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Abstract: Forest canopy height model (CHM) is useful for analyzing forest stocking and its spatiotem-
poral variations. However, high-resolution CHM with regional coverage is commonly unavailable
due to the high cost of LiDAR data acquisition and computational cost associated with data pro-
cessing. We present a CHM generation method using U.S. Geological Survey (USGS) 3D Elevation
Program (3DEP) LiDAR data for tree height measurement capabilities for entire state of Indiana,
USA. The accuracy of height measurement was investigated in relation to LiDAR point density,
inventory height, and the timing of data collection. A simple data exploratory analysis (DEA) was
conducted to identify problematic input data. Our CHM model has high accuracy compared to
field-based height measurement (R2 = 0.85) on plots with relatively accurate GPS locations. Our
study provides an easy-to-follow workflow for 3DEP LiDAR based CHM generation in a parallel
processing environment for a large geographic area. In addition, the resulting CHM can serve as
critical baseline information for monitoring and management decisions, as well as the calculation of
other key forest metrics such as biomass and carbon storage.

Keywords: canopy height model; LiDAR; forest inventory

1. Introduction

Tree height is one of the most important attributes that can be used to assess the
ecological status and economic value of a forest system [1] and to estimate ecosystem
services it provides, such as carbon sequestration and productivity [2,3]. However, field-
based height measurement is labor-intensive and time-consuming, and infeasible when
a field site is inaccessible due to terrain conditions, dense vegetation, or man-made barriers.
To address these limitations, various research has been conducted to test the feasibility
of applying the light detection and ranging (LiDAR) technology as a complement for
forest inventory [4–6].

LiDAR has been used to map a continuous three-dimensional (3D) structure of the
forestland [7] and biomass estimations [8]. With greater point densities than spaceborne
LiDAR and broader areal coverage than ground-based LiDAR, airborne LiDAR has been
widely used to measure tree height for forest inventory applications [9–14]. Figure 1
shows areal coverage and LiDAR point density of previous forest application research.
Previous studies demonstrated that airborne LiDAR could provide a high accuracy height
measure with an R2 over 0.9 [15,16] and low measurement error within 1.12 ± 0.56 m from
an actual height [10,17]. A similar level of accuracy was observed when LiDAR-based
height measurement was applied to deciduous and conifer trees when LiDAR density was
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above 7 points/m2 [3]. However, the accuracy of LiDAR-based height measurement was
shown to decrease when LiDAR point density is reduced below 2 points/m2 [18].
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To date, most studies have been focused on local-level applications of high-density
LiDAR data and their spatial extent rarely exceed 1000 km2 (Figure 1). Research on vali-
dation of tree LiDAR-based height measurement on a regional scale has been limited due
to the cost of LiDAR data acquisition and logistics associated with on-the-ground forest
measurement. Although many organizations and agencies have used LiDAR-derived data
products for diverse forest management applications, limited peer-reviewed publications
are available to formally test the accuracy of LiDAR-derived data products.

Recently, low-density airborne LiDAR data products have become publicly available
to support forest management decisions [19–21]. In particular, the U.S. Geological Survey
(USGS) 3D Elevation Program (3DEP) LiDAR provides wall-to-wall coverage for many
states in the USA [22]. Several studies have been conducted to generate forest attributes
using the 3DEP LiDAR data [23–25]. However, the application of 3DEP LiDAR for large-
scale canopy height measurement is still limited due to the large volume of data and
relatively insufficient computing power.

We present a canopy height mapping workflow with 3DEP LiDAR across the state
of Indiana, USA. To address the issue related to large data size and data processing re-
quirements of 3DEP data, we proposed a stepwise CHM generation framework to produce
high-resolution CHMs in an efficient manner. We investigated the accuracy of CHM-based
tree height by using tree height collected as part of a field-based forest inventory effort and
assessed the accuracy in relation to LiDAR point density and year of data acquisition. The
resulting CHMs could be widely applied in the management of timber, fiber, wildlife, and
many other disciplines.

2. Materials and Methods
2.1. Forest Inventory Data

The continuous forest inventory (CFI) data used in this study included tree height,
inventory year, and geographic location in a total of 4845 plots. Under CFI standards and
protocols, tree height is measured as distance from the ground to the highest remaining
portion of the tree. All live trees with good form larger than 12.7 cm diameter at breast
height (DBH) were measured. For convenient data acquisition, field practitioners commonly
used a hypsometer or clinometer to measure tree height and handheld GPS (Allegro
handheld computer; Logan, UT, USA) to determine plot location [26]. The difference in
GPS measurements over a plot center was calculated and shown in Figure 2. The average
and ninety-fifth percentile of the difference in GPS coordinates were 9.0 and 19.7 m. We
used forest inventory data collected in 2008–2017.
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2.2. LiDAR and Digital Terrain Model (DTM) Data

An objective of the 3DEP LiDAR project is to obtain full national coverage with
a specific quality level defined by The National Enhanced Elevation Assessment (NEEA)
with less than eight years between each cycle (Table A1) [22]. As of 2021, two sets of
Indiana’s statewide 3DEP LiDAR data were made available for public access. The first
Indiana statewide LiDAR dataset was produced during 2011–2013 with 1.0 or 1.5 m average
post spacing. The post spacing is defined as the smallest distance between two points that
can be explicitly represented in a gridded elevation dataset [27]. The second statewide
LiDAR data in Indiana was acquired during 2017–2020. The average post spacing for this
dataset has not been reported in detail, but IGIC (Indiana Geographic Information Council)
reported that nominal pulse density is over 2.0 pulses/m2 [28].

For the two statewide LiDAR datasets in Indiana, the bare-earth hydro-flattened
digital elevation model (DEM) was also publicly available and used as input data in this
study. For brevity, we used the term digital terrain model (DTM) instead of bare-earth
hydro-flattened DEM in the rest of the paper. The spatial resolution of DTM is 1.524 m for
2011–2013 LiDAR data and 0.762 m for 2017–2020 LiDAR data. The original 3DEP LiDAR
and DTM data are delivered in an individual 1524-by-1524-m tile (Indiana State Plane
East/West coordinate system). It should be noted that the unit of length used for 3DEP
LiDAR and DTM was originally U.S. survey foot (1 ft = 0.3048 m), and the size of DTM tile
corresponds to 1000-by-1000 pixels and 2000-by-2000 pixels for the first and second 3DEP
LiDAR project. Data size of LiDAR and DTM was 4.9 and 0.5 terabyte for 2011–2013 3DEP
data and 13.0 and 0.7 terabyte for 2017–2020 3DEP data. A total of 42,539 and 48,602 tiled
datasets were available for 2011–2013 and 2017–2020 3DEP data.

2.3. Canopy Height Model (CHM) Generation

The CHM is a raster representation of the distance from the ground surface to the
highest canopy structure of vegetation. A simplified CHM generation procedure was
summarized as follows: creating a normalized digital surface model (nDSM) and CHM
(Figure 3). First, an nDSM was created by calculating the distance between DTM and the
highest z value of the LiDAR points in each pixel. Second, CHM was created by suppressing
height as zero on non-forested area.
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Figure 3. A subset of (a) 3D Elevation Program (3DEP) LiDAR data from Martell Forest in Indiana,
USA with (b) a 2D slice of point cloud along the transect from point A to B showing the canopy
height model (CHM) generation procedure. nDSM: normalized digital surface model, DTM: digital
terrain model, NLCD: National Land Cover Database-based binary classification map of forested and
non-forested areas, and CHM: canopy height model.

The individual nDSM tiles were generated by the following procedure (Figure 4). First,
tiled LiDAR point cloud and DTM were loaded. LiDAR points that are not earth-bound,
e.g., birds, and erroneous, and spurious, i.e., elevation error near water-ground interface,
were excluded in the CHM generation process [22]. The noisy LiDAR points were identified
by data vendors prior to 3DEP data publishing. Second, nDSM raster with 1.524 m spatial
resolution was initialized with zero normalized height in the entire tile boundary. Third,
nDSM pixel value was iteratively updated for every valid LiDAR point. For each i-th
LiDAR point, x, y, and z coordinates; image coordinates m, n in 2-D nDSM array; and
average ground elevation (DTMm,n) were obtained. Subsequently, the nDSM pixel value
was updated when the normalized height (nHt = z − DTMm,n) was higher than previously
assigned nDSMm,n.
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Figure 4. A workflow to generate the tiled normalized digital surface model (nDSM) using 3D
Elevation Program (3DEP) LiDAR and digital terrain model (DTM) data. nHt: normalized height.

Tiled nDSM data were combined to generate a countywide CHM (Figure 5). All
nDSM tiles with 1.524 m spatial resolution in a county were merged and clipped by the
county boundary polygon. Normalized height in non-forestland was changed to the invalid
value using the 2013 and 2019 National Land Cover Database (NLCD)-derived forested
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and non-forested classification map [29]. A temporary upscaled NLCD land cover map
was generated to match the spatial resolution of the input nDSM with a nearest neighbor
sampling method. We used a common spatial reference system for the CHM data products
with the Universal Transverse Mercator (UTM) coordinate system (zone 16N) for the output
CHMs. The entire CHM generation process was implemented using the Geospatial Data
Abstraction Library (GDAL) package with Python programming language.
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Program (3DEP) LiDAR data.

We used a high-performance computer (HPC) and parallel processing to efficiently
produce the high-resolution CHM dataset. The USGS 3DEP datasets of approximately
20 terabytes in size were stored in a network-attached storage (NAS) device of 100 terabyte
storage capacity (Synology Inc., Taiwan). The original data were sequentially copied to
an HPC file system, and copied data were used to generate tiled nDSM using an HPC node
(two 2.0 GHz AMD Rome CPUs, 256 gigabyte RAM) (Figure 6). We distributed the identical
nDSM generation tasks with different tiled datasets using a task parallelism design since
individual tasks do not depend on outcomes from other tasks. The output nDSM was
moved to the NAS device once each processing task was complete. The countywide CHM
was created by merging nDSMs on a single node workstation (Intel Xeon CPU, E5–2687W
@ 3.40 GHz, 32 gigabyte RAM).
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2.4. Accuracy Assessment of LiDAR-Based Height Measurement

The accuracy of LiDAR-based height was validated by comparing height metrics
obtained from inventory and LiDAR data in the plot area. We used maximum and average
tree height as inventory height metrics. LiDAR height measurements including percentiles
and an average of elevation was obtained after subtracting ground elevation from LiDAR z
values. Points greater than 2 m above ground was selectively used to obtain average LiDAR
height. Additionally, the maximum CHM was obtained as a LiDAR height metric (Figure 7).
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Figure 7. Extraction of plot-level maximum tree height using canopy height model (CHM). The
maximum canopy height was derived by searching inside a continuous forest inventory (CFI) plot
area (r = 7.32 m).

We validated height accuracy using a pair of inventory and LiDAR metrics with the
highest correlation coefficient. The correlation between maximum CHM and LiDAR height
was shown to investigate whether the raster-based maximum height can be used instead of
maximum LiDAR height. We used multiple plot radii to clip spatial data (3.7, 7.3, 11.0, and
14.6 m) to investigate whether the size of the clipping area affects the correlation between
the inventory height and LiDAR height metrics.

Height measurement accuracy was evaluated by examining the difference between
LiDAR and inventory height. The height difference was assessed according to LiDAR point
density, inventory height, LiDAR data acquisition year, inventory year, and year difference
between LiDAR and inventory data collection to identify potential sources of error.

A supplementary height validation was conducted on forest plots with a lower po-
sitional difference between GPS measurements. The purpose of this validation was to
evaluate measurement accuracy on forest plots when co-registration between LiDAR data
and inventory information was accurate. Inventory plots in Yellowwood State Forest
(YSF), Indiana, USA, were chosen for ease of access to densely located forest plots. We
remeasured geolocations of metal stakes at plot centers in YSF area using Trimble Juno
(Sunnyvale, CA, USA) and calculated 2D distance between previous and remeasured GPS
coordinates. Inventory plots were excluded in the validation if the 2D distance error was
larger than 0.1 m [8].

3. Results
3.1. Canopy Height Model (CHM)

The CHM was created from 2011–2013 and 2017–2020 3DEP LiDAR data at the des-
ignated spatial resolutions (Figures 5 and 8). The average and standard deviation of
pixel-wise canopy height was 18.2 and 8.1 m. The visualization and download of LiDAR
data products are available as a web service [30,31].
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Figure 8. Visualization of (a) canopy height model (CHM) of Indiana, USA, (b) CHM in Tippecanoe
County, Indiana, USA, and (c) CHM in Martell Forest in Tippecanoe County, Indiana, USA.

Estimated processing time for the Indiana statewide LiDAR data was approximately
60 h. Most of the processing time was spent producing tiled nDSM with an average
processing time of 28.4 s per tile (91,141 tiles in total) (Figure 4). The entire nDSM generation
tasks performed by HPC resulted in an estimated processing time of 60 h (28.4 sec·core/tiled
dataset × 91,141 tiled datasets/12 cores/3600 s/h = 60 h). Time spent transferring data
between the server and HPC file system could not be accurately measured due to the
fluctuation of network speed or network connectivity issues. However, a data transfer rate
of 15 megabyte per second was generally enough to avoid idle time between the consecutive
nDSM processing tasks. The countywide CHM generation of 92 Indiana counties took
approximately 1 h from the standalone server.

3.2. Correlation between Inventory and LiDAR Height Metrics

LiDAR height metrics generally showed a moderate to strong correlation with maxi-
mum inventory height (Figures 9 and 10). Correlation between maximum inventory height
and maximum LiDAR height was in 0.91 for the 2011–2013 LiDAR data and 0.84 for the
2017–2020 data when the positional difference of plot center was less than 0.1 m. Corre-
lation between maximum inventory height and LiDAR percentile height had a negative
trend as the percentile number decreased. Average LiDAR height and maximum inventory
height had a correlation coefficient less than 0.75.
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Figure 10. Correlation between LiDAR and inventory height metrics. LiDAR data in 2017–2020 and
inventory data in 2013–2017 were used. Forest plots have positional uncertainty approximately less
than 0.1 m (n = 24). Ht: height.

Average inventory height and LiDAR height metrics had less positive correlation
coefficients between 0.4–0.8. The ninety-ninth percentile of LiDAR height had the strongest
correlation of 0.78 and 0.76. A decreasing trend of correlation coefficients between aver-
age inventory height and LiDAR height percentiles was observed as percentile number
decreased. Correlation between average LiDAR height and average inventory height was
0.6. We also conducted correlation analysis between median inventory height and LiDAR
metrics. However, we do not report the result since the correlation was weaker than the
above results.

The correlation analysis showed that the maximum inventory height was most highly
correlated with maximum LiDAR heights. Therefore, we used the term inventory height
and LiDAR height in the rest of the paper to indicate maximum inventory and LiDAR height.

The size of the clipping area used to obtain LiDAR height did not show a significant
effect on the correlation of LiDAR and inventory height (Table 1). Slightly higher correlation
coefficients were observed when the clipping radius was either 7.3 or 11.0 m. However, the
correlation coefficients did not improve more than 0.1 within the studied range of clipping
radius from 3.7 to 14.6 m. Therefore, we used a clipping radius of 7.3 m, i.e., radius of
inventory plot, in the rest of the paper to obtain LiDAR height. A substantial difference in
the correlation coefficient was shown according to the positional difference of plot location.
A higher correlation of 0.8 was observed when the positional difference of the plot was less
than 0.1 m.

Table 1. Effect of clipping area (radius) and positional difference of plot center location on correlation
between LiDAR and inventory height. LiDAR height was obtained from a circular area with variable
radii, whereas inventory height was acquired within the original plot area with a 7.3 m radius.

Clipping
Radius (m)

Correlation of Tree Heights Obtained by
2011–2013 LiDAR and 2008–2012 Inventory Data

Correlation of Tree Heights Obtained by
2017–2020 LiDAR and 2013–2017 Inventory Data

Positional Difference of Plot Center (GPS) Positional Difference of Plot Center (GPS)
Less Than 0.1 m (n = 25) Unspecified (n = 4845) Less Than 0.1 m (n = 25) Unspecified (n = 4845)

3.7 0.84 0.55 0.78 0.42
7.3 0.91 0.60 0.84 0.48

11.0 0.89 0.56 0.86 0.49
14.6 0.88 0.53 0.84 0.47

A very strong correlation of 0.95 was observed between LiDAR and CHM-based
height (Figure 7) from the entire set of inventory plots. Consequently, plot-wise LiDAR tree
height was obtained from CHM henceforth, and we refer to it as CHM height.



Remote Sens. 2022, 14, 935 9 of 18

3.3. An Accuracy Assessment of CHM-Based Height

The average and standard deviation of inventory tree height were 27.5 and 5.9 m
from 4845 forest plots. The corresponding statistics obtained by CHM were 28.2 and 5.6 m,
respectively. It should be noted that above statistics are plot-wise maximum tree height,
whereas the statistics in Section 3.1 were calculated from pixel-wise canopy height.

3.3.1. Effect of LiDAR Point Density on Height Accuracy

Average and standard deviation of LiDAR density were 1.6 and 1.1 points/m2 for
2011–2013 LiDAR and 6.0 and 3.2 points/m2 for 2017–2020 LiDAR data. Height error in
relation to LiDAR point density mostly showed a positively skewed distribution (Figure 11).
Median values were in a −3 to 5 m range. However, height error had a negatively skewed
distribution for 2017–2020 LiDAR data when LiDAR point density was under 4 points/m2.
The third percentile of error distribution was −31 m when point density was 0–2 points/m2

and −20 m when point density was 2–4 points/m2.
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Figure 11. Height measurement error with respect to LiDAR point density. Boundaries of upper
and lower whisker are the ninety-seventh and third percentiles. The number above each box plot
is median, and the number below box plot is number of data points. CHM: canopy height model;
Ht: height.

Height measurement error was displayed with respect to LiDAR acquisition year to
investigate whether the data acquired in a specific year caused a larger error (Figure 12). The
result showed that measurement error was mostly positively skewed for all data acquisition
years. However, the height errors obtained from 2018 LiDAR data were negatively skewed
when point density was 0–4 points/m2. The errors from 2018 LiDAR data had a distinctively
longer lower whisker when the point density values were under 2 points/m2.

3.3.2. Effect of Tree Height on Measurement Accuracy

Height measurement error generally showed a decreasing trend as tree height in-
creased (Figure 13). The variance of error also decreased as tree height increased. Standard
deviation of height error was 10.0 m when tree height was in the 6–9 m range and 3.6
m when tree height was in the 39–42 m range. In particular, the height error calculated
from the 2018 LiDAR data showed more negatively skewed distribution compared to other
LiDAR acquisition years.
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3.3.3. Effect of Data Acquisition Timing on Measurement Accuracy

The time difference between field inventory and LiDAR data acquisition did not
significantly affect the overall height measurement error (Figure 14). However, the height
measured by LiDAR data was generally overestimated when LiDAR data were collected
five or more years after the collection of field inventory data. Height measurement error
had a median value of 0.7 m when the time difference was five years and 2.1 m when the
time difference was 6–7 years. We observed height error in relation to the combination of
LiDAR and inventory year, which did not show a noticeable trend (Figure 15). However,
height error calculated from the 2018 LiDAR data again showed a larger variance with
significant underestimation compared to other LiDAR data collection years.

3.3.4. Height Accuracy When Accurate Location Is Provided

From the inventory plots which had positional difference less than 0.1 m, CHM height
showed a strong correlation with on-the-ground measurements (Figure 16). Canopy height
observed from 2011 and 2017 LiDAR data resulted in R2 values of 0.92 and 0.85, respectively.
Root mean square error (RMSE) of height measurement was 2.7 m with 2011 LiDAR and
3.5 m with 2017 LiDAR data. The regression lines of the two datasets had a slope under
1.0 and an intercept of approximately 10 m. Comparison of CHM and field-based height



Remote Sens. 2022, 14, 935 11 of 18

measurements with the entire set of inventory plots in the state of Indiana resulted in
a lower R2 and higher RMSE value (Figure A1).
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4. Discussion

Our study presented a CHM generation and validation framework based on USGS
3DEP LiDAR. The proposed CHM generation workflow is specifically designed to process
large LiDAR dataset in a parallel processing environment (Figures 4–6). The CHM gen-
eration process can be applied to other LiDAR datasets with a local or regional coverage.
Likewise, the plot-level accuracy assessment approach can be applied to other inventory
plots with a different design.

This study demonstrated that canopy height obtained from 3DEP LiDAR has a strong
correlation to inventory height (Figures 9, 10 and 16). This result is consistent with previous
findings that airborne LiDAR is a reliable technique to obtain heights of upper canopy trees,
i.e., dominant and co-dominant trees [19]. We generated CHM using LiDAR points with
maximum elevation (Figure 3) in a 1.524-by-1.524-m pixel area. Correspondingly, we compared
plot-wise maximum inventory height and maximum CHM height for the accuracy assessment.
The selection of inventory and LiDAR height metrics were based upon the correlation analysis
of multiple LiDAR and inventory height metrics (Figures 9 and 10). However, previous
studies suggest that height percentiles or other forest structural metrics can be used to predict
tree height metrics such as dominant height, bole height, or Lorey’s height [32,33].

The error of CHM-based height measurement generally had a consistent distribution
in relation to LiDAR point density and inventory year (Figures 11, 12, 14 and 15). However,
areas with low-density LiDAR data acquired in 2018 resulted in an underestimation of
canopy height (Figure 11). From a total of 1132 inventory plots which had point density
of 0–4 points/m2 from 2018 LiDAR data, the average and standard deviation of height
error was −2.1 m and 7.7 m. The number of plots with a height underestimation below
two standard deviations from the average was 61 (61/1132 = 5%). The outlier plots were
found at a specific region in Southeastern Indiana (mostly in Clark, Jackson, Washington,
Jennings County) (Figure 17). It was revealed that these plots were distributed along the
region with a lower LiDAR density in the 2017–2020 LiDAR data. The repeated pattern of
darker vertical strips in CHM occurred because point density below the sensor flight line
(headed north or south) was lower compared to areas covered by multiple scans where
the LiDAR sensor was headed north and south. The CHM pixels with a fewer number
of canopy returns were widespread in the low-density strips. We believe that the lower
density strips and resulting height error can primarily be attributed to the configuration
of LiDAR data collection at specific locations rather than the actual variations in canopy
structure (Figure 17c,d). Possible causes of these low LiDAR density strips could be LiDAR
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sensor configuration, low flight altitude, unexpected weather, or abrupt aircraft maneuvers,
and should be further investigated.
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Figure 17. Inventory plots (green dots) with low height measurement accuracy: (a) plots with low
height accuracy located in southeastern Indiana; (b) a subset of plots on top of canopy height model
(CHM) from 2017–2020 LiDAR data, plots with low height accuracy distributed along the banded
regions with a lower LiDAR point density (Figure 12); (c) CHM of dotted area in (b); (d) 2018 National
Agriculture Image Program (NAIP) County Mosaic image of dotted area in (b). Ht: height. Note:
a majority of inventory plots with an error less than two standard deviations were not displayed
for brevity.
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An interesting trend was revealed between tree height underestimation and LiDAR
point density (Figure 18). It was shown that the magnitude of the largest negative height
error was associated with the proportion of inventory plots with LiDAR density between
0–4 points/m2 per county. In other words, counties with higher LiDAR density were less
prone to severe height underestimation. It should be noted that the values of the y axis in
Figure 18 are minimum values of height measurement error.
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Figure 18. The largest negative height measurement error with respect to the proportion of inventory
plots in counties with low LiDAR point density (0–4 points/m2). Data include Indiana counties
where 3D Elevation Program (3DEP) LiDAR data was collected in 2018. Counties having 20 or less
inventory plots were excluded to highlight a statistical trend. Southeast Indiana counties with a large
negative error (Figure 17a) were labeled.

The CHM of Southeastern Indiana counties should be carefully used when measuring
canopy height since it can underestimate actual height value (Figures 12, 17 and 18).
Height accuracy can particularly decrease on areas without a LiDAR return (initialized
with zero in our case) or areas with lower point density. One can create a CHM with
a larger pixel size by assigning maximum canopy height in each pixel area, or one can
interpolate nearby valid canopy height can reduce the error. The accuracy of plot-wise
canopy height can be minimally affected unless the highest tree is located near a plot
boundary or a pixel boundary.

Tree height was heavily overestimated up to approximately 20 m when inventory
height was under 12 m (Figure 13). The overestimation could have occurred when the
geolocation of the plot center was not accurate or when large trees with 12.7 cm or less in
diameter were not included in measurement due to the CFI protocol.

The main challenge in comparing the tree height using the CFI and CHM data was the
positional error of GPS coordinates in plot center measurement (Figures 2, 16 and A1). The
ninetieth percentile of positioning error of common handheld GPS devices was previously
reported as 13.1 m in high forest [34]. The GPS error under a tree canopy increases due to
unfavorable satellite constellation geometry, atmospheric interference, multi-path effect,
and lower signal-to-noise ratio [35,36]. Since the positioning error can far exceed the
inventory plot radius (7.3 m), it is possible that there is minor or no overlap between an
actual and a nominal plot area in extreme cases.

Inventory plots with positional difference within 0.1 m were selectively used to miti-
gate co-registration issue between geospatial data (LiDAR) and plot center location. A more
rigorous accuracy assessment would have been possible if accurate GPS remeasurements
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on plot centers were available across the state. However, the criteria used to select the
inventory plots could still result in a biased set of evaluation points because the accuracy
issues with GPS measurement were not completely eradicated. The positional uncertainty
issue can be potentially alleviated if the plot centers are measured using a high-precision
GPS device with real-time kinematic (RTK), post-processed kinematic (PPK) positioning,
networked transport of RTCM via internet protocol (NTRIP) correction, or by other preci-
sion surveying techniques. If the issue with positional accuracy is resolved, diverse studies
regarding the relationships between forest inventory attributes and remote sensing data
can be conducted.

We conducted accuracy assessment based on point density (points/m2). However, it
is more desirable to use pulse density since it is less affected by characteristics of targets
and more dependent on sensor configuration. Pulse density of multiple return LiDAR data
can be computed by counting the number of the first returns in unit area.

The characteristics of LiDAR and foliage density could adversely affect the accuracy of
tree height measurement. A tree with a low foliage density can cause LiDAR pulse to travel
a longer distance before being reflected at a thick branch or trunk. The effect of low-density
foliage can be intensified when the data collection is done during leaf-off season. However,
point density over 4 points/m2 was considered sufficient to measure hardwood trees with
a height over 25 m consistently (Figure 13). As USGS increases its LiDAR data acquisition
effort to higher densities (8 pulses/m2), point densities of future 3DEP LiDAR data will
likely also increase.

There are other factors that could also affect the accuracy of tree height measurement.
First, a human error could be introduced while measuring height in the field. When collect-
ing inventory data across a large geographic region, the “time window” allowed for data
acquisition is relatively small, especially in areas where there are large elevation gradients
like in the western USA. Long data collection period for large areas can often lead to multi-
year and multi-vendor contracts, causing potential complications in project management
and inconsistencies in data attributes and quality. Second, tree canopy structures originat-
ing from outside a plot boundary, i.e., over-hanging branches, can cause an overestimation
in tree height measurement. Third, our DTM-based nDSM generation method can produce
a discontinuous CHM over a smooth canopy surface when the terrain slope is rugged.
The discontinuous CHM can occur when a single ground height is assigned within the
entire 1.524-by-1.524-m pixel area of DTM (Figure 3). Conversely, a continuous terrain
model derived by mesh or triangulated irregular network (TIN) can be used to model
more smooth ground surface [37]. Fourth, an airborne LiDAR data has its own source of
error, such as sensor position, GPS-IMU integration, signal attenuation by the atmosphere,
divergence of laser footprint, and aircraft vibration. However, the amount of the LiDAR
error (Table A1) is considered relatively small compared to that of the other causes. Fifth,
a more rigorous filtering algorithm can be used to remove spurious LiDAR returns.

5. Conclusions

This study presented a CHM generation workflow using USGS 3DEP LiDAR data
which is characterized by a low-density point cloud and a large spatial coverage. We
designed an efficient CHM generation workflow that enables parallel processing to ad-
dress the issue of large data size of 3DEP data. We investigated accuracy of CHM-based
height measurement according to point density and inventory height, and suggested
an exploratory data analysis (EDA) approach to find problematic input data. The accuracy
assessment of tree height demonstrated that the LiDAR-based CHM contains reliable height
information. It is expected that this study could facilitate the use of USGS 3DEP data for
the evaluation of forest conditions and ecosystem services in other regions.
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Appendix A

Table A1. Minimum requirements (quality level 2, QL2) of 3D Elevation Program (3DEP) LiDAR products.

Requirements Range

Aggregate nominal pulse spacing (m) 50.71
Aggregate nominal pulse density (pulses/m2) =2.0

Smooth surface repeatability, RMSD * (m) 50.06
Swath overlap difference, RMSD (m) 50.08

RMSE (non-vegetated, m) 50.1
Non-vegetated vertical accuracy at 95%

confidence level (m)
50.196

Vegetated vertical accuracy at the 95%
confidence level (m)

50.30

* RMSD is the root mean square deviation and calculated as the root mean square error (RMSE). RMSD is used
when there is no independent data source with higher accuracy.
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Figure A1. Agreement between inventory and canopy height from the entire set of inventory plots:
(a) LiDAR measurement in 2011–2013 and field measurement in 2008–2012, (b) LiDAR measurement
in 2017–2020 and field measurement in 2013–2017. Inventory plots without valid height measurement
were excluded from the scatter plots. CHM: canopy height model, Ht: height.
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