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Abstract: The Soil Moisture Active Passive (SMAP) mission with high-precision soil moisture (SM)
retrieval products provides global daily composites of SM at 3, 9, and 36 km earth grids measured by
L-band active and passive microwave sensors. The capability of passive microwave remote sensing
has been recognized for the estimation of SM variations. The purpose of this work was to establish an
interaction between the highly variable SM spatial distribution on the ground and the SMAP’s coarse
resolution radiometer-based SM retrievals. In this work, SMAP Level 3 (L3) and Level 4 (L4) SM
products are validated with in situ datasets observed from the different locations of the Soil Moisture
Network within the ShanDian River (SMN-SDR) Basin over the period of January 2018 to December
2019. The values of the unbiased root mean square error (ubRMSE) for L3 (SPL3SMP_E) SM retrievals
are close to the standard SMAP mission SM accuracy requirement of 0.04 m3/m3 at the 9-km scale,
with an averaged ubRMSE value of 0.041 m3/m3 (0.050 m3/m3) for descending (ascending) SM with
the correlation (R) values of 0.62 (0.42) against the sparse network sites. The L4 (SPL4SMGP) Surface
and Root-zone SM (RZSM) estimates show less error (ubRMSE < 0.04) and high correlation (R > 0.60)
values, and are consistent with the previous SMAP-based SM estimations. The SMAP L4 SM products
(SPL4SMGP) performed well compared to the L3 SM retrieval products (SPL3SMP_E). In vegetated
land, the variability and compatibility of the SMAP SM estimates with the evaluation metrics for both
products (L3 and L4) showed a good performance in the grassland, then in the farmland, and worst
in the woodlands. Finally, SMAP algorithm parameters sensitivity analysis of the satellite products
was conducted to produce time-series and highly precise SM datasets in China.

Keywords: SMAP; soil moisture; in situ network; ShanDian River (SMN-SDR) Basin; ubRMSE

1. Introduction

Soil moisture, a most active key variable, interrelates the processes of Earth’s energy
and water between the atmosphere and land surface, and plays a vital role in hydrological
processes [1,2], bio-geochemical processes, bio-ecological processes, and crop yield esti-
mation [3]. The estimation of SM with high accuracy and fine spatio-temporal resolution
is useful for modelling and forecasting weather and climate [4] and monitoring floods
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and droughts [5,6]. In general, the traditional method for determining the SM content
requires reasonably precise ground assessments at a point scale utilizing site networks [7,8],
such as the United States Department of Agriculture (USDA) and Soil Climate Analysis
Network (SCAN) throughout the United States. The distribution of surface soil moisture
(SSM) on a regional or global scale is difficult to identify due to the lack of sufficient ground
measurement sites in many places. Due to the advantages of remotely sensed data, several
attempts have been made to estimate SSM for regional or even worldwide applications.

At a large spatial scale with a high temporal resolution, microwave remote sensing
provides near-SSM datasets with relatively high accuracy. Using remote sensing, Jackson
and Schmugge have come up with a novel approach for obtaining SSM. The SMAP [9],
developed by National Aeronautics Space Agency (NASA), launched on 31 January 2015,
providing high-resolution soil SM moisture and freeze/thaw datasets at 2–3-day intervals
with a 36, 9, and 3-km earth grid estimated by active and passive microwave sensors. The
SMAP satellite is equipped with an L-band radar (1.26 GHz) and an L-band radiometer
(1.41 GHz) that deliver backscatter observations at a spatial resolution of 3 km and bright-
ness temperature (TB) measurements at a 36 km resolution [10], respectively. The L-band
microwaves estimation, because of a significant penetration ability, has been considered
the most appropriate band for SM assessment, especially in high-density vegetative re-
gions. These estimations are likely more sensitive to SSM and temperature, which influence
the land surface water (conversion of precipitation into runoff, infiltration, and evapora-
tion) and energy balance (partitioning of incident radiations into sensible and latent heat
fluxes) [11,12]. Unfortunately, the L-band radar (active) failed on 7 July 2015 due to some
mechanical issues, but the L-band radiometer (passive) is providing global imagery of SM.
There are 4 different levels of SMAP data products containing Level 1 datasets (raw and/or
calibrated instruments calculations), and Level 2, 3, and 4 products for SM observations are
being delivered. In the present study, L3 and L4 SMAP products were used for SM retrieval
over the period of 1 January 2018 to 3 December 2019.

SMAP L3 products offer daily global-scale aggregates of half-orbit SM based on Level 2
observational data. The SMAP L3 36-km daily global composite radiometer SM (L3 SM
P) and 9-km enhanced daily global composite radiometer SM (L3 SM P E) datasets are
widely utilized. Xu [13] worked with the 36-km radiometer product SPL3SMP_E a.m.
(descending half-orbits with a local solar time of 6 a.m.) and estimated the ubRMSE close
to 0.014 m3/m3, with R and anomaly R values of more than 0.65. Against the sparse
observation network, the average ubRMSE value was ~0.06 m3/m3, with R and anomaly R
values of close to 0.50, and concluded that SPL3SMP_E p.m. (ascending half-orbits with a
local solar time of 6 p.m.) values slightly underestimated the a.m. SM truths. In the Little
Washita Watershed (LWW) network in the United States, Cui et al. [14] tested a 9-km L3
SM P E a.m. (ver-1) SM with ubRMSE less than 0.04 m3/m3 and a significant correlation
coefficient greater than 0.87.

SMAP L4 products are obtained by assimilating TB data from SMAP datasets into
the land surface model (LSM). The L4 SM algorithm is based on the GEOS-5 Catchment
LSM and is a modified version of the ensemble-based Goddard Earth Observing Sys-
tem (GEOS-5) LDAS (Land Data Assimilation Systems) [15,16]. The SMAP L1C TB and
surface meteorological controlling inputs from the GEOS-5 atmospheric assimilation sys-
tem, calibrated with rainfall data, are the principal drivers of this system. A spatially
distributed ensemble Kalman filter is being used to merge SMAP TB estimations with
model-driven estimates [17,18]. The averaged geophysical SM data for both the surface
(0–5 cm) and the root-zone (0–100 cm) depths are provided at 3-h intervals in SMAP L4
products (SPL4SMGP) at a 9-km global cylindrical Equal-Area Scalable Earth (EASE) Grid
projection [13].

The implementation of SMAP SM products and the refinement of the retrieval algo-
rithm both require their validation. Previously, for the validation of remotely sensed SM, a
lot of work has been conducted in the Tibetan Plateau, China [19–27]. For calibration and
validation of SMAP radiometric datasets, different complementary methodologies are being
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used to improve the accuracy and performance of the SMAP mission and to achieve global
robust SM assessment. These methodologies comprise core validation measurements [28],
sparse network [29,30], model-derived products [31–33], other satellites datasets [34], and
field operations [35,36]. This study used core validation measurements (containing all the
sites within the SMAP grid-cell) and sparse network (containing one in situ station within
the SMAP resolution cell) to match in situ SM with SMAP-derived SM. The application of
multi-scale validation approaches provides information on the reliability of remote sensing
data and consistency with in situ measurements at any scale.

The SMAP SM retrieval algorithm is affected by a wide range of parameters, including
the surface temperature, vegetation, and surface roughness [37]. These perturbing factors
disturb the interaction between TB and SM, resulting in uncertainties in the SM estimates.
The emitted energy from soil is significantly influenced by the vegetation canopy. The
vegetation canopy scatters and absorbs microwave emissions from the soil while simul-
taneously emitting its own. This scattering, absorption, and emission are caused mainly
by the water retained inside the canopy. In addition to attenuating radiation emitted by
soil surfaces, vegetation reduces the brightness temperature’s sensitivity to SM [38]. SMAP
SM measurements are based on soil’s dielectric characteristics, which vary with SM and
are influenced by the soil temperature [39]. Lu et al. [40] revealed that variations in SM are
related to changes in the soil temperature and are mostly driven by temperature effects.
They developed a real-time method for effectively removing temperature impacts from
soil water.

The present work evaluated the SMAP SM products over the ShanDian River Basin,
utilizing in situ data acquired by the SMN-SDR network. This study focused on achieving
the following purposes: (1) to validate the SMAP SM products across the humid area (SMN-
SDR) of the North China Plain, over the period of 1 January, 2018 to 31 December, 2019,
to provide practical implementation assistance in the region; (2) to evaluate the L3 and L4
SMAP SM products (SPL3SMP_E and SPL4SMGP) compared with in situ observations; and
(3) to evaluate SMAP SM L3 and L4 products across the SMN-SDR Basin under different
vegetation types and spatio-temporal scales. This paper is organized as follows: Section 2
describes the SMAP SM products and in situ datasets. Section 3 provides a comprehensive
assessment of the SMAP SM products based on in situ measurements. The results are
discussed in Section 4, followed by the conclusions of this study, which are described in
Section 5.

2. Materials and Methods
2.1. Study Domain and Ground Observation Network and Datasets

This work acquired ground-based SM data from a wireless Soil Moisture Network
within the ShanDian River Basin, referred to as SMN-SDR, in the North China region.
During the SM experiment in the Luan River, the SMN-SDR was established from 18
July 2018 to 28 September 2018 [40]. The in situ SM data for the SMN-SDR network was
available in the International Soil Moisture Network (ISMN) [7]. The area coverage of the
entire network is 10,000 km2 (115.5–116.5◦ E, 41.5–42.5◦ N). A total of 34 stations comprised
the network, which was built up with 3 sample scales, including large-scale (100 km),
medium-scale (50 km), and small-scale (10 km) samples, as described in Table 1. The large-
scale (L) stations have an M-shaped layout, medium-scale (M) stations have a plum-shaped
layout, and small-scale (S) stations are exactly within the SMAP 9-km grid as shown in
Figure 1. Decagon EM50, USA (5TM probes) sensors were used for each station to estimate
SM at 5 measuring depths (3, 5, 10, 20, and 50 cm). The data recording time period was
10 and 15 min (before and after June 2019). The geography of the SMN-SDR is rather flat,
and the land surfaces are mostly covered by farmland and grassland, with a few patches of
forest and wetlands. Table 1 summarizes the detailed information about each site in the
SMN-SDR, including the station ID, latitude, longitude, elevation, setup time, and land
use type.
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Table 1. Specifications of in situ soil moisture stations at the SMN-SDR.

Station ID Longitude
(Degree)

Latitude
(Degree)

Setup Time
(Local Time)

Elevation
(m)

Vegetation
Cover

S1 115.945717 42.006639 19 July 2018 12:53 1368 Farmland
S2 115.937800 42.040172 19 July 2018 15:00 1363 Grassland
S3 115.919400 42.057144 18 July 2018 18:40 1343 Grassland
S4 115.935069 42.082669 4 September 2018 10:17 1357 Grassland
S5 115.894050 42.073939 18 July 2018 15:30 1327 Grassland
S6 115.865733 42.045544 28 September 2018 11:04 1331 Grassland
S7 115.896111 42.029722 14 August 2018 09:08 1332 Grassland
S8 115.873056 42.017500 4 August 2018 18:36 1334 Grassland
M1 115.855928 41.965572 4 September 2018 11:56 1343 Grassland
M2 115.809444 42.105278 14 August 2018 11:30 1451 Grassland
M3 116.082500 41.949722 14 August 2018 15:41 1466 Farmland
M4 116.185508 42.095956 21 July 2018 09:51 1394 Grassland
M5 116.188236 42.185553 20 July 2018 14:30 1433 Grassland
M6 115.938742 42.186800 4 September 2018 09:02 1308 Grassland
M7 115.968181 42.176983 18 July 2018 12:30 1330 Grassland
M8 115.888611 42.306389 13 August 2018 10:50 1363 Grassland
M9 116.070372 42.305539 13 August 2018 14:13 1280 Grassland
M10 116.242753 42.302567 13 August 2018 17:22 1327 Woodland
M11 116.139483 42.168933 20 July 2018 16:35 1470 Grassland
M12 116.176603 42.025097 21 July 2018 08:18 1354 Grassland
L1 115.538853 41.550761 1 September 2018 11:12 1433 Grassland
L2 115.603142 41.780069 1 September 2018 13:40 1401 Grassland
L3 115.628383 42.042175 1 September 2018 17:30 1452 Grassland
L4 115.689708 42.257611 2 September 2018 11:54 1338 Grassland
L5 115.742808 42.419742 2 September 2018 09:49 1427 Grassland
L6 116.333303 41.802947 5 September 2018 14:27 1369 Grassland
L7 116.342378 42.214089 3 September 2018 13:51 1364 Woodland
L8 116.361031 41.955311 3 September 2018 11:15 1435 Grassland
L9 116.087342 41.744736 4 September 2018 15:42 1443 Grassland
L10 115.945078 41.746911 4 September 2018 13:53 1410 Grassland
L11 116.222711 42.411972 2 September 2018 14:19 1280 Grassland
L12 116.367775 42.401206 2 September 2018 16:07 1315 Grassland
L13 115.996558 42.416431 3 September 2018 17:24 1329 Grassland
L14 116.437414 41.574433 5 September 2018 11:19 1383 Grassland

The SMN-SDR encompasses multi-layer soil temperature (at the same depths of the
SMs) and other meteorological variables, e.g., precipitation. In total, 20 stations out of 34 are
equipped with HOBO rain gauges (made by Austria), which can record up to 160 inches
of rain at rates of up to 12.7 cm (5 inches) per hour in the SMN-SDR. These stations are
mostly located on small and medium scales. Detailed information about the HOBO rain
gauge can be found at https://www.onsetcomp.com/products/data-loggers/rg3/, last
accessed: 3 February 2022. All these stations provide time serial SM, soil temperature,
and precipitation on an hourly basis. The experimental region has a moderate continental
climate, with annual precipitation ranging from 300 to 500 mm in most regions, with 70%
of the precipitation occurring between July and September [40]. Snowmelt in March and
April frequently causes a modest spring flood. The SMN-SDR has a generally flat terrain,
with grasslands and croplands dominating land surfaces.

The data sets recorded from the sensors (5 TM and HOBO) only include raw data. SM
data obtained from sensor 5TM was calibrated using the following equation [40]:

SMCV= 1.0458 × SMC5TM − 0.0022

where SMCV is the calibrated soil moisture (% volume) and SMC5TM is the actual SM
recorded by the 5TM sensor (% volume).

https://www.onsetcomp.com/products/data-loggers/rg3/
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Figure 1. The ShanDian River Basin and the Network within the ShanDian River Basin (SMN-SDR),
(a) land use map of the study area, (b) providing in situ SM measurements at a small scale (red circles
within the red rectangles), medium scale (blue triangles within the blue rectangles), and large scale
(green squares within the rectangles).

The 5TM sensor’s accuracy and resolution for SM are ±3% m3/m3 and 0.0008 m3/m3,
and for soil temperature, ± 1 K and 0.1 K, respectively. After laboratory examination, the
SMN-SDR in situ SM data was already calibrated and validated with ground truth SM data
taken from different soil samples at each layer [40]. In this research work, the SMN-SDR
SM data at 5-cm depths (over the period 25 July 2018 to 31 December 2019) were used
to validate L3 SMAP_E and L4 SMAP_GAU (SSM) data, and 50 cm to validate Level 4
SMAP_GAU (RZSM) data.

2.2. SMAP Soil Moisture Products

The SMAP captures the global brightness temperature (TB) with a spatial resolution of
36 km and a temporal resolution of 3 days. The SMAP satellite is equipped with an L-band
radar (active) and L-band radiometer (passive) for monitoring the Earth’s surface at sun-
synchronized times of 06:00 a.m. (descending) and 06:00 p.m. (ascending) [41]. The radar
and radiometer started providing SMAP imaginary on 31 March and 13 April 2015, respec-
tively. Radiometer (passive) devices are less susceptible to vegetation intensity and ground
surface roughness than radar (active) instruments, although the high spatial resolution of
radars (about 1–3 km) is not equivalent to the radiometer’s moderate resolution (around
40 km). The combination of radar and radiometer sensors in SMAP increases SM measure-
ment’s accuracy and spatial resolution [42]. However, on 7 July 2017, the radar stopped pro-
viding SMAP active microwave datasets due to mechanical failure. Through radiometric-
based techniques [43], the near-SSM (0–5 cm) are estimated with a 0.04 m3/m3 volumetric
accuracy. The NSIDC website (https://www.nsidc.org/data/smap/smap-data.html, last
accessed: 5 January 2022) provides free access to all datasets. In this research work, we
evaluated 2 SMAP SM products: Level 3 enhanced SMAP radiometric SM (SPL3SMP_E)
at a global daily 9-km EASE-Grid spatial resolution, version 4 [30]; and Level 4 SMAP

https://www.nsidc.org/data/smap/smap-data.html
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SSM and RZSM (SPL4SMGP) at a global 3-hourly 9-km EASE-Grid spatial resolution,
version 5 [44]. These two SMAP products are briefly demonstrated here.

The SPL3SMP E products are enhanced Level 3 radiometric (passive) SSM retrieval
products based on enhanced Level 2 SMAP products [45], which provide daily global
SSM (5 cm depth) estimates from SMAP 6:00 a.m. (descending half-orbits) and 6:00 p.m.
(ascending half-orbits) TB datasets, respectively [30]. The SPL3SMP E datasets, which have
an EASE-Grid 2.0 resolution of 9 km, provide 1–3 days of the average temporal resolution
for half-orbit fields. The SPL4SMGP product was obtained from SMAP L-band TB data
using the EnKF assimilation technique in the Catchment LSM [46]. The LSMs have an
excellent capability to convert water (in the form of precipitation) into runoff, evaporation,
and storage estimations, and energy (in the form of incoming radiations) conversion
into latent heat, sensible heat, departing radiations, and other various terms [44]. The
SPL4SMGP product (version 5) provides instantaneous SM at 3-hourly time-averaged
from assimilation system, 9-km Global cylindrical EASE-Grid 2.0 for both layers, surface
(0–5 cm), and root-zone (0–100 cm). In this work, we utilized the SPL4SMGP datasets for
SSM and RZSM retrieval from geophysical data.

The present study used the SPL3SMP_E products and SPL4SMGP datasets for SM
estimation from January 2018 to December 2019. The SPL3SMP_E products containing
adverse climatic conditions (snow cover, frozen surfaces, urban, open water, etc.) were
already excluded.

2.3. Statistical Analysis

The SMAP SM products were qualitatively evaluated with the SMN-SDR network at
2 spatial scales: core validation sites (CVSs), which provide all of the S-scale (S) stations that
exist within an SMAP product grid-cell with a 9-km resolution; and a sparse network of
M-scale (M) and L-scale (L) stations, which provides a point-scale measurement containing
only 1 station within an SMAP product grid-cell (9-km). In this study, these networks were
utilized to compare the SMAP SM products with a 9-km spatial resolution (SPL3SMP_E and
SPL4SMGP) using a series of statistical metrics, including the unbiased root mean square
error (ubRMSE) [47,48], correlation coefficient (R), anomaly R [49], and mean bias [24]. The
validating metrics are defined as follows:

Bias = E[θ est]−E[θ insitu] (1)

RMSE =

√
E[((θ est)− (θ insitu))

2] (2)

ubRMSE =

√
E[((θ est − E[θ est])− (θ insitu − E[θ insitu]))

2] (3)

R = E[(θ est − E[θ est])(θ insitu − E[ θ insitu])] (σ estσ insitu)
−1 (4)

where E [.] is the expectation value operator. θ est and θ insitu represent SMAP and in situ
SM values, respectively. σ est is the standard deviation of θ est and σ insitu is the standard
deviation of θ insitu.

The evaluation metrics for SPL3SMP_E and SPL4SMGP SSM estimations were vali-
dated with in situ SMN-SDR network topsoil layer (0–5 cm) measurements. SPL4SMGP
RZSM was evaluated by taking the arithmetic mean of SMN-SDR network observations in
the up to 50 cm soil layer. It is recognized that the soil depths for SMAP datasets do not
correspond properly with the sensor depths for the in situ observations. However, using
limited in situ measurements in the study region, we demonstrated that the depth variation
across SMAP products has only a minimal impact on the evaluation.
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3. Results
3.1. Evaluation of the SPL4SMGP Surface and Root-Zone Soil Moisture

This section analyzes and discusses the performance of the SPL4SMGP SSM and
RZSM products over three different scale sites. We compared the temporal variations of
SPL4SMGP SM with in situ data at different spatial locations (i.e., small, medium, large), as
shown in Figures 2 and 3. The performance metrics of all the spatial locations (S, M, and L)
are described in Figure 4. These metrics were calculated from the 3-hourly SPL4SMGP SSM
and RZSM and 3-hourly composites of in situ SM from 25 July 2018 to 31 December 2019.
At the S-scale, a total of eight ground sites located within the SMAP radiometric pixels
(as a core validation site) were used for the evaluation of SPL4SMGP SM. The time-series
validation results of SPL4SMGP SSM and RZSM with in situ SM for S-scale sites are shown
in Figures 2a and 3a. At M and L scales, 12 and 14 in situ sites, respectively, were used to
evaluate SMAP SM as the sparse network sites. The SPL4SMGP SSM and RZSM and in situ
SM estimates showed almost a constant value from November 2018 to March 2019. This is
due to snowfall events that occurred in the study area during the same time period. SMAP
TB estimates were unavailable in the winter because of frozen states; hence, the L4 product
estimations are only based on the results of the GEOS-5 model simulations [50], resulting
in a linear time series trend for the L4 products in winter (as shown in Figures 2 and 3).

The SPL4SMGP SSM estimates were underestimated with a bias of −0.026 m3/m3

relative to the in situ SM. In contrast, SPL4SMGP RZSM retrievals had a positive bias
of 0.033 m3/m3, indicating an overestimation compared to the in situ observations. The
RMSE values are 0.051 m3/m3 and 0.038 m3/m3 for the SSM and RZSM datasets, respec-
tively. After removing their respective biases from RMSE, a moderate to good accuracy
was obtained, with ubRMSE values of 0.044 m3/m3 with a standard deviation value of
0.052 m3/m3 for the SPL4SMGP SSM and 0.20 m3/m3 with a lesser standard variation of
around 0.013 m3/m3 for the SPL4SMGP RZSM. The SPL4SMGP SSM products showed a
good correlation value of 0.57 compared to 0.48 for the SPL4SMGP RZSM products. At the
medium scale (M), ubRMSE values of 0.045 m3/m3 and 0.026 m3/m3 were obtained after
removing the corresponding biases values of −0.022 m3/m3 and 0.041 m3/m3, which oc-
curred in the observations, from the relative RMSE values of 0.057 m3/m3 and 0.056 m3/m3

for the SPL4SMGP SSM and RZSM datasets, respectively, as shown in Figure 4. The
SPL4SMGP RZSM showed a lower error with a higher correlation value of 0.056 m3/m3

(Figure 4a,d) for both the SPL4SMGP SSM and RZSM due to less variability during the
time period. Next, for L-scale, the SPL4SMGP RZSM products revealed a much better cor-
relation of 0.76 and high accuracy (ubRMSE = 0.014 m3/m3) as compared to SSM (R = 0.56,
ubRMSE = 0.041 m3/m3) (Figure 4). We observed that the SPL4SMGP SM datasets over
the sparse network (M and L scales) showed better results than the core validation site
(S scale).

In the end, the averaged ubRMSE value of all the in situ stations for RZSM (0.017 m3/m3)
was considerably lower than that of the SSM value (0.037 m3/m3) (Figure 5b). As previ-
ously stated, this was simply due to the lower temporal variability in RZSM. The correlation
values for the SPL4SMGP SSM (R = 0.78) and RZSM (R = 0.63) datasets were significantly
higher than that of other spatial scale stations, as shown in Figure 5a. The overall per-
formance metrics are shown in Figure 4 for the spatial sites. For both SPL4SMGP SSM
(except the S- and M-scale stations) and RZSM products, all the spatial scale stations met
the product’s accuracy requirements (ubRMSE value less than 0.04 m3/m3).
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3.2. Evaluation of SPL3SMP_E Ascending and Descending SM

We first presented the SPL3SMP_E a.m. (descending) and SPL3SMP_E p.m. (ascend-
ing) SM validation at different spatial locations (S, M, and L). Figures 6 and 7 show a
time series evaluation of SPL3SMP_E SM with an hourly composite of in situ SM at core
validation sites (S) to a sparse network of validation sites (M and L). No data from the
SPL3SMP_E a.m. and p.m. SM products in winter was available because of seasonal snow-
fall events in the study area. In the SMAP mission, the relationship between SM and the
dielectric constant is used to derive SM data. A rise in the dielectric constant is associated
with an increase in the soil reflectivity and emissivity, which may either increase or decrease
depending on the value of SM [43]. However, frozen soil contains a low dielectric constant
similar to the dry soil dielectric constant regardless of the water content [51]. The error
metrics (i.e., R, ubRMSE, bias) are presented in Figures 8 and 9. These error metrics were
calculated from daily composites of SPL3SMP_E a.m. and p.m. SM compared with the
reference daily composites of in situ SM at 6 a.m. Local Standard Time (LST) and 6 p.m.
LST, respectively, for 25 July 2018 to 31 December 2019.

Figure 6a shows a temporal validation between SPL3SMP_E a.m. SM and hourly
composites of in situ SM at S-scale sites as core validation. Figure 6b,c show a time series
validation representation of SPL3SMP_E a.m. estimations with in situ SM at the M-scale and
L-scale. The SPL3SMP_E a.m. SM datasets showed good evaluation results corresponding
to the rainfall events. At all spatial sites, the SPL3SMP_E a.m. retrievals contained ubRMSE
values ranging from 0.038 m3/m3 to 0.049 m3/m3, with a range of bias values from
−0.04 m3/m3 to −0.08 m3/m3 (Figure 8), indicating that the sparse network sites showed
good validation results as compared to the core validation sites. The RMSE values for a.m.
retrievals (0.09 m3/m3) are larger than for p.m. retrievals (0.08 m3/m3), with biases of
−0.075 m3/m3 and −0.062 m3/m3 for the a.m. and p.m. estimates, respectively (Figure 8).
The M-scale sites showed good correlations values of 0.57, which are larger than that of
the S-scale and large L-scale sites (R = 0.53, R = 0.50) for the ascending SPL3SMP_E SM
datasets. Figure 7 shows a comparison of SPL3SMP_E p.m. (descending) SM retrievals with
the in situ SM observations at different spatial locations (S, M, and L). The ubRMSE values
for the S-, M-, and L-scale locations were 0.059 m3/m3, 0.055 m3/m3, and 0.043 m3/m3,
respectively, which are comparatively larger than the SPL3SMP_E a.m. products, as shown
in Figure 8. The time series SPL3SMP_E p.m. SM presented lower correlation (R) values
than 0.50 for all locations. Because a.m. (night-time) retrievals are less susceptible to
inaccuracies in land surface temperature estimations than p.m. (day-time) retrievals, the
SPL3SMP_E a.m. estimations were more reflective of SM variability than the p.m. retrievals.

The SPL3SMP_E SM products performed better for sparse network sites (M and L) than
core sites (S), reflecting vegetation cover’s adverse influence over satellite SM observations.
In terms of precipitation, both ground observations and the SMAP SM products retrievals
are capable of capturing precipitation events and SM variability trends. However, ground
observations at various footprints reveal significant variations, but the SMAP SM datasets
show only minor differences, as shown in Figure 6a,b and Figure 7a,b.

Figure 9 shows a comparison of the averaged evaluation metrics of SPL3SMP_E (a.m.
and p.m.) SM estimations at all the 34 spatial validation locations (S, M, and L). The
SPL3SMP_E a.m. SM estimates contained the averaged ubRMSE value of 0.041 m3/m3,
which is much closer to the targeted value (ubRMSE = 0.04 m3/m3), with bias values of
−0.066 m3/m3 (Figure 9b,c). In contrast, SPL3SMP_E p.m. SM estimates showed less
accuracy and contained larger errors (ubRMSE = 0.050 m3/m3), with a biasness value of
−0.052 m3/m3. Overall, the correlation value for SPL3SMP E a.m. SM retrievals was more
than 0.60 when compared to SPL3SMP E p.m. SM retrievals.
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3.3. Comparison of SPL3SMP_E and SPL4SMGP Surface Soil Moisture

Figure 10 shows the comparison of SPL3SMP_E (a.m. and p.m.) and SPL4SMGP
SSM estimates at all the spatial locations. The daily composites of SPL4SMGP SSM were
constructed using 3-hourly data. At 6 a.m. and 6 p.m. (LST), daily composites of the
closest 3-hourly data were created using SPL4SMGP SSM and compared to SPL3SMP_E
a.m. and p.m. SM estimates. SPL3SMP_E (descending and ascending) SM estimations and
SPL4SMGP SSM daily composites of the closest 3-hourly data at 6 a.m. LST and 6 p.m.
LST were used to construct the average error metrics. At S-scale sites, the performance
errors (R, ubRMSE, and bias) for both of SPL3SMP_E a.m. SM estimates (0.53, 0.049 m3/m3,
and −0.07 m3/m3) and SPL4SMGP SSM retrievals (0.56, 0.44 m3/m3, and −0.02 m3/m3)
are better than SPL3SMP_E p.m. SM estimates (0.35, 0.059 m3/m3, and −0.06 m3/m3) as
shown in Figure 11. At M and L scales (as the sparse network), the evaluation metrics for
SPL3SMP_E a.m. SM estimates and SPL4SMGP SSM retrievals also performed better than
SPL3SMP_E p.m. SM estimates (Figure 11).

The SPL4SMGP SSM retrievals showed better results related to the time series in
situ SM measurements containing the lowest error ubRMSE, ranging from 0.044 m3/m3

to 0.035 m3/m3, and a higher range of correlation values of 0.56 to 0.62, as compared
to the other SPL3SMP_E (ascending and descending) SM products for all the spatial
locations (S, M, and L), as shown in Figure 11. This reveals the improvements of the SMAP
assimilation datasets (SPL4SMGP) over the satellite-only products (SPL3SMP_E). The
integration of satellite-based SM and LSM, using data assimilation techniques, produces
optimized results better than that of a single source of information (satellite/modeling).
The SPL3SMP_E a.m. time series SM retrievals showed better results than the SPL3SMP_E
p.m. SM estimates. Both the SPL3SMP_E a.m. and SPL4SMGP SSM datasets performed
well in all the locations, especially in sparse network sites, and almost met the standard
ubRMSE value of 0.040 m3/m3 at most of the sites. Overall, it was observed that all the
SMAP SM products performed well at the sparse network sites (M, L) compared to core
validation sites (S).

3.4. Performance Assessment of the SMAP SM L3 and L4 Products under Various Vegetation Types

Different vegetation covers affect SMAP SM estimations. In this part, we compared
the in situ SM estimations with the SM estimates from the SMAP L3 and L4 datasets
under different vegetation types. As shown in Table 2, the R values for the L3 a.m. (p.m.)
SM products ranged from 0.25 to 0.43 (0.08 to 0.48) under various vegetation types. The
negative bias in the L3 datasets implies a dry bias for all types of vegetation. The RMSE
values ranged from 0.06 to 0.09 m3/m3 for L3 a.m. products and from 0.065 to 0.076 m3/m3

for L3 p.m. products while the ubRMSE values for a.m. (p.m.) products ranged from
0.052 to 0.058 m3/m3 (0.046 to 0.065 m3/m3) under different vegetation covers. The L3 SM
products did not achieve the standard accuracy of 0.04 m3/m3 for all types of vegetation,
especially in the woodlands of the study region.
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Figure 10. Comparison of SPL3SMP_E (a.m.), SPL3SMP_E (p.m.) and SPL4SMGP SSM and station
averaged in situ data (hourly composite of SSM) at different spatial locations, (a) S-scale stations,
(b) M-scale stations, (c) L-scale stations.
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Figure 11. Comparison of evaluation metrics (R (a,d,g), ubRMSE (b,e,h), and bias (c,f,i)) for
SPL3SMP_E (a.m. and p.m.) and SPL4SMGP SSM estimates for S-scale, M-scale, and L-scale sites.
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Table 2. Comparison of the SMAP SM L3 and L4 products in the SMN-SDR Basin under different
vegetation covers.

The L3 a.m. Product The L3 p.m. Product

Vegetation
Types R RMSE(

m3/m3) Bias(
m3/m3) ubRMSE(

m3/m3) N R RMSE(
m3/m3) Bias(

m3/m3) ubRMSE(
m3/m3) N

Grassland 0.255 0.090 -0.071 0.056 146 0.481 0.076 −0.060 0.047 160

Farmland 0.432 0.068 -0.043 0.052 146 0.331 0.067 −0.035 0.057 160

Woodland 0.275 0.059 -0.013 0.059 146 0.084 0.065 −0.001 0.065 160

The L4 SSM Product The L4 RZSM Product

Vegetation
Types R RMSE(

m3/m3) Bias(
m3/m3) ubRMSE(

m3/m3) N R RMSE(
m3/m3) Bias(

m3/m3) ubRMSE(
m3/m3) N

Grassland 0.447 0.051 −0.024 0.045 2504 0.707 0.040 0.036 0.019 2504

Farmland 0.385 0.052 0.001 0.052 2496 0.269 0.052 0.041 0.031 2496

Woodland 0.203 0.065 0.043 0.042 2296 0.633 0.106 0.106 0.033 2296

The L4 product contains the R values for SSM (RZSM) products, which ranged from
0.20 to 0.44 (0.26 to 0.70), while the RMSE values ranged from 0.050 to 0.065 m3/m3 (0.040
to 0.105 m3/m3) with the positive bias values (except grassland) under all vegetation
types. The ubRMSE is the major index for the assessment of SMAP SM between various
vegetation types. The L4 SSM product shows that the ubRMSE values ranged from 0.044
to 0.051 m3/m3 and for RZSM product, it ranged from 0.018 to 0.033 m3/m3, as shown in
Table 2. The L4 RZSM product showed a better performance, containing ubRMSE values
less than the standard accuracy of 0.04 m3/m3, with good correlation values of more than
0.60 (except farmland) for all vegetation types.

Overall, the L3 and L4 SM datasets performed better, with large R values and better
ubRMSE values in grassland then farmland and woodland.

4. Discussion

In this paper, the SMAP SM products were evaluated with in situ SM observations
at different soil depths for the area of the SM Network within the ShanDian River (SMN-
SDR) Basin, and the corresponding results are explained in Section 3. The in situ SM
data available at different soil depths (5 and 50 cm) was used for SMAP SSM and RZSM
evaluation over the period of 25 July 2018 to 31 December 2019. The eight S-scale (S)
stations, 12 M-scale (M) stations, and 14 L-scale (L) stations were used for this purpose.
The overall performance of the SMAP SM products is discussed according to some aspects
and compared with some previous studies. After launching the SMAP mission in 2015,
SM estimation using remote sensing data became a hot research topic, especially in humid
areas, which have been the least explored regions in this regard. In the present study, the
SMAP L3 and L4 SM datasets were evaluated at different locations in the SMN-SDR Basin.

The SPL4SMGP SSM and RZSM estimates at the 9-km scale showed better performance
and related very well with the estimations of Colliander et al. [28]. They validated the
SPL4SMAU SM retrievals at the 9-km scale for the CVS locations. In their study, they found
averaged ubRMSE values of about 0.041 m3/m3 and 0.027 m3/m3 for SPL4SMAU SSM
and RZSM, with 0.65 and 0.73 correlation values, respectively, based on 3-hourly data at a
9-km spatial resolution for CVS regions. The ubRMSE values for SSM retrievals varied from
0.028 to 0.047 m3/m3 and for RZSM estimates, they ranged from 0.020 to 0.034 m3/m3,
and R values between 0.45 and 0.92 for SSM and between 0.56 and 0.95 for RZSM were
suggested by Reichle et al. [52] at the 36-km scale across the world. In the present study, for
SPL4SMGP SSM (RZSM), the averaged ubRMSE and correlation values were estimated
to be about 0.037 m3/m3 (0.017 m3/m3) and 0.62 (0.78) (Figure 5), respectively, at a 9-km
resolution and showed consistency with the previous SMAP-based SM estimations.
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Here, the assessment results of SPL3SMP_E (a.m. and p.m.) SM obtained in this
work were compared with those obtained from other studies. The values of ubRMSE
for SPL3SMP E a.m. SM, according to Xu [13], were less than or near to 0.04 m3/m3,
which showed a better correlation of 0.70 across the southern part of the Great Lakes area.
The values of ubRMSE for SPL3SMP_E a.m. and p.m. SM were around 0.035 m3/m3

and 0.05 m3/m3, and correlation values of 0.66 and 0.59, respectively, in the HRB sites
(a semi-arid region of northwest China) were observed [53]. Cui et al. [14] worked on
the area of LWW in USA and REMEDHUS in Spain and proposed that the SPL3SMP_E
a.m. SM estimates (ver-1) show ubRMSE values within 0.04 m3/m3 with a satisfactory
correlation value greater than 0.8. In this study, the estimated SPL3SMP_E (a.m. and p.m.)
SM estimations contain the averaged ubRMSE values (0.041 m3/m3 and 0.050 m3/m3) with
the correlation values of 0.62 and 0.42 (Figure 9), respectively. Nevertheless, SPL3SMP_E
p.m. SM retrievals contain more error values and less correlation than that of SPL3SMP_E
a.m. SM estimates. The poor performance of PM-orbit data is typically caused by the low
thermal equilibrium state of the near-surface air, plant canopy, and surface soil throughout
the afternoon of the day. Overall, the sparse network sites (M and L) performed well as
compare to core sites (S), with ubRMSE values ranging from 0.038 to 0.049 m3/m3 for
SPL3SMP_E a.m. SM and R values of more than 0.50 (Figure 8) for SPL3SMP_E p.m., with
a range of ubRMSE values from 0.041 to 0.059 m3/m3 and R values rangeing from 0.35 to
0.47 (Figure 8) at all the sites.

The SPL4SMGP SSM estimates at the L scale contained less error ubRMSE of 0.035 m3/m3

than the M scale (0.041 m3/m3) and were higher at the S scale (0.044 m3/m3) but showed
a similar correlation value (R = 0.56) at all spatial scales. The SPL4SMGP RZSM esti-
mates showed better results (R = 0.76, ubRMSE = 0.014 m3/m3) at the L scale, then
the S scale (R = 0.48, ubRMSE = 0.020 m3/m3), and the worst at the M scale (R = 0.56,
ubRMSE = 0.026 m3/m3). Due to the low evapotranspiration effects on deep SM, the ac-
curacy of SMAP SM estimation is higher but low variation in SM at the root-zone (50 cm)
depth was observed. At the L scale, the SPL3SMP_E a.m. SM retrievals showed a low
ubRMSE value of 0.038 m3/m3 and also presented a low R value of 0.50. The ubRMSE
and R values were 0.045 m3/m3 and 0.57 for the M scale and 0.049 m3/m3 and 0.53 for
the S scale, respectively. The SPL3SMP_E p.m. estimates showed the worst performance,
containing high error (ubRMSE > 0.04 m3/m3) and a low correlation (R < 50) value for all
spatial scales as compared to the a.m. estimates. The high error but low accuracy during
day-time is more than night-time because the physical soil temperature during day-time
causes more error in the SM retrievals [54]. Finally, the accuracy of SPL3SMP_E (a.m. and
p.m.) SM and SPL4SMGP SSM and RZSM were evaluated for different sites (S, M, and L)
at the Soil Moisture Network within the ShanDian River Basin, as shown in the scatter plot
(Figure 12).
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4.1. Factors Affecting the SMAP SM Retrieval Algorithm

Precise measurements of soil’s natural thermal emission are made by utilizing passive
microwave sensors [37]. There are many factors that affect the radiation sensitivity, includ-
ing the target medium’s dielectric characteristics and temperature and SSM. At microwave
frequencies, the anticipated emission intensity is inversely proportional to the product of
the surface temperature and emissivity (Rayleigh–Jeans approximation). The product is
referred to as the brightness temperature (TB) [11]. The tau-omega model is being used in
the SMAP mission to characterize the soil and vegetation canopy factors that contribute to
the L-band TB [43]. The equation of TB can be expressed as:

TB = (1 − ω)(1 − γ) Ts+γ(1 − es )(1 − ω)(1 − γ)T + esγTs (5)
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where:
γ = exp(−τ/cos θ) (6)

and:
τ = b VWC (7)

where TB is the L-band TB of each grid cell; ω is the single-scattering albedo; γ indicates
the transmissivity of the vegetation canopy; Ts is the physical surface temperature; es
describes the soil emissivity; τ is the vegetation optical depth (VOD); θ is the surface-angle
of incidence; b is the vegetation parameter function of the wavelength and vegetation
structural properties; and VWC is the vegetation water content.

Passive microwave remote sensing of SM is heavily influenced by parameters, such
as the vegetation type, surface temperature, frequency, and surface roughness [55]. In this
research work, we estimated the impact of two main parameters, including the physical
surface temperature and VOD, on SMAP SM estimations for different vegetation covers in
the study area.

4.2. Impact of the Physical Surface Temperature on the SMAP SM Retrieval Algorithm

The SMAP passive SM retrieval algorithms require surface temperature information
to calculate the soil surface emissivity from brightness temperature (TB) estimations. The
SMAP assumes that the soil temperature (Ts) and the temperature of the vegetation canopy
(Tc) are identical [43].

Figure 13 represents the time-series of the site-averaged surface temperature and
SMAP-derived physical surface temperature for a.m. and p.m. satellite overpasses. The
behavior of the SMAP-derived temperature (a.m.) measurements was consistent with the
mean in situ temperature and showed a high correlation value (R = 0.973) with a dry bias of
−3.057 (K). The RMSE and ubRMSE values of the SMAP temperatures for the a.m. products
are 4.283 (K) and 3.00 (K), respectively. On the other hand, the SMAP temperatures for the
p.m. products showed a similar correlation (R) value of 0.972 but contained large RMSE
and ubRMSE values (5.307 (K) and 3.208 (K), respectively), with a bias of 4.227 (K). These
findings corroborate the results of Entekhabi [43], in which the better dataset (GEO-5) was
used to calculate the physical surface temperature from the SMAP SM retrieval algorithm.
Cui [36] also calculated identical findings for ascending and descending overpass times for
SMAP-driven temperatures and compared them to AMSR-2 and SMOS product outcomes
throughout the Genhe region of China, finding that SMAP temperature products performed
better than all other temperature datasets.

Precise estimation of the physical surface temperature enhances SMAP SM retrieval
algorithms’ performance. The initial phase in the SM retrieval algorithm, determining the
physical surface temperature, is crucial for the SM retrievals [19,56]. Figure 6, Figure 7,
and Figure 13 show that the day-time (p.m.) soil temperature fluctuation is significantly
greater than the night-time (a.m.) soil temperature variability resulting from day-time
radiations. SM is also affected by this phenomenon. It is suggested that the removal of the
temperature’s impact may substantially influence both in situ SM and satellite SM and the
TB of the soil [12].
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4.3. Impact of the Vegetation Optical Depth on the SMAP SM Retrieval Algorithm

The degree to which vegetation attenuates microwave radiation, known as the mi-
crowave vegetation optical depth (VOD), is proportional to the amount of water con-
tained in the above-ground canopy biomass (known as the vegetation water content or
VWC) [37,57,58], and thus represents a potentially useful indicator of the vegetation state.
A layer of plants on top of the soil absorbs the soil’s emission and contributes its own
emission to the overall radiative flux. A layer of vegetation over the soil attenuates the
emission of the soil and adds to the total radiative flux with its own emission. The SMAP al-
gorithms compute VOD from multi-year averaged MODIS (MOD13A2) NDVI datasets [59].
Potentially low soil emission might be caused by an increase in the NDVI, which indicates
poor vegetation transmissivity. Soil emissivity decreases when SM increases.

Figure 14 shows the time-series variability of VOD obtained from SMAP L2 products
at ascending and descending time steps. It is observed that there are high VOD values
in the growing seasons (March to November) and low values in the non-growing season
(December to February) during the study time period. Figures 6, 7 and 14 reveal that as
the vegetation density increases, there is an increase in ubRMSE and a decrease in the
correlation (R) value for SMAP L3 (a.m. and p.m.) SM products. A high VOD value causes
an increase in vegetation attenuation and decreases the SM retrieval sensitivity of the SMAP
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algorithm. Table 2 shows that the SMAP SM estimation’s performance in the woodland is
not good enough to be compared to the farmland and grassland, with a large ubRMSE and
low correlation (R). The L4 products (surface and root-zone) show better results than the
L3 products (a.m. and p.m.) for all types of vegetation covers. This shows that the VOD
influences the SMAP L3 products’ algorithm more than the SMAP L4 products’ algorithm.
Satellite-based SM assessment relies heavily on vegetation corrections for accurate SM
retrieval [57].
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The VOD values are directly linked to the vegetation type. Vegetation covers, such
as forest and farmland, have a high canopy (high VOD) compared to grassland. High
VOD values indicate lower transmittance of the plant layer and hence higher emissivity
of the vegetation, which leads in a decrease in the soil emissivity, an increase in the soil
dielectric constant, and eventually an increase in the SM values. Therefore, SMAP showed
a better performance in the grassland where the vegetation cover did not cause uncertainty
during SM estimation. Vegetation structure and VWC are major factors that affect the
soil emissivity and vegetation transmissivity. High structure vegetation cover (woodland)
contains a high amount of VWC due to its deeply distributed roots attenuating greater
soil radiation [58]. Therefore, the SM retrievals contain more uncertainty in the woodland
as compared to the farmland. In this sense, the hindrance of the vegetation cover in the
grassland does not have much of an impact on SMAP SM estimation, showing better results
(high correlation and less ubRMSE), as shown in Table 2. For the SMAP, it was found that a
more precise estimation of SM can be obtained by employing the ancillary parameter VOD
to compensate for the emissions attenuation induced by vegetation.

5. Conclusions

In this study, SMAP Level 3 (SPL3SMP_E) and Level 4 (SPL4SMGP) SM products were
evaluated over the locations in the SM Network within the ShanDian River Basin during
the period of 25 July 2018 to 31 December 2019 (according to the availability of in situ data).
The following key findings were idenitified in this study:



Remote Sens. 2022, 14, 982 24 of 27

(a) The ubRMSE values for SPL4SMGP SSM and RZSM retrievals are less than 0.04 m3/m3

for sparse network sites (M and L). The averaged ubRMSE of SPL4SMGP SSM (RZSM)
estimates are about 0.037 m3/m3 (0.017 m3/m3) with correlation values of 0.62 (0.78)
against the sparse network at a 9-km resolution, respectively. The core validation sites
(S) showed ubRMSE values of 0.044 m3/m3 (0.020 m3/m3) for SSM (RZSM) estimates
with the R values of 0.56 (0.48), respectively.

(b) For SPL3SMP_E a.m. SM, the ubRMSE values are close to 0.04 m3/m3 with R values
larger than 0.56. The SPL3SMP_E a.m. (p.m.) SM has averaged ubRMSE values of
0.041 m3/m3 (0.050 m3/m3) with correlation values of 0.62 (0.42) against the sparse
network at a 9-km resolution, respectively. The SPL3SMP_E p.m. SM estimates are
less accurate than the a.m. retrievals.

(c) For SSM evaluation, the skills of the SPL4SMGP SSM retrievals exceed that of the
SPL3SMP_E (a.m. and p.m.) SM estimations.

(d) Under different vegetation types, the SMAP L4 products performed well with high
correlation (0.70) and less ubRMSE (0.019 m3/m3) values than L3 products. Both
products (L3 and L4) showed good accuracy in grassland, then farmland, and lowest
in the woodland. The performance of these products was influenced by factors,
such as the vegetation copy and physical surface temperature, in different study
area locations.

The validation findings reported here can contribute to understanding the capability
of SMAP SM products to express regional SM variations over various environmental
situations. In addition, this study may contribute to the assessment of remote sensing SM
assimilation studies by evaluating the uncertainties in SMAP SM products.

Author Contributions: Conceptualization, Y.Z. and A.A.N.; methodology, A.A.N. and Y.Z.; software,
A.A.N., S.A. and M.A.; validation, A.A.N., Y.Z. and Z.J.; formal analysis, A.A.N., S.A. and M.M.A.;
investigation, A.A.N. and M.A.; resources, Y.Z. and L.S.; data curation, A.A.N., M.M.A. and Z.J.;
writing—original draft preparation, A.A.N. and Y.Z.; writing—review and editing, A.A.N. and
G.R.; visualization, A.A.N. and S.A.; supervision, L.S.; project administration, L.S. and Y.Z.; funding
acquisition, L.S. and Y.Z. All authors have read and agreed to the published version of the manuscript.

Funding: The project is funded by Natural Science Foundation of China through grants No. 51779179,
51609173, and 51861125202.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brocca, L.; Ciabatta, L.; Massari, C.; Camici, S.; Tarpanelli, A. Soil moisture for hydrological applications: Open questions and

new opportunities. Water 2017, 9, 140. [CrossRef]
2. Corradini, C. Soil moisture in the development of hydrological processes and its determination at different spatial scales. J. Hydrol.

2014, 516, 1–5. [CrossRef]
3. De Rosnay, P.; Drusch, M.; Boone, A.; Balsamo, G.; Decharme, B.; Harris, P.; Kerr, Y.; Pellarin, T.; Polcher, J.; Wigneron, J.P. AMMA

land surface model intercomparison experiment coupled to the community microwave emission model: ALMIP-MEM. J. Geophys.
Res. Atmos. 2009, 114, D05108. [CrossRef]

4. Miralles, D.G.; Van Den Berg, M.J.; Gash, J.H.; Parinussa, R.M.; De Jeu, R.A.M.; Beck, H.E.; Holmes, T.R.H.; Jiménez, C.; Verhoest,
N.E.C.; Dorigo, W.A.; et al. El Niño-La Niña cycle and recent trends in continental evaporation. Nat. Clim. Chang. 2014, 4, 122–126.
[CrossRef]

5. Hirschi, M.; Seneviratne, S.I.; Alexandrov, V.; Boberg, F.; Boroneant, C.; Christensen, O.B.; Formayer, H.; Orlowsky, B.; Stepanek, P.
Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci. 2011, 4, 17–21. [CrossRef]

6. Massari, C.; Brocca, L.; Moramarco, T.; Tramblay, Y.; Didon Lescot, J.F. Potential of soil moisture observations in flood modelling:
Estimating initial conditions and correcting rainfall. Adv. Water Resour. 2014, 74, 44–53. [CrossRef]

http://doi.org/10.3390/w9020140
http://doi.org/10.1016/j.jhydrol.2014.02.051
http://doi.org/10.1029/2008JD010724
http://doi.org/10.1038/nclimate2068
http://doi.org/10.1038/ngeo1032
http://doi.org/10.1016/j.advwatres.2014.08.004


Remote Sens. 2022, 14, 982 25 of 27

7. Dorigo, W.A.; Xaver, A.; Vreugdenhil, M.; Gruber, A.; Hegyiová, A.; Sanchis-Dufau, A.D.; Zamojski, D.; Cordes, C.; Wagner, W.;
Drusch, M. Global Automated Quality Control of In Situ Soil Moisture Data from the International Soil Moisture Network. Vadose
Zone J. 2013, 12, vzj2012.0097. [CrossRef]

8. An, R.; Zhang, L.; Wang, Z.; Quaye-Ballard, J.A.; You, J.; Shen, X.; Gao, W.; Huang, L.J.; Zhao, Y.; Ke, Z. Validation of the ESA CCI
soil moisture product in China. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 28–36. [CrossRef]

9. Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.;
Johnson, J.; et al. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [CrossRef]

10. Piepmeier, J.R.; Focardi, P.; Horgan, K.A.; Knuble, J.; Ehsan, N.; Lucey, J.; Brambora, C.; Brown, P.R.; Hoffman, P.J.;
French, R.T.; et al. SMAP L-Band Microwave Radiometer: Instrument Design and First Year on Orbit. IEEE Trans. Geosci. Remote
Sens. 2017, 55, 1954–1966. [CrossRef]

11. Kerr, Y.H.; Njoku, E.G. A Semiempirical Model for Interpreting Microwave Emission from Semiarid Land Surfaces as Seen from
Space. IEEE Trans. Geosci. Remote Sens. 1990, 28, 384–393. [CrossRef]

12. Hoang, K.O.; Lu, M. Assessment of the temperature effects in smap satellite soil moisture products in oklahoma. Remote Sens.
2021, 13, 4104. [CrossRef]

13. Xu, X. Evaluation of smap level 2, 3, and 4 soil moisture datasets over the Great Lakes region. Remote Sens. 2020, 12, 3785.
[CrossRef]

14. Cui, C.; Xu, J.; Zeng, J.; Chen, K.S.; Bai, X.; Lu, H.; Chen, Q.; Zhao, T. Soil moisture mapping from satellites: An intercomparison
of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over two dense network regions at different spatial scales. Remote Sens. 2018, 10, 33.
[CrossRef]

15. Ducharne, A.; Koster, R.D.; Suarez, M.J.; Stieglitz, M.; Kumar, P. A catchment-based approach to modeling land surface processes
in a general circulation model 2. Parameter estimation and model demonstration. J. Geophys. Res. Atmos. 2000, 105, 24823–24838.
[CrossRef]

16. Koster, R.D.; Suarez, M.J.; Ducharne, A.; Stieglitz, M.; Kumar, P. A catchment-based approach to modeling land surface processes
in a general circulation model: 1. Model structure. J. Geophys. Res. Atmos. 2000, 105, 24809–24822. [CrossRef]

17. De Lannoy, G.J.M.; Reichle, R.H. Assimilation of SMOS brightness temperatures or soil moisture retrievals into a land surface
model. Hydrol. Earth Syst. Sci. 2016, 20, 4895–4911. [CrossRef]

18. De Lannoy, G.J.M.; Reichle, R.H. Global assimilation of multiangle and multipolarization SMOS brightness temperature ob-
servations into the GEOS-5 catchment land surface model for soil moisture estimation. J. Hydrometeorol. 2016, 17, 669–691.
[CrossRef]

19. Su, Z.; Wen, J.; Dente, L.; Van Der Velde, R.; Wang, L.; Ma, Y.; Yang, K.; Hu, Z. The tibetan plateau observatory of plateau scale
soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products.
Hydrol. Earth Syst. Sci. 2011, 15, 2303–2316. [CrossRef]

20. Su, Z.; De Rosnay, P.; Wen, J.; Wang, L.; Zeng, Y. Evaluation of ECMWF’s soil moisture analyses using observations on the Tibetan
Plateau. J. Geophys. Res. Atmos. 2013, 118, 5304–5318. [CrossRef]

21. Chen, Y.; Yang, K.; Qin, J.; Zhao, L.; Tang, W.; Han, M. Evaluation of AMSR-E retrievals and GLDAS simulations against
observations of a soil moisture network on the central Tibetan Plateau. J. Geophys. Res. Atmos. 2013, 118, 4466–4475. [CrossRef]

22. Liu, Q.; Du, J.Y.; Shi, J.C.; Jiang, L.M. Analysis of spatial distribution and multi-year trend of the remotely sensed soil moisture on
the Tibetan Plateau. Sci. China Earth Sci. 2013, 56, 2173–2185. [CrossRef]

23. Bi, H.; Ma, J.; Zheng, W.; Zeng, J. Comparison of soil moisture in GLDAS model simulations and in situ observations over the
Tibetan Plateau. J. Geophys. Res. 2016, 121, 2658–2678. [CrossRef]

24. Ma, C.; Li, X.; Wei, L.; Wang, W. Multi-scale validation of SMAP soil moisture products over cold and arid regions in Northwestern
China using distributed ground observation data. Remote Sens. 2017, 9, 327. [CrossRef]

25. Zhang, X.; Zhang, T.; Zhou, P.; Shao, Y.; Gao, S. Validation analysis of SMAP and AMSR2 soil moisture products over the United
States using ground-based measurements. Remote Sens. 2017, 9, 104. [CrossRef]

26. Li, C.; Lu, H.; Yang, K.; Han, M.; Wright, J.S.; Chen, Y.; Yu, L.; Xu, S.; Huang, X.; Gong, W. The evaluation of SMAP enhanced
soil moisture products using high-resolution model simulations and in-situ observations on the Tibetan Plateau. Remote Sens.
2018, 10, 535. [CrossRef]

27. Hu, F.; Wei, Z.; Zhang, W.; Dorjee, D.; Meng, L. A spatial downscaling method for SMAP soil moisture through visible and
shortwave-infrared remote sensing data. J. Hydrol. 2020, 590, 125360. [CrossRef]

28. Colliander, A.; Reichle, R.; Crow, W.; Cosh, M.; Chen, F.; Chan, S.; Das, N.; Bindlish, R.; Chaubell, J.; Kim, S.; et al. Validation of
Soil Moisture Data Products from the NASA SMAP Mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 15, 364–392.
[CrossRef]

29. Al-Yaari, A.; Wigneron, J.P.; Dorigo, W.; Colliander, A.; Pellarin, T.; Hahn, S.; Mialon, A.; Richaume, P.; Fernandez-Moran, R.;
Fan, L.; et al. Assessment and inter-comparison of recently developed/reprocessed microwave satellite soil moisture products
using ISMN ground-based measurements. Remote Sens. Environ. 2019, 224, 289–303. [CrossRef]

30. O’Neill, P.E.; Chan, S.; Njoku, E.G.; Jackson, T.; Bindlish, R.; Chaubell, J. SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-Grid
Soil Moisture, Version 4; National Snow and Ice Data Center: Boulder, CO, USA, 2020; pp. 1–26.

http://doi.org/10.2136/vzj2012.0097
http://doi.org/10.1016/j.jag.2015.09.009
http://doi.org/10.1109/JPROC.2010.2043918
http://doi.org/10.1109/TGRS.2016.2631978
http://doi.org/10.1109/36.54364
http://doi.org/10.3390/rs13204104
http://doi.org/10.3390/rs12223785
http://doi.org/10.3390/rs10010033
http://doi.org/10.1029/2000JD900328
http://doi.org/10.1029/2000JD900327
http://doi.org/10.5194/hess-20-4895-2016
http://doi.org/10.1175/JHM-D-15-0037.1
http://doi.org/10.5194/hess-15-2303-2011
http://doi.org/10.1002/jgrd.50468
http://doi.org/10.1002/jgrd.50301
http://doi.org/10.1007/s11430-013-4700-8
http://doi.org/10.1002/2015JD024131
http://doi.org/10.3390/rs9040327
http://doi.org/10.3390/rs9020104
http://doi.org/10.3390/rs10040535
http://doi.org/10.1016/j.jhydrol.2020.125360
http://doi.org/10.1109/JSTARS.2021.3124743
http://doi.org/10.1016/j.rse.2019.02.008


Remote Sens. 2022, 14, 982 26 of 27

31. Fascetti, F.; Pierdicca, N.; Pulvirenti, L.; Crapolicchio, R. SMOS, ASCAT, SMAP and ERA soil moisture comparison through the
triple and quadruple collocation technique. In Proceedings of the SPIE Remote Sensing, Edinburgh, UK, 26–29 September 2016;
Volume 10003, p. 100030H. [CrossRef]

32. Reichle, R.H.; de Lannoy, G.J.M.; Liu, Q.; Koster, R.D.; Kimball, J.S.; Crow, W.T.; Ardizzone, J.V.; Chakraborty, P.; Collins, D.W.;
Conaty, A.L.; et al. Global assessment of the SMAP Level-4 surface and root-zone soil moisture product using assimilation
diagnostics. J. Hydrometeorol. 2017, 18, 3217–3237. [CrossRef]

33. Chen, F.; Crow, W.T.; Bindlish, R.; Colliander, A.; Burgin, M.S.; Asanuma, J.; Aida, K. Global-scale evaluation of SMAP, SMOS and
ASCAT soil moisture products using triple collocation. Remote Sens. Environ. 2018, 214, 1–13. [CrossRef] [PubMed]

34. Burgin, M.S.; Colliander, A.; Njoku, E.G.; Chan, S.K.; Cabot, F.; Kerr, Y.H.; Bindlish, R.; Jackson, T.J.; Entekhabi, D.; Yueh, S.H. A
Comparative Study of the SMAP Passive Soil Moisture Product with Existing Satellite-Based Soil Moisture Products. IEEE Trans.
Geosci. Remote Sens. 2017, 55, 2959–2971. [CrossRef] [PubMed]

35. Colliander, A.; Cosh, M.H.; Misra, S.; Jackson, T.J.; Crow, W.T.; Chan, S.; Bindlish, R.; Chae, C.; Holifield Collins, C.; Yueh, S.H.
Validation and scaling of soil moisture in a semi-arid environment: SMAP validation experiment 2015 (SMAPVEX15). Remote
Sens. Environ. 2017, 196, 101–112. [CrossRef]

36. Colliander, A.; Cosh, M.H.; Misra, S.; Jackson, T.J.; Crow, W.T.; Powers, J.; McNairn, H.; Bullock, P.; Berg, A.; Magagi, R.; et al.
Comparison of high-resolution airborne soil moisture retrievals to SMAP soil moisture during the SMAP validation experiment
2016 (SMAPVEX16). Remote Sens. Environ. 2019, 227, 137–150. [CrossRef]

37. Jackson, T.J.; Schmugge, T.J. Vegetation effects on the microwave emission of soils. Remote Sens. Environ. 1991, 36, 203–212.
[CrossRef]

38. Njoku, E.G.; Entekhabi, D. Passive microwave remote sensing of soil moisture. J. Hydrol. 1996, 184, 101–129. [CrossRef]
39. Wraith, J.M.; Or, D. Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: Experimental

evidence and hypothesis development. Water Resour. Res. 1999, 35, 361–369. [CrossRef]
40. Zhao, T.; Shi, J.; Lv, L.; Xu, H.; Chen, D.; Cui, Q.; Jackson, T.J.; Yan, G.; Jia, L.; Chen, L.; et al. Soil moisture experiment in the Luan

River supporting new satellite mission opportunities. Remote Sens. Environ. 2020, 240, 111680. [CrossRef]
41. Cui, H.; Jiang, L.; Du, J.; Zhao, S.; Wang, G.; Lu, Z.; Wang, J. Evaluation and analysis of AMSR-2, SMOS, and SMAP soil moisture

products in the Genhe area of China. J. Geophys. Res. Atmos. 2017, 122, 8650–8666. [CrossRef]
42. Kellogg, K.; Thurman, S.; Edelstein, W.; Spencer, M.; Chen, G.S.; Underwood, M.; Njoku, E.; Goodman, S.; Jai, B. NASA’s soil

moisture active passive (SMAP) observatory. In Proceedings of the 2013 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9
March 2013; pp. 1–20. [CrossRef]

43. Entekhabi, D.; Yueh, S.; O’Neil, P.E.; Kellogg, K.H.; Allen, A.; Bindlish, R.; Brown, M.; Chan, S.; Colliander, A.; Crow, W.T.; et al.
SMAP Handbook: Soil Moisture Active Passive, Mapping Soil Moisture and Freeze/Thaw from Space; National Aeronautics and Space
Administration: Washington, DC, USA, 2014; p. 192.

44. Reichle, R.; De Lannoy, G.; Koster, R.D.; Crow, W.T.; Kimball, J.S.; Liu, Q. SMAP L4 Global 3-Hourly 9 km EASE-Grid Surface and
Root Zone Soil Moisture Analysis Update, Version 4; National Snow and Ice Data Center: Boulder, CO, USA, 2018.

45. Chan, S.K.; Bindlish, R.; O’Neill, P.; Jackson, T.; Njoku, E.; Dunbar, S.; Chaubell, J.; Piepmeier, J.; Yueh, S.; Entekhabi, D.; et al.
Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sens. Environ. 2018, 204, 931–941.
[CrossRef]

46. Qiu, J.; Dong, J.; Crow, W.T.; Zhang, X.; Reichle, R.H.; De Lannoy, G.J.M. The benefit of brightness temperature assimilation for
the SMAP Level-4 surface and root-zone soil moisture analysis. Hydrol. Earth Syst. Sci. 2021, 25, 1569–1586. [CrossRef]

47. Rodriguez-Iturbe, I.; Vogel, G.K.; Rigon, R.; Entekhabi, D.; Castelli, F.; Rinaldo, A. On the spatial organization of soil moisture
fields. Geophys. Res. Lett. 1995, 22, 2757–2760. [CrossRef]

48. Entekhabi, D.; Reichle, R.H.; Koster, R.D.; Crow, W.T. Performance metrics for soil moisture retrievals and application require-
ments. J. Hydrometeorol. 2010, 11, 832–840. [CrossRef]

49. Reichle, R.H.; Koster, R.D.; Liu, P.; Mahanama, S.P.P.; Njoku, E.G.; Owe, M. Comparison and assimilation of global soil moisture
retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and the Scanning
Multichannel Microwave Radiometer (SMMR). J. Geophys. Res. Atmos. 2007, 112, D09108. [CrossRef]

50. Zhang, L.; He, C.; Zhang, M. Multi-scale evaluation of the SMAP product using sparse in-situ network over a high mountainous
Watershed, Northwest China. Remote Sens. 2017, 9, 1111. [CrossRef]

51. Derksen, C.; Xu, X.; Scott Dunbar, R.; Colliander, A.; Kim, Y.; Kimball, J.S.; Black, T.A.; Euskirchen, E.; Langlois, A.;
Loranty, M.M.; et al. Retrieving landscape freeze/thaw state from Soil Moisture Active Passive (SMAP) radar and radiometer
measurements. Remote Sens. Environ. 2017, 194, 48–62. [CrossRef]

52. Reichle, R.H.; De Lannoy, G.J.M.; Liu, Q.; Ardizzone, J.V.; Colliander, A.; Conaty, A.; Crow, W.; Jackson, T.J.; Jones, L.A.;
Kimball, J.S.; et al. Assessment of the SMAP Level-4 surface and root-zone soil moisture product using in situ measurements. J.
Hydrometeorol. 2017, 18, 2621–2645. [CrossRef]

53. Wang, Z.; Che, T.; Zhao, T.; Dai, L.; Li, X.; Wigneron, J.P. Evaluation of SMAP, SMOS, and AMSR2 soil moisture products based on
distributed ground observation network in cold and arid regions of China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14,
8955–8970. [CrossRef]

http://doi.org/10.1117/12.2244615
http://doi.org/10.1175/JHM-D-17-0130.1
http://doi.org/10.1016/j.rse.2018.05.008
http://www.ncbi.nlm.nih.gov/pubmed/32601510
http://doi.org/10.1109/TGRS.2017.2656859
http://www.ncbi.nlm.nih.gov/pubmed/32753775
http://doi.org/10.1016/j.rse.2017.04.022
http://doi.org/10.1016/j.rse.2019.04.004
http://doi.org/10.1016/0034-4257(91)90057-D
http://doi.org/10.1016/0022-1694(95)02970-2
http://doi.org/10.1029/1998WR900006
http://doi.org/10.1016/j.rse.2020.111680
http://doi.org/10.1002/2017JD026800
http://doi.org/10.1109/AERO.2013.6496938
http://doi.org/10.1016/j.rse.2017.08.025
http://doi.org/10.5194/hess-25-1569-2021
http://doi.org/10.1029/95GL02779
http://doi.org/10.1175/2010JHM1223.1
http://doi.org/10.1029/2006JD008033
http://doi.org/10.3390/rs9111111
http://doi.org/10.1016/j.rse.2017.03.007
http://doi.org/10.1175/JHM-D-17-0063.1
http://doi.org/10.1109/JSTARS.2021.3108432


Remote Sens. 2022, 14, 982 27 of 27

54. Jackson, T.J.; Cosh, M.H.; Bindlish, R.; Starks, P.J.; Bosch, D.D.; Seyfried, M.; Goodrich, D.C.; Moran, M.S.; Du, J. Validation
of advanced microwave scanning radiometer soil moisture products. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4256–4272.
[CrossRef]

55. Thomas, J.J. Measuring Surface Soil Moisture Using Passive Microwave Remote Sensing. Hydrol. Process. 1993, 7, 139–152.
56. Leroux, D.J.; Kerr, Y.H.; Al Bitar, A.; Bindlish, R.; Jackson, T.J.; Berthelot, B.; Portet, G. Comparison between SMOS, VUA, ASCAT,

and ECMWF soil moisture products over four watersheds in U.S. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1562–1571. [CrossRef]
57. Konings, A.G.; Piles, M.; Das, N.; Entekhabi, D. L-band vegetation optical depth and effective scattering albedo estimation from

SMAP. Remote Sens. Environ. 2017, 198, 460–470. [CrossRef]
58. Tian, F.; Wigneron, J.P.; Ciais, P.; Chave, J.; Ogée, J.; Peñuelas, J.; Ræbild, A.; Domec, J.C.; Tong, X.; Brandt, M.; et al. Coupling of

ecosystem-scale plant water storage and leaf phenology observed by satellite. Nat. Ecol. Evol. 2018, 2, 1428–1435. [CrossRef]
[PubMed]

59. Podest, E.; Crow, W.T. SMAP Ancillary Data Report on Digital Elevation Model, Jet Propulsion Laboratory Ancillary Data Report;
California Institute of Technology: Pasadena, CA, USA, 2013.

http://doi.org/10.1109/TGRS.2010.2051035
http://doi.org/10.1109/TGRS.2013.2252468
http://doi.org/10.1016/j.rse.2017.06.037
http://doi.org/10.1038/s41559-018-0630-3
http://www.ncbi.nlm.nih.gov/pubmed/30104750

	Introduction 
	Materials and Methods 
	Study Domain and Ground Observation Network and Datasets 
	SMAP Soil Moisture Products 
	Statistical Analysis 

	Results 
	Evaluation of the SPL4SMGP Surface and Root-Zone Soil Moisture 
	Evaluation of SPL3SMP_E Ascending and Descending SM 
	Comparison of SPL3SMP_E and SPL4SMGP Surface Soil Moisture 
	Performance Assessment of the SMAP SM L3 and L4 Products under Various Vegetation Types 

	Discussion 
	Factors Affecting the SMAP SM Retrieval Algorithm 
	Impact of the Physical Surface Temperature on the SMAP SM Retrieval Algorithm 
	Impact of the Vegetation Optical Depth on the SMAP SM Retrieval Algorithm 

	Conclusions 
	References

