosta, C.; Amory, C.; Kittel, C.; Lang, C.; Van As, D.; Machguth, H.; Gallée, H. Reconstructions of the

1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere 2017, 11, 1015–1033.
[CrossRef]

4. Noël, B.; van de Berg, W.J.; Lhermitte, S.; van den Broeke, M.R. Rapid ablation zone expansion amplifies north Greenland mass
loss. Sci. Adv. 2019, 5, 2–11. [CrossRef] [PubMed]

5. Ryan, J.C.; Smith, L.C.; As, D.V.; Cooley, S.W.; Cooper, M.G.; Pitcher, L.H.; Hubbard, A. Greenland Ice Sheet surface melt amplified
by snowline migration and bare ice exposure. Sci. Adv. 2019, 5, eaav3738. [CrossRef]

6. Wehrlé, A.; Box, J.E.; Niwano, M.; Anesio, A.M.; Fausto, R.S. Greenland bare-ice albedo from promice automatic weather station
measurements and sentinel-3 satellite observations. Geol. Surv. Den. Greenl. Bull. 2021, 47. [CrossRef]

7. Wang, W.; Zender, C.S.; van As, D.; Fausto, R.S.; Laffin, M.K. Greenland Surface Melt Dominated by Solar and Sensible Heating.
Geophys. Res. Lett. 2021, 48, e2020GL090653. [CrossRef]

8. Warren, S.G.; Wiscombe, W.J. A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. J. Atmos. Sci.
1980, 37, 2734–2745. [CrossRef]

9. Wiscombe, W.J.; Warren, S.G. A model for the spectral albedo of snow. I: Pure snow. J. Atmos. Sci. 1980, 37, 2712–2733. [CrossRef]

https://www.mdpi.com/article/10.3390/rs14040932/s1
https://www.mdpi.com/article/10.3390/rs14040932/s1
https://doi.org/10.22008/FK2/OIAJVO
https://doi.org/10.5281/zenodo.5179529
https://doi.org/10.22008/promice/data/aws
https://doi.org/10.22008/promice/data/aws
https://doi.org/10.5281/zenodo.4542767
https://doi.org/10.5281/zenodo.4542767
http://doi.org/10.1038/ngeo1062
http://doi.org/10.5194/tc-10-1933-2016
http://doi.org/10.5194/tc-11-1015-2017
http://doi.org/10.1126/sciadv.aaw0123
http://www.ncbi.nlm.nih.gov/pubmed/31517042
http://doi.org/10.1126/sciadv.aav3738
http://doi.org/10.34194/geusb.v47.5284
http://doi.org/10.1029/2020GL090653
http://doi.org/10.1175/1520-0469(1980)037&lt;2734:AMFTSA&gt;2.0.CO;2
http://doi.org/10.1175/1520-0469(1980)037&lt;2712:AMFTSA&gt;2.0.CO;2


Remote Sens. 2022, 14, 932 19 of 22

10. Gardner, A.S.; Sharp, M.J. A review of snow and ice albedo and the development of a new physically based broadband albedo
parameterization. J. Geophys. Res. Earth Surf. 2010, 115, F01009. [CrossRef]

11. Dumont, M.; Brun, E.; Picard, G.; Michou, M.; Libois, Q.; Petit, J.R.; Geyer, M.; Morin, S.; Josse, B. Contribution of light-absorbing
impurities in snow to Greenland’s darkening since 2009. Nat. Geosci. 2014, 7, 509–512. [CrossRef]

12. Mote, T.L. Greenland surface melt trends 1973–2007: Evidence of a large increase in 2007. Geophys. Res. Lett. 2007, 34, L22507.
[CrossRef]

13. Houtz, D.; Naderpour, R.; Schwank, M.; Steffen, K. Snow wetness and density retrieved from L-band satellite radiometer
observations over a site in the West Greenland ablation zone. Remote Sens. Environ. 2019, 235, 111361. [CrossRef]

14. Abdalati, W.; Steffen, K. Accumulation and hoar effects on microwave emission in the Greenland ice-sheet dry-snow zones. J.
Glaciol. 1998, 44, 523–531. [CrossRef]

15. Smith, B.E.; Gardner, A.; Schneider, A.; Flanner, M. Modeling biases in laser-altimetry measurements caused by scattering of
green light in snow. Remote Sens. Environ. 2018, 215, 398–410. [CrossRef]

16. Davis, C.H.; Zwally, H.J. Geographic and seasonal variations in the surface properties of the ice sheets by satellite-radar altimetry.
J. Glaciol. 1993, 39, 687–697. [CrossRef]

17. Larue, F.; Picard, G.; Aublanc, J.; Arnaud, L.; Robledano-Perez, A.; LE Meur, E.; Favier, V.; Jourdain, B.; Savarino, J.; Thibaut, P.
Radar altimeter waveform simulations in Antarctica with the Snow Microwave Radiative Transfer Model (SMRT). Remote Sens.
Environ. 2021, 263, 112534. [CrossRef]

18. Verjans, V.; Leeson, A.A.; Max Stevens, C.; MacFerrin, M.; Noël, B.; Van Den Broeke, M.R. Development of physically based liquid
water schemes for Greenland firn-densification models. Cryosphere 2019, 13, 1819–1842. [CrossRef]

19. Fily, M.; Bourdelles, B.; Dedieu, J.P.; Sergent, C. Comparison of In situ and Landsat thematic mapper derive snow grain
characteristics in the Alps. Remote Sens. Environ. 1997, 59, 452–460. [CrossRef]

20. Fierz, C.; Armstrong, R.L.R.L.; Durand, Y.; Etchevers, P.; Greene, E.; McClung, D.M.D.M.; Nishimura, K.; Satyawali, P.K.; Sokratov,
S.A. The International Classification for Seasonal Snow on the Ground. IHP-VII Tech. Doc. Hydrol. 2009, 83, 90.

21. Aoki, T.; Hori, M.; Motoyoshi, H.; Tanikawa, T.; Hachikubo, A.; Sugiura, K.; Yasunari, T.J.; Storvold, R.; Eide, H.A.;
Stamnes, K.; et al. ADEOS-II/GLI snow/ice products—Part II: Validation results using GLI and MODIS data. Remote Sens.
Environ. 2007, 111, 274–290. [CrossRef]

22. Grenfell, T.C.; Perovich, D.K.; Ogren, J.A. Spectral albedos of an alpine snowpack. Cold Reg. Sci. Technol. 1981, 4, 121–127.
[CrossRef]

23. Warren, S.G. Optical properties of snow. Rev. Geophys. 1982, 20, 67–89. [CrossRef]
24. Lyapustin, A.; Tedesco, M.; Wang, Y.; Aoki, T.; Hori, M.; Kokhanovsky, A. Retrieval of snow grain size over Greenland from

MODIS. Remote Sens. Environ. 2009, 113, 1976–1987. [CrossRef]
25. Carlsen, T.; Birnbaum, G.; Ehrlich, A.; Freitag, J.; Heygster, G.; Istomina, L.; Kipfstuhl, S.; Orsi, A.; Schäfer, M.; Wendisch, M.

Comparison of different methods to retrieve effective snow grain size in central Antarctica. Cryosphere Discuss. 2017, 6, 1–20.
[CrossRef]

26. Carmagnola, C.M.; Morin, S.; Lafaysse, M.; Domine, F.; Lesaffre, B.; Lejeune, Y.; Picard, G.; Arnaud, L. Implementation and
evaluation of prognostic representations of the optical diameter of snow in the SURFEX/ISBA-Crocus detailed snowpack model.
Cryosphere 2014, 8, 417–437. [CrossRef]

27. Brun, E. Investigation on wet-snow metamorphism in respect of liquid-water content. Ann. Glaciol. 1989, 13, 22–26. [CrossRef]
28. Domine, F.; Taillandier, A.S.; Cabanes, A.; Douglas, T.A.; Sturm, M. Three examples where the specific surface area of snow

increased over time. Cryosphere 2009, 3, 31–39. [CrossRef]
29. Xiong, C.; Shi, J. Snow specific surface area remote sensing retrieval using a microstructure based reflectance model. Remote Sens.

Environ. 2018, 204, 838–849. [CrossRef]
30. Mary, A.; Dumont, M.; Dedieu, J.-P.; Durand, Y.; Sirguey, P.; Milhem, H.; Mestre, O.; Negi, H.S.; Kokhanovsky, A.A.;

Lafaysse, M.; et al. Intercomparison of retrieval algorithms for the specific surface area of snow from near-infrared satellite data
in mountainous terrain, and comparison with the output of a semi-distributed snowpack model. Cryosphere 2013, 7, 741–761.
[CrossRef]

31. Dozier, J.; Schneider, S.R.; McGinnis, D.F. Effect of grain size and snowpack water equivalence on visible and near-infrared
satellite observations of snow. Water Resour. Res. 1981, 17, 1213–1221. [CrossRef]

32. Dozier, J. Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sens. Environ. 1989, 28, 9–22.
[CrossRef]

33. Bourdelles, B.; Fily, M. Snow grain-size determination from Landsat imagery over Terre Adelie, Antarctica. Ann. Glaciol. 1993, 17,
1723–1738. [CrossRef]

34. Painter, T.H.; Rittger, K.; McKenzie, C.; Slaughter, P.; Davis, R.E.; Dozier, J. Retrieval of subpixel snow covered area, grain size,
and albedo from MODIS. Remote Sens. Environ. 2009, 113, 868–879. [CrossRef]

35. Stamnes, K.; Li, W.; Eide, H.; Aoki, T.; Hori, M.; Storvold, R. ADEOS-II/GLI snow/ice products—Part I: Scientific basis. Remote
Sens. Environ. 2007, 111, 258–273. [CrossRef]

36. Hori, M.; Aoki, T.; Stamnes, K.; Li, W. ADEOS-II/GLI snow/ice products—Part III: Retrieved results. Remote Sens. Environ. 2007,
111, 291–336. [CrossRef]

http://doi.org/10.1029/2009JF001444
http://doi.org/10.1038/ngeo2180
http://doi.org/10.1029/2007GL031976
http://doi.org/10.1016/j.rse.2019.111361
http://doi.org/10.1017/S0022143000002045
http://doi.org/10.1016/j.rse.2018.06.012
http://doi.org/10.1017/S0022143000016580
http://doi.org/10.1016/j.rse.2021.112534
http://doi.org/10.5194/tc-13-1819-2019
http://doi.org/10.1016/S0034-4257(96)00113-7
http://doi.org/10.1016/j.rse.2007.02.035
http://doi.org/10.1016/0165-232X(81)90016-1
http://doi.org/10.1029/RG020i001p00067
http://doi.org/10.1016/j.rse.2009.05.008
http://doi.org/10.5194/tc-2016-294
http://doi.org/10.5194/tc-8-417-2014
http://doi.org/10.3189/S0260305500007576
http://doi.org/10.5194/tc-3-31-2009
http://doi.org/10.1016/j.rse.2017.09.017
http://doi.org/10.5194/tc-7-741-2013
http://doi.org/10.1029/WR017i004p01213
http://doi.org/10.1016/0034-4257(89)90101-6
http://doi.org/10.3189/S0260305500012659
http://doi.org/10.1016/j.rse.2009.01.001
http://doi.org/10.1016/j.rse.2007.03.023
http://doi.org/10.1016/j.rse.2007.01.025


Remote Sens. 2022, 14, 932 20 of 22

37. Grenfell, T.C.; Warren, S.G. Representation of a nonspherical ice particle by a collection of independent spheres for scattering and
absorption of radiation. J. Geophys. Res. Atmos. 1999, 104, 31697–31709. [CrossRef]

38. Jin, Z.; Charlock, T.P.; Yang, P.; Xie, Y.; Miller, W. Snow optical properties for different particle shapes with application to snow
grain size retrieval and MODIS/CERES radiance comparison over Antarctica. Remote Sens. Environ. 2008, 112, 3563–3581.
[CrossRef]

39. Zege, E.P.; Katsev, I.L.; Malinka, A.V.; Prikhach, A.S.; Heygster, G.; Wiebe, H. Algorithm for retrieval of the effective snow grain
size and pollution amount from satellite measurements. Remote Sens. Environ. 2011, 115, 2674–2685. [CrossRef]

40. Libois, Q.; Picard, G.; France, J.L.; Arnaud, L.; Dumont, M.; Carmagnola, C.M.; King, M.D. Influence of grain shape on light
penetration in snow. Cryosphere 2013, 7, 1803–1818. [CrossRef]

41. Yang, Y.; Marshak, A.; Han, M.; Palm, S.P.; Harding, D.J. Snow grain size retrieval over the polar ice sheets with the Ice, Cloud,
and land Elevation Satellite (ICESat) observations. J. Quant. Spectrosc. Radiat. Transf. 2017, 188, 159–164. [CrossRef]

42. Tanikawa, T.; Kuchiki, K.; Aoki, T.; Ishimoto, H.; Hachikubo, A.; Niwano, M.; Hosaka, M.; Matoba, S.; Kodama, Y.; Iwata, Y.; et al.
Effects of Snow Grain Shape and Mixing State of Snow Impurity on Retrieval of Snow Physical Parameters from Ground-Based
Optical Instrument. J. Geophys. Res. Atmos. 2020, 125, e2019JD031858. [CrossRef]

43. Mei, L.; Rozanov, V.; Pohl, C.; Vountas, M.; Burrows, J.P. The retrieval of snow properties from SLSTR Sentinel-3-Part 1: Method
description and sensitivity study. Cryosphere 2021, 15, 2757–2780. [CrossRef]

44. Mei, L.; Rozanov, V.; Jäkel, E.; Cheng, X.; Vountas, M.; Burrows, J.P. The retrieval of snow properties from SLSTR Sentinel-3-Part 2:
Results and validation. Cryosphere 2021, 15, 2781–2802. [CrossRef]

45. Kokhanovsky, A. Snow Optics; Springer Nature: Cham, Switzerland, 2021.
46. Tedesco, M.; Kokhanovsky, A.A. The semi-analytical snow retrieval algorithm and its application to MODIS data. Remote Sens.

Environ. 2007, 111, 228–241. [CrossRef]
47. Kokhanovsky, A.; Rozanov, V.V.; Aoki, T.; Odermatt, D.; Brockmann, C.; Krüger, O.; Bouvet, M.; Drusch, M.; Hori, M. Sizing snow

grains using backscattered solar light. Int. J. Remote Sens. 2011, 32, 6975–7008. [CrossRef]
48. Wiebe, H.; Heygster, G.; Zege, E.; Aoki, T.; Hori, M. Snow grain size retrieval SGSP from optical satellite data: Validation with

ground measurements and detection of snow fall events. Remote Sens. Environ. 2013, 128, 11–20. [CrossRef]
49. Kokhanovsky, A.; Schreier, M. The determination of snow specific surface area, albedo and effective grain size using AATSR

space-borne measurements. Int. J. Remote Sens. 2009, 30, 919–933. [CrossRef]
50. Kokhanovsky, A.; Lamare, M.; Danne, O.; Brockmann, C.; Dumont, M.; Picard, G.; Arnaud, L.; Favier, V.; Jourdain, B.;

Meur, E.L.E.L.; et al. Retrieval of snow properties from the Sentinel-3 Ocean and Land Colour Instrument. Remote Sens. 2019, 11,
2280. [CrossRef]

51. Kokhanovsky, A.; Box, J.E.; Vandecrux, B.; Mankoff, K.D.; Lamare, M.; Smirnov, A.; Kern, M. The determination of snow albedo
from satellite measurements using fast atmospheric correction technique. Remote Sens. 2020, 12, 234. [CrossRef]

52. Tedesco, M. Assessment and development of snowmelt retrieval algorithms over Antarctica from K-band spaceborne brightness
temperature (1979–2008). Remote Sens. Environ. 2009, 113, 979–997. [CrossRef]

53. Abdalati, W.; Steffen, K. Greenland ice sheet melt extent: 1979–1999. J. Geophys. Res. Atmos. 2001, 106, 33983–33988. [CrossRef]
54. Fettweis, X.; Tedesco, M.; Van Den Broeke, M.; Ettema, J. Melting trends over the Greenland ice sheet (1958–2009) from spaceborne

microwave data and regional climate models. Cryosphere 2011, 5, 359–375. [CrossRef]
55. Colosio, P.; Tedesco, M.; Ranzi, R.; Fettweis, X. Surface melting over the Greenland ice sheet derived from enhanced resolution

passive microwave brightness temperatures (1979–2019). Cryosphere 2021, 15, 2623–2646. [CrossRef]
56. Long, D.G.; Daum, D.L. Spatial resolution enhancement of SSM/I data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 407–417.

[CrossRef]
57. Vandecrux, B.; Mankoff, K.; Wehrlé, A.; Kokhanovsky, A.A.; Box, J.E. GEUS-SICE/SICE: SICE: Sentinel-3 Snow and Ice Properties

Retrieval (2.0). Zenodo 2021. [CrossRef]
58. ESA SENTINEL-3 OLCI User Guide. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci

(accessed on 3 January 2022).
59. Copernicus Sentinel Data. Available online: https://www.esa.int/Applications/Observing_the_Earth/Copernicus (accessed on

3 January 2022).
60. SNAP. Available online: http://step.esa.int (accessed on 3 January 2022).
61. Thuillier, G.; Hersé, M.; Labs, D.; Foujols, T.; Peetermans, W.; Gillotay, D.; Simon, P.C.; Mandel, H. The solar spectral irradiance

from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions. Sol. Phys. 2003, 214,
1–22. [CrossRef]

62. Lamquin, N.; Clerc, S.; Bourg, L.; Donlon, C. OLCI A/B Tandem Phase Analysis, Part 1: Level 1 Homogenisation and Harmonisa-
tion. Remote Sens. 2020, 12, 1804. [CrossRef]

63. Sentinel-3 OLCI Level-0 and Level-1B ATBD. Available online: https://sentinel.esa.int/documents/247904/2702575/Sentinel-3-
OLCI-Level-0-and-1B-ATBD.pdf (accessed on 3 January 2022).

64. Metsämäki, S.; Pulliainen, J.; Salminen, M.; Luojus, K.; Wiesmann, A.; Solberg, R.; Böttcher, K.; Hiltunen, M.; Ripper, E.
Introduction to GlobSnow Snow Extent products with considerations for accuracy assessment. Remote Sens. Environ. 2015, 156,
96–108. [CrossRef]

http://doi.org/10.1029/1999JD900496
http://doi.org/10.1016/j.rse.2008.04.011
http://doi.org/10.1016/j.rse.2011.06.001
http://doi.org/10.5194/tc-7-1803-2013
http://doi.org/10.1016/j.jqsrt.2016.03.033
http://doi.org/10.1029/2019JD031858
http://doi.org/10.5194/tc-15-2757-2021
http://doi.org/10.5194/tc-15-2781-2021
http://doi.org/10.1016/j.rse.2007.02.036
http://doi.org/10.1080/01431161.2011.560621
http://doi.org/10.1016/j.rse.2012.09.007
http://doi.org/10.1080/01431160802395250
http://doi.org/10.3390/rs11192280
http://doi.org/10.3390/rs12020234
http://doi.org/10.1016/j.rse.2009.01.009
http://doi.org/10.1029/2001JD900181
http://doi.org/10.5194/tc-5-359-2011
http://doi.org/10.5194/tc-15-2623-2021
http://doi.org/10.1109/36.662726
http://doi.org/10.5281/zenodo.5179529
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci
https://www.esa.int/Applications/Observing_the_Earth/Copernicus
http://step.esa.int
http://doi.org/10.1023/A:1024048429145
http://doi.org/10.3390/rs12111804
https://sentinel.esa.int/documents/247904/2702575/Sentinel-3-OLCI-Level-0-and-1B-ATBD.pdf
https://sentinel.esa.int/documents/247904/2702575/Sentinel-3-OLCI-Level-0-and-1B-ATBD.pdf
http://doi.org/10.1016/j.rse.2014.09.018


Remote Sens. 2022, 14, 932 21 of 22

65. Wehrlé, A.; Box, J. SICE implementation of the Simple Cloud Detection Algorithm (SCDA) v2.0. GEUS Dataverse V1 2021.
[CrossRef]

66. Sentinel-3 Product Notice—SLSTR. Available online: https://www.eumetsat.int/media/42788 (accessed on 3 January 2022).
67. Kokhanovsky, A.; Lamare, M.; Di Mauro, B.; Picard, G.; Arnaud, L.; Dumont, M.; Tuzet, F.; Brockmann, C.; Box, J.E. On the

reflectance spectroscopy of snow. Cryosphere 2018, 12, 2371–2382. [CrossRef]
68. Zege, E.P.; Kokhanovsky, A.A. Analytical solution to the optical transfer function of a scattering medium with large particles.

Appl. Opt. 1994, 33, 6547. [CrossRef] [PubMed]
69. Kokhanovsky, A.A.; Zege, E.P. Scattering optics of snow. Appl. Opt. 2004, 43, 1589. [CrossRef]
70. Zege, E.P.; Ivanov, A.; Katsev, I. Image Transfer through a Scattering Medium; Springer: Berlin, Germany, 1991.
71. Sobolev, V.V. Light Scattering in Planetary Atmospheres; Pergamon Press: Oxford, UK, 1975; ISBN 9781483187280.
72. Warren, S.G.; Brandt, R.E. Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res.

Atmos. 2008, 113, D14220. [CrossRef]
73. Kokhanovsky, A.A.; Macke, A. Integral light-scattering and absorption characteristics of large, nonspherical particles. Appl. Opt.

1997, 36, 8785. [CrossRef] [PubMed]
74. Kokhanovsky, A.A. Scaling constant and its determination from simultaneous measurements of light reflection and methane

adsorption by snow samples. Opt. Lett. 2006, 31, 3282. [CrossRef]
75. Domine, F.; Salvatori, R.; Legagneux, L.; Salzano, R.; Fily, M.; Casacchia, R. Correlation between the specific surface area and the

short wave infrared (SWIR) reflectance of snow. Cold Reg. Sci. Technol. 2006, 46, 60–68. [CrossRef]
76. Madsen, M.V.; Steen-Larsen, H.C.; Hörhold, M.; Box, J.; Berben, S.M.P.; Capron, E.; Faber, A.-K.; Hubbard, A.; Jensen, M.F.;

Jones, T.R.; et al. Evidence of Isotopic Fractionation During Vapor Exchange Between the Atmosphere and the Snow Surface in
Greenland. J. Geophys. Res. Atmos. 2019, 124, 2932–2945. [CrossRef]

77. Gallet, J.C.; Domine, F.; Zender, C.S.; Picard, G. Measurement of the specific surface area of snow using infrared reflectance in an
integrating sphere at 1310 and 1550 nm. Cryosphere 2009, 3, 167–182. [CrossRef]

78. Fausto, R.S.R.S.; van As, D. Programme for monitoring of the Greenland ice sheet (PROMICE): Automatic weather station data.
Version: v03. Geol. Surv. Den. Greenl. 2019. [CrossRef]

79. Vandecrux, B.; Fausto, R.S.; Van As, D.; Colgan, W.; Langen, P.L.; Haubner, K.; Ingeman-Nielsen, T.; Heilig, A.; Stevens, C.M.;
MacFerrin, M.; et al. Firn cold content evolution at nine sites on the Greenland ice sheet between 1998 and 2017. J. Glaciol. 2020,
66, 591–602. [CrossRef]

80. Vandecrux, B.; Fausto, R.S.; Langen, P.L.; van As, D.; MacFerrin, M.; Colgan, W.T.; Ingeman-Nielsen, T.; Steffen, K.; Jensen, N.S.;
Møller, M.T.; et al. Drivers of Firn Density on the Greenland Ice Sheet Revealed by Weather Station Observations and Modeling. J.
Geophys. Res. Earth Surf. 2018, 123, 2563–2576. [CrossRef]

81. Van As, D.; van den Broeke, M.; Reijmer, C.; van de Wal, R. The summer surface energy balance of the high Antarctic plateau.
Boundary-Layer Meteorol. 2005, 115, 289–317. [CrossRef]

82. Vandecrux, B.; Mottram, R.; Langen, P.L.; Fausto, R.S.; Olesen, M.; Stevens, M.; Verjans, V.; Leeson, A.; Ligtenberg, S.;
Munneke, P.K.; et al. The firn meltwater Retention Model Intercomparison Project (RetMIP): Evaluation of nine firn models at
four weather station sites on the Greenland ice sheet. Cryosphere 2020, 14, 3785–3810. [CrossRef]

83. Mote, T.L. MEaSUREs Greenland Surface Melt Daily 25 km EASE-Grid 2.0, Version 1; NASA National Snow and Ice Data Center
Distributed Active Archive Center: Boulder, CO, USA, 2014. [CrossRef]

84. Meier, W.N.; Stewart, J.S. Assessment of the Stability of Passive Microwave Brightness Temperatures for NASA Team Sea Ice
Concentration Retrievals. Remote Sens. 2020, 12, 2197. [CrossRef]

85. Picard, G.; Libois, Q.; Arnaud, L.; Verin, G.; Dumont, M. Development and calibration of an automatic spectral albedometer to
estimate near-surface snow SSA time series. Cryosphere 2016, 10, 1297–1316. [CrossRef]

86. Li, W.; Stamnes, K.; Chen, B.; Xiong, X. Snow grain size retrieved from near-infrared radiances at multiple wavelengths. Geophys.
Res. Lett. 2001, 28, 1699–1702. [CrossRef]

87. Matoba, S.; Niwano, M.; Tanikawa, T.; Iizuka, Y.; Yamasaki, T.; Kurosaki, Y.; Aoki, T.; Hashimoto, A.; Hosaka, M.; Sugiyama, S.
Field activities at the SIGMA-A site, northwestern Greenland Ice Sheet, 2017. Bull. Glaciol. Res. 2018, 36, 15–22. [CrossRef]

88. Tedesco, M.; Fettweis, X. Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the
Greenland ice sheet. Cryosphere 2020, 14, 1209–1223. [CrossRef]

89. Howat, I.M.; Negrete, A.; Smith, B.E. The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data
sets. Cryosphere 2014, 8, 1509–1518. [CrossRef]

90. Turton, J.V.; Mölg, T.; Van As, D. Atmospheric processes and climatological characteristics of the 79N glacier (Northeast
Greenland). Mon. Weather Rev. 2019, 147, 1375–1394. [CrossRef]

91. Colgan, W.; Box, J.E.; Fausto, R.S.; van As, D.; Barletta, V.R.; Forsberg, R. Surface albedo as a proxy for the mass balance of
Greenland’s terrestrial ice. Geol. Surv. Denmark Greenl. Bull. 2014, 31, 91–94. [CrossRef]

92. Davaze, L.; Rabatel, A.; Arnaud, Y.; Sirguey, P.; Six, D.; Letreguilly, A.; Dumont, M. Monitoring glacier albedo as a proxy to derive
summer and annual surface mass balances from optical remote-sensing data. Cryosphere 2018, 12, 271–286. [CrossRef]

93. Mazeran, C.; Ruescas, A. Ocean colour system vicarious calibration tool: Tool documentation (DOC-TOOL). EUMETSAT 2020.
Report EUM/19/SVCT/D2. Available online: https://www.eumetsat.int/media/47502 (accessed on 3 January 2022).

http://doi.org/10.22008/FK2/N0XWSJ
https://www.eumetsat.int/media/42788
http://doi.org/10.5194/tc-12-2371-2018
http://doi.org/10.1364/AO.33.006547
http://www.ncbi.nlm.nih.gov/pubmed/20941192
http://doi.org/10.1364/AO.43.001589
http://doi.org/10.1029/2007JD009744
http://doi.org/10.1364/AO.36.008785
http://www.ncbi.nlm.nih.gov/pubmed/18264428
http://doi.org/10.1364/OL.31.003282
http://doi.org/10.1016/j.coldregions.2006.06.002
http://doi.org/10.1029/2018JD029619
http://doi.org/10.5194/tc-3-167-2009
http://doi.org/10.5194/essd-13-3819-2021
http://doi.org/10.1017/jog.2020.30
http://doi.org/10.1029/2017JF004597
http://doi.org/10.1007/s10546-004-4631-1
http://doi.org/10.5194/tc-14-3785-2020
http://doi.org/10.5067/MEASURES/CRYOSPHERE/nsidc-0533.001
http://doi.org/10.3390/rs12142197
http://doi.org/10.5194/tc-10-1297-2016
http://doi.org/10.1029/2000GL011641
http://doi.org/10.5331/bgr.18R01
http://doi.org/10.5194/tc-14-1209-2020
http://doi.org/10.5194/tc-8-1509-2014
http://doi.org/10.1175/MWR-D-18-0366.1
http://doi.org/10.34194/geusb.v31.4671
http://doi.org/10.5194/tc-12-271-2018
https://www.eumetsat.int/media/47502


Remote Sens. 2022, 14, 932 22 of 22

94. Ryan, J.C.; Hubbard, A.; Irvine-Fynn, T.D.; Doyle, S.H.; Cook, J.M.; Stibal, M.; Box, J.E. How robust are in situ observations
for validating satellite-derived albedo over the dark zone of the Greenland Ice Sheet? Geophys. Res. Lett. 2017, 44, 6218–6225.
[CrossRef]

95. Irvine-fynn, T.D.L.; Bunting, P.; Cook, J.M.; Hubbard, A.; Barrand, N.E.; Hanna, E.; Hardy, A.J.; Hodson, A.J.; Holt, T.O.; Huss, M.
Temporal Variability of Surface Reflectance Supersedes Spatial Resolution in Defining Greenland’s Bare-Ice Albedo. Remote Sens.
2022, 14, 62. [CrossRef]

96. Zwally; Jay, H.; Giovinetto, M.B.; Beckley, M.A.; Saba, J.L. Antarctic and Greenland Drainage Systems, GSFC Cryospheric Sciences
Laboratory. 2012. Available online: http://icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.php (accessed on 3
January 2022).

97. Vandecrux, B.; Box, J.; Mankoff, K.; Wehrlé, A. Snow broadband albedo, specific surface area and optical grain diameter from
Sentinel-3’s OLCI, daily 1 km mosaics, Greenland. GEUS Dataverse V1 2021. [CrossRef]

98. Vandecrux, B. BaptisteVandecrux/SEB_Firn_model: GEUS surface energy balance and firn model v0.3 (v0.3). Zenodo 2021.
[CrossRef]

http://doi.org/10.1002/2017GL073661
http://doi.org/10.3390/rs14010062
http://icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.php
http://doi.org/10.22008/FK2/OIAJVO
http://doi.org/10.5281/zenodo.4542767

	Introduction 
	Methods 
	OLCI Instrument and Data Pre-Processing 
	Cloud Identification 
	Mosaic Construction 
	The SICE Retrieval of Snow Albedo and Optical Grain Size 
	Comparison with Ground Optical Measurements of Snow Grain Diameter 
	Surface Melt and Snowfall Detection 
	Automatic Weather Station Data and Surface Energy Balance Modelling 
	Passive Microwave Remote Sensing of Surface Melt and Melt Flag Comparison 


	Results 
	Evaluation of the Grain Size Rretrieval 
	The SICE Snow Optical Grain Diameter Dataset 
	Optical Grain Diameter as an Indicator of Melt Affected Snow 
	Application to a Heat Wave in Northeast Greenland and Comparison to the MEaSUREs Melt Flag 

	Discussion 
	Conclusions 
	References

