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Abstract: As the first in-orbit formation satellites equipped with a Laser Ranging Interferometer (LRI)
instrument, Gravity Recovery and Climate Experiment Follow-on (GRACE-FO) satellites are designed
to evaluate the effective ability of the new LRI ranging system applied to satellite-to-satellite tracking.
To evaluate the application of LRI in GRACE-FO, a relative kinematic orbit determination scheme for
formation satellites integrating Kalman filters and GPS/LRI is proposed. The observation equation is
constructed by combining LRI and spaceborne GPS data, and the intersatellite baselines of GRACE-FO
formation satellites are calculated with Kalman filters. The combination of GPS and LRI techniques
can limit the influence of GPS observation errors and improve the stability of orbit determination
of the GRACE-FO satellites formation. The linearization of the GPS/LRI observation model and
the process of the GPS/LRI relative kinematic orbit determination are provided. Relative kinematic
orbit determination is verified by actual GPS/LRI data of GRACE-FO-A and GRACE-FO-B satellites.
The quality of relative kinematic orbit determination is evaluated by reference orbit check and K-Band
Ranging (KBR) check. The result of the reference orbit check indicates that the accuracy of GRACE-
FO relative kinematic orbit determination along X, Y, and Z (components of the baseline vector)
directions is better than 2.9 cm. Compared with the relative kinematic orbit determination by GPS
only, GPS/LRI improves the accuracy of the relative kinematic orbit determination by approximately
1cm along with X, Y and Z directions, and by about 1.8 cm in 3D directions. The overall accuracy of
relative kinematic orbit determination is improved by 25.9%. The result of the KBR check indicates
that the accuracy of the intersatellite baseline determination is about +/−10.7 mm.

Keywords: GRACE-FO; formation satellites; spaceborne GPS; Laser Ranging Interferometer; relative
kinematic orbit determination

1. Introduction

Gravity Recovery and Climate Experiment Follow-on (GRACE-FO) is regarded as a
new mission of gravity formation satellites launched jointly by the National Aeronautics
and Space Administration (NASA) and Helmholtz-Centre Potsdam, German Research Cen-
tre for Geosciences (GFZ), with a design life of 5 years. Having been launched successfully
at Vandenberg Air Force Base in California on May 22, 2018, GRACE-FO satellites attempt
to replace GRACE satellites that had orbited for 15 years and retired in June, 2017 [1–3].
GRACE-FO satellites carry the same equipment as GRACE, including GPS, a K-Band Rang-
ing (KBR) System, a satellite accelerometer, and star sensor [4,5]. Similarly, GRACE-FO
satellites also adopt an orbit design similar to that of GRACE satellites, with an orbit height
of about 500 ± 10 km, an orbit eccentricity of less than 0.005, and an orbit inclination of
about 89◦ [5,6]. GRACE-FO satellites, mainly used to accurately measure and invert the
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time-varying Earth’s gravitational field, are regarded as an important mission for collecting
Earth’s gravitational field data of high resolution [2]. The high quality satellite orbit and
relative position can ensure the high quality processing of gravity data, which contributes to
the estimation of gravity field models with a monthly resolution [7,8]. Therefore, the study
of the precise orbit determination of GRACE-FO satellites is considered crucial. To ensure
a stable relative distance in formation flight, GRACE satellites are equipped with a KBR
system. In addition, GRACE-FO satellites have on-board a Laser Ranging Interferometer
(LRI) [9–12]. LRI can accurately measure the intersatellite distance of GRACE-FO formation
satellites and provide distance data of high quality [13].

At present, several formation satellites have been performing in orbit, including
GRACE, GRACE-FO, TanDEM-X, PRISMA, SJ-9 and TechSat21 [14–21]. The existing
formation satellites mainly realize relative positioning based on a GPS technique [19].
Generally, the relative kinematic orbit determination of LEO satellites is based on carrier-
phase differential observations (CDGPS) [14]. The differential technique promises to
eliminate and weaken some common observation errors, such as receiver clock bias, satellite
clock bias and ionospheric delay errors [19–30]. Gu et al. [31] combined single and double
differential techniques to jointly solve the orbit of formation satellites. A comparison
with satellite laser ranging (SLR) indicates that the accuracy of the orbit was improved by
25%. Van Barneveld [32] analyzed the influence of ionospheric delay on the calculation of
intersatellite long baselines (>100 km) and compared existing ionospheric delay models.

The new generation GRACE-FO satellites are equipped with an LRI system, which
makes it possible to use LRI observations to enhance the quality and stability of forma-
tion satellites orbit. Currently, the intersatellite distance are generally used to verify the
intersatellite baseline, and to maintain the relative state of formation satellites. GRACE-FO
satellites can be equipped with dual ranging system (LRI and KBR). Concerning the LRI
ranging system, this manuscript describes the following activities: firstly, the inter-satellite
distance observed by LRI is combined with the GPS observation data of the GRACE-FO
satellites to form the GPS/LRI observations. Secondly, the estimated orbits are compared to
reference orbits and KBR measurements. Thirdly, this study analyzed the relative kinematic
orbit determination results of GPS/LRI and GPS only.

2. Mathematical Model of GPS and LRI

LEO satellites’ orbit determination generally takes pseudo range and carrier phase of
GPS as the main observed values. The pseudo range and carrier phase observation models
are as follows:

Ps
r,j = ρs

r + c(dtr − dts) + Is
r,j + εs

P (1)

Ls
r,j = ρs

r + c(dtr − dts)− Is
r,j + λjNs

r,j + λjε
s
L, (2)

where Ps
r,j is the observed code pseudo range; ρs

r is the geometric distance between the
GRACE-FO satellite to the GPS satellite; c is the velocity of light; dtr and dts are receivers
and satellite clock offsets, respectively; Is

r,j is the ionospheric delay; Ls
r,j is the observed

value of carrier phase; λjNs
r,j is the ambiguity; and λjε

s
L and εs

P are observation noise.
To eliminate ionospheric delay, ionospheric-free combinations are usually adopted:

Ps
r,IF = ρs

r + c(dtr − dts) + εs
P,IF (3)

Ls
r,IF = ρs

r + c(dtr − dts) + λIF Ns
r,IF + εs

L,IF, (4)

where Ps
r,IF is the pseudo range of ionospheric-free combinations; Ls

r,IF is the carrier phase of
ionospheric-free combinations; λIF is the wavelength of carrier phase LIF, Ns

r,IF is the ambi-
guity of ionospheric-free combinations, and εs

r,IF and εs
P,IF are observation noise of pseudo
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range and carrier phase ionospheric-free combinations. The equations of ionospheric-free
combinations are as follows:

LIF =
f1

2

f1
2 − f22 L1 −

f2
2

f1
2 − f22 L2, (5)

where f1 and f2 are the frequencies of carrier phases L1 and L2. Ionospheric-free combina-
tions can eliminate most of the ionospheric delay, and loses integer characteristic.

To build double-difference observation equations, inter-satellite single-difference equa-
tions should first be constructed. The single-difference models are as follows:

∇Ps0,s
r,IF = ρs

r − ρs0
r − c(dts − dts0)

∇Ls0,s
r,IF = ρs

r − ρs0
r − c(dts − dts0) + λIF(Ns

r,IF − Ns0
r,IF)

∇Ns0,s
r,IF = Ns

r,IF − Ns0
r,IF

, (6)

where ∇Ls0,s
r,IF and ∇Ps0,s

r,IF are single-difference observed values of the carrier phase and
pseudo range. The satellite s0 with the largest altitude angle is selected as the reference
satellite. The double-difference models are as follows:

∆∇Ps0,s
r0,r,IF = ∇ρs0,s

r −∇ρs0,s
r0

∆∇Ls0,s
r0,r,IF = ∇ρs0,s

r −∇ρs0,s
r0 + λIF(∇Ns0,s

r,IF −∇Ns0,s
r0,IF)

∆∇Ns0,s
r0,r,IF = ∇Ns0,s

r,IF −∇Ns0,s
r0,IF

, (7)

where double-difference observed values of ∆∇Ps0,s
r0,r,IF, ∆∇Ls0,s

r0,r,IF and ∆∇Ns0,s
r0,r,IF are double-

difference pseudo range, carrier phase and ambiguity, respectively.
For the first time, GRACE-FO formation satellites are equipped with a LRI ranging

system. The model of LRI is as follows [5]:

Ψ = c ∗ (−ψM(t) + RT(t− τ))/(2 f ), (8)

where Ψ is the LRI measurement (unit: m), ψM(t) is the observed phase value of LRI at t,
RT(t− τ) is the time delay correction of the LRI acquisition system, τ is the time of signal
transmission of LRI, and f is the LRI-frequency of the observed phase. The ground nominal
value of f in GRACE-FO-A is 2.81616393e14 Hz, and the ground nominal value of f in
GRACE-FO-B is 2.81615684e14 Hz. The original phase observed values (LRI1A) of LRI
have glitches [33]. Glitches of LRI mainly occurs during thruster firings. JPL laboratory
detects glitches of LRI by three methods. Firstly, differences in phase observed values are
performed, and then glitches of LRI are detected by comparing the observed differential
values with the tolerance. Secondly, small glitches of LRI are fitted by a phase filter
model [33]. Thirdly, glitches are further detected by residuals of Two-Way Range [11].
In order to simplify experiments, this study adopts secondary-treated Level-1B data of JPL
laboratory, and all glitches of LRI were detected and repaired.

Based on the principle of LRI and product description published by GFZ, LRI observa-
tions deliver a biased distance NLRI . To obtain the actual intersatellite distance, the biased
distance must be gained in advance. This study proposes a simple and feasible calculation
process for the biased LRI distance.

(1) The intersatellite distance is resolved by using relative kinematic orbit determi-
nation from spaceborne GPS data. Assuming that there are n epochs, the intersatellite
distance between two LEO satellites ρi

r0,r(i = 0 · · · n) is obtained according to the relative
kinematic orbit determination of spaceborne GPS;

(2) LRI range minus the intersatellite distance ρi
r0,r at the corresponding epoch, and the

initial value Ni
LRI,0 of LRI biased distance can be introduced;

(3) The mean value NLRI of Ni
LRI,0(i = 0 · · · n) should be calculated;
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(4) The difference between the initial value (Ni
LRI,0(i = 0 · · · n)) and the mean value

(NLRI) is calculated, and epochs with a difference greater than a threshold are marked as
outliers. This threshold is defined as follows:∣∣∣Ni

LRI,0 − NLRI

∣∣∣ < 3σrel , (9)

where σrel is the precision of relative kinematic orbit determination of spaceborne GPS.
For the convenience of the experiment, σrel was set to 0.15 m (σrel = 0.15 m);

(5) The marked observed values of LRI should be eliminated, and then steps from
2 to 4 are repeated until all Ni

LRI,0 pass the inspection formula;
(6) Taking into account the LRI bias, ranging values of each epoch are corrected to

obtain the intersatellite distance of LEO satellites based on LRI ranging.
To evaluate the precision of LRI (actually LRI biased), the LRI biased distances for

4 months (days 121 to 242 of 2019) are calculated. The statistical results are shown in Table 1,
confirming the good quality of LRI distances. More than 98.5% of LRI observations can be
used to solve LRI bias.

Table 1. RMS of LRI bias (unit: m) and percentage of LRI outliers (unit: %).

DAY RMS of LRI Bias Percentage of LRI Outliers

121−151 0.0492 1.21
151−182 0.0480 0.73
182−212 0.0535 0.98
212−242 0.0544 1.85
Average 0.0513 1.19

3. GPS/LRI Observation Equation and Linearization

As observed distance values, LRI can establish the observation of the LEO satellite by
combining with GPS. The GPS/LRI observation equation in matrix form reads as follows:

V = BX− l, (10)

where l is obtained by subtracting the calculated values from actual observed values, V is
the correction of observed values, and B is the linearized parameter coefficient matrix to be
solved. B is expressed as follows:

B =



as0,s1
x as0,s1

y as0,s1
z λ 0 · · · 0

as0,s2
x as0,s2

y as0,s2
z 0 λ 0 0

...
...

... 0 0
. . . 0

as0,sn−1
x as0,sn−1

y as0,sn−1
z 0 0 0 λ

as0,s1
x as0,s1

y as0,s1
z 0 0 0 0

...
...

...
...

...
...

...
as0,sn−1

x as0,sn−1
y as0,sn−1

z 0 0 0 0
aLRI

x aLRI
y aLRI

z 0 0 0 0


, (11)

where as0,s
x = − xs0−xr

ρ
s0
r

+ xs−xr
ρs

r
; as0,s

y = − ys0−yr

ρ
s0
r

+ ys−yr
ρs

r
; as0,s

z = − zs0−zr
ρ

s0
r

+ zs−zr
ρs

r
;

aLRI
x =

xr−xr0
ρr0,r

; aLRI
y =

yr−yr0
ρr0,r

; aLRI
z =

zr−zr0
ρr0,r

; ρr0,r =
√
(xr − xr0)

2 + (yr − yr0)
2 + (zr − zr0)

2;

ρs0
r and ρs

r are the geometric distances from GRACE-FO to different GPS satellites. xr, yr, zr,
xs0 , ys0 , zs0 and xs, ys, zs are Cartesian Coordinates. The absolute vector l is given by:

l =
[
ls0,s1
r0,r · · · l

s0,sn−1
r0,r , ps0,s1

r0,r · · · p
s0,sn−1
r0,r , vLRI

]
(12)
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ls0,s
r0,r = ρs

r − ρs0
r − ρs

r0
+ ρs0

r0 − ∆∇Ls0,s
r,IF

ps0,s
r0,r = ρs

r − ρs0
r − ρs

r0
+ ρs0

r0 − ∆∇Ps0,s
r,IF

vLRI = ρr0,r −Ψ
(13)

After the observation equation is linearized, a Kalman filter process can be used for
iterative processing.

4. Kalman Filter Theory Applied to Relative Kinematic Orbit Determination of LEO
Satellites

Relative Kinematic orbit determination of LEO satellites aims to obtain coordinates of
satellites. Under the condition of double-difference orbit determination, the parameters
to be obtained not only include the coordinates of satellites, but also the ambiguities of
double-difference carrier observed values. The parameters of LEO satellites are to be
calculated by setting n double-difference carrier observed values:

X = [∆x, ∆y, ∆z, ∆∇Ns0,s1
r0,r,IF · · ·∆∇Ns0,sn−1

r0,r,IF ], (14)

where ∆x, ∆y, ∆z are components of the baseline vector between the GRACE-FO satellites
(Earth-fixed reference frame) and ∆∇Ns0,s1

r0,r,IF · · ·∆∇Ns0,sn−1
r0,r,IF are ambiguities of the observed

carrier values. The Kalman filter equations of LEO satellites are as follows:
J = D0BT(BD0BT + R

)−1

X = X0 + Jl

D =
(

D−1
0 + BT R−1B

)−1
, (15)

where D0 is the prior variance matrix of parameters; R is the observation variance matrix;
J is the gain matrix; X0 and X are the prior value and calculated value of parameters to
be solved, respectively; l is the observed minus computed (O-C); and D is the posterior
variance matrix of parameters.

Pseudo-range single point positioning is used to replace the state-transition matrix to
generate prior coordinates of LEO satellites (prediction coordinates), with an accuracy of
about 10 m, which requires continuous refinement of LEO satellites’ coordinates according
to observed carrier values and their corresponding variance information. The variance
processing of parameters is regarded as an important basis for Kalman filter calculation.
Therefore, this manuscript provides the detailed settings for the corresponding parameter
variance matrix and observation variance matrix in the Kalman filter. The variance matrix
formula of observed values R is as follows:

R
(2n−2)×(2n−2)+1

=



Rs0
L + Rs1

L Rs0
L Rs0

L 0 0 0
...

. . .
...

...
...

...
Rs0

L Rs0
L Rs0

L + Rsn−1
L 0 0 0

0 0 0 Rs0
P + Rs1

L Rs0
P Rs0

P
...

...
...

...
. . .

...
0 0 0 Rs0

P Rs0
P Rs0

P + Rsn−1
L

0 0 0 0 0 0


(16)

 Rs
L = 2× (a2

L +
b2

L
sin2 els )

Rs
P = 2× (a2

P +
b2

P
sin2 els )

. (17)

Rs
L and Rs

P are the phase prior variances and pseudo-range prior variances, els is
the elevation angle of GPS satellites, aL = 0.003 and bL = 0.003 are the error factors of
phase observation (unit: m), aP = 0.3 and bP = 0.3 are the error factors of pseudo-range
observation (unit: m), and RLRI is the variance of LRI’s observed values. In the experiment
of this manuscript, RLRI = 0.012 (unit: m2).
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In this work, Kalman filter orbit determination does not take dynamic information
into consideration, and pseudo-range single point positioning is used to generate a priori
coordinate X0. The prior value of the ambiguity parameter adopts the floating-point value
resolved in the previous epoch. The initial-state parameter variance matrix D0 of LEO
satellites is assigned as follows:

D0
(n+3)×(n+3)

=

 302

. . .
302

, (18)

where the variance corresponding to the coordinate parameter is reset as 302(unit: m2)
in the next epoch, while the variance corresponding to the ambiguity parameter directly
adopts the posterior variance of previous epochs.

5. Relative Kinematic Orbit Determination Process of GPS/LRI

The essence of relative kinematic orbit determination of spaceborne GPS/LRI is to
regard LRI as a directly observed value, and build the observation equation with GPS
double-difference observations for resolving the intersatellite baseline. The relative kine-
matic orbit determination process of GPS/LRI is shown in Figure 1.
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The specific process of kinematic orbit determination is shown below:
(1) Resolving initial coordinates of orbits by the ionospheric-free pseudo range;
(2) Screening common-view satellites of GRACE-FO-A and GRACE-FO-B;
(3) Detecting cycle slips according to Melbourne–Wübbena (MW) and geometry-free

(GF) combination [34,35]. The models of MW and GF are provided below:

LMW = ( f1Ls
r,1 − f2Ls

r,2)/( f1 − f2)− ( f1Ps
r,1 + f2Ps

r,2)/( f1 + f2) (19)

LGF = Ls
r,1 − Ls

r,2. (20)

Equations (19) and (20) are usually used to jointly detect cycle slips. In this paper,
the threshold of cycle slips detection between epochs (i and i + 1) is set as:{

Ni+1
w − Ni

w < 5
Li+1

GF − Li
GF < 0.05

(unit : m). (21)

The detection for cycle slips is regarded as data preprocessing;
(4) Constructing double-difference observation equation according to Equations (1) to (7);
(5) Updating the parameters to be resolved by Kalman filter;
(6) Correcting phase center offsets (PCO) and Sensor Offsets of LEO satellite. Taking

GRACE-FO-A and GRACE-FO-B as examples, Tables 2 and 3 show the three components
of PCO and Sensor Offsets in the body- fixed coordinate of GRACE-FO satellites. As for
LEO satellites, their solar panel must always aim at the sun, so the satellite gesture will
change according to time. Therefore, several steps should be taken in calculating PCO and
Sensor Offsets correction of LEO satellites with spaceborne GPS:

(a) The coordinates of LEO satellites without being corrected by PCO and Sensor
Offset are converted from Earth-fixed coordinate system to inertial coordinate system.

(b) According to the attitude of LEO satellites, the three components of PCO and Sensor
offset in the body- fixed coordinate system are transferred to the inertial coordinate system.

(c) The corrections of PCO and Sensor Offset in the inertial system are added to the
coordinates of LEO satellites.

(d) The coordinates of LEO satellites are transferred from the inertial coordinate system
to the Earth-fixed coordinate system;

Table 2. PCO of GRACE-FO satellites (unit: mm).

Scheme Frequency
PCO

North East Up

GRACE-FO-A
L1 1.49 0.60 −7.01
L2 0.96 0.86 22.29

GRACE-FO-B
L1 1.49 0.60 −7.01
L2 0.96 0.86 22.29

Table 3. Sensor Offset of GRACE-FO satellites (unit: mm).

Satellite
Sensor Offset

North East Up

GRACE-FO-A −261.8 −0.8 −531.6
GRACE-FO-B −260.0 0.5 −530.6

(7) The intersatellite baseline is recalculated according to the correction of mass center,
and the relative kinematic orbit determination results are generated.

6. Case Study and Analysis

To verify the influence of LRI on the relative kinematic orbit determination of GRACE-FO
formation satellites, a control experiment is designed according to actual observation
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data of GRACE-FO satellites. The experimental group achieves relative kinematic orbit
determination by adopting GPS/LRI combinations, and the control group only uses GPS.
The paper adopts reference orbit comparison and KBE check to analyze and compare the
experimental results. The observation data of GPS/LRI and KBR in GRACE-FO satellites
are provided by GFZ (https://isdc.gfz-potsdam.de/, accessed on 9 June 2020), collected
from day 121 to day 242 in 2019, a total of 121 days. Samples of GPS data are collected
at the interval of 10 s, and those of LRI and KBR data are collected at the interval of 2 s
and 5 s, respectively. Then, synchronous GPS, LRI and KBR data should be used for check.
The precise ephemeris, satellite clock offsets and Earth rotation parameter files are provided
by the Center for Orbit Determination in Europe (CODE), and broadcast ephemeris are
provided by the International GNSS Service (IGS). More details about these data are listed
in Table 4.

Table 4. Data description.

Data Type Source Detail

GPS measurements GFZ Sampling rate 1 s; observed values of P1, P2, L1 and L2

LRI measurements GFZ Sampling rate 2 s; including observation time and
intersatellite distance

GPS precise ephemeris
GPS precise clock CODE

Final precise ephemeris; Sampling rate 900 s;
Final precise clock error products;

Sampling rate 30 s
Earth rotation parameters CODE 121-day values

Post-processed science orbit GFZ Reduced dynamic orbit
K-Band Ranging measurements GFZ Sampling rate 5 s

Broadcast ephemeris IGS BRDC station

6.1. Reference Orbit Check

The orbit published by GFZ is regarded as the reference value. The relative orbit
determination results of GPS/LRI and GPS are separately compared with the reference
orbit. Figures 2–6 show the comparison results of days 121–242’s reference orbits. As is
shown, there are no systematic errors in the GRACE-FO satellites’ relative kinematic orbit
determination. The main reason is that the relative kinematic orbit determination method
used in this paper essentially belongs to a geometric orbit determination without being
affected by the dynamic satellite model. However, the residual errors of GPS/LRI joint
relative kinematic orbit determination result in X, Y, and Z (components of the baseline
vector) directions are obviously smaller than those of GPS only. Compared with relative
kinematic orbit determination by GPS only, the distribution of orbit residuals calculated by
GPS/LRI is closer, and the obvious spikes in the figure are weakened. The main reason is
that on-board GPS is quite different from ground stations in that the number of satellites
observed by the on-board GPS receiver in some arcs is smaller than five. Meanwhile,
the travel speed of LEO satellites can reach 6–7 km per second, so the observed GPS
satellites change frequently. Usually, a satellite can be observed for only 10 to 30 min.
Therefore, the observation data quality is poor for a small part of the arc, reducing the
stability of the geometric method for relative kinematic orbit determination. The Geometric
Dilution Precision (GDOP) is related to the orbit determination accuracy. We analyzed the
GDOP of GRACE-FO satellites for 121 to 242 days. When the value of GDOP increases,
the orbit accuracy will decrease. However, GPS / LRI can limit the impact of GDOP increase
on the orbit accuracy. Therefore, combined GPS/LRI observations can better eliminate GPS
observations of poor quality and reduce the impact of GPS observation quality on relative
kinematic orbit determination. Additionally, the results of 121 days’ relative kinematic
orbit determination show that introducing GPS/LRI observations is obviously better than
using GPS only.

https://isdc.gfz-potsdam.de/
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distribution for the GPS/LRI and GPS relative orbit.

To obtain more specific results of relative kinematic orbit determination, statistics
over 121 days are carried out in this part. X, Y, and Z refer to the baseline vectors of the
two satellites in Earth-fixed coordinates. It is shown in Table 5 that along the X direction,
the 121 days accuracy of GPS/LRI relative kinematic orbit determination is improved by
12.4 mm, and the relative kinematic orbit determination accuracy along the X direction
reaches 25.4 mm, with an accuracy increase of 32.8%; along the Y direction, the accuracy of
GPS/LRI relative kinematic orbit determination is improved by 8.5 mm, and the accuracy
along the Y direction reaches 28.6 mm, with an accuracy increase of 22.9%; along the
Z direction, the accuracy of GPS/LRI relative kinematic orbit determination is improved
by 15.2 mm, and the accuracy along the Z direction reaches 21.9 mm, with an accuracy
increase of 41.0%; along the 3D direction, the accuracy of GPS/LRI relative kinematic orbit
determination is improved by 17.5 mm, and the accuracy along the 3D direction reaches
50.1 mm, with an accuracy increase of 25.9%. LRI observed values are added to increase
the number of redundant observations, enhancing the geometric strength of observed
values, so the accuracy of GPS/LRI is greatly improved compared with that of only GPS
for formation orbit determination. Statistical results show that the joint GPS/LRI data
can effectively improve the overall accuracy of relative kinematic orbit determination of
GRACE-FO formation satellites and limit orbit determination errors due to GPS observation
quality, improving the stability of relative kinematic orbit determination.

Table 5. Statistics of reference orbit check (days 121–242) in Earth-fixed coordinate (unit: m).

Type
GPS-Only GPS/LRI

X Y Z 3D X Y Z 3D

MEAN 0 0.0019 0.0017 − 0 0 0.0009 −
MEDIAN 0 0.0025 0.0013 − 0 0.0008 0.0012 −

RMS 0.0378 0.0371 0.0371 0.0676 0.0254 0.0286 0.0219 0.0501

To analyze the orbital residual, we set GRACE-FO-B as the reference orbit and solve
the orbit of GRACE-FO-A according to the relative kinematic orbit determination results.
The orbit of the GRACE-FO-A satellite and the orbit released by GFZ are compared by
using the ORBCMP module of Bernese 5.2 software. Under the radial, along–track and
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out–of–plane (RSW) decomposition, we analyze the residual results. Figures 7–10 show the
comparison results of day 121–242’s reference orbits. Figure 11 shows the probability distri-
bution of satellite orbit residuals. In the R and W directions, the residual distributions of
GPS-only and GPS/LRI are similar. However, in the S direction, GPS/LRI can significantly
improve the relative kinematic orbit determination accuracy of GRACE-FO-A satellite.
For further analysis, we calculated the MEAN, MEDIAN and RMS of orbital residuals in R,
S and W directions. It is shown in Table 6 that along the R direction, the 121 days accuracy
of GPS/LRI relative kinematic orbit determination is improved by 10.0 mm, and the relative
kinematic orbit determination accuracy along the R direction reaches 29.0 mm, with an
accuracy increase of 34.48%; along the S direction, the accuracy of GPS/LRI relative kine-
matic orbit determination is improved by 31.7 mm, and the accuracy along the S direction
reaches 8.9 mm, with an accuracy increase of 78.8%; along the W direction, the accuracy of
GPS/LRI relative kinematic orbit determination is not significantly improved. The RMS of
the 3D vector is decreased by 18 mm which corresponds to an improvement of 26.3%.
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Table 6. Statistics of reference orbit check (days 121–242) in RSW (unit: m).

Type
GPS-Only GPS/LRI

R S W 3D R S W 3D

MEAN −0.0010 0 −0.0005 − −0.0013 0 0 −
MEDIAN −0.0009 0 0 − −0.0008 0 0 −

RMS 0.0390 0.0406 0.0330 0.0678 0.0290 0.0089 0.0305 0.0500

To evaluate the GPS/LRI under sunlight and solar eclipse, we use the ORBGEN
module of Bernese 5.2 software to mark the epochs in solar eclipse. GRACE-FO satellites
were under solar eclipse for 25% of the total period. Figure 12 show the comparison results
of day 121–242’s reference orbits in the sunlight and solar eclipse. In the case of sunlight
and solar eclipse, there is no significant difference in GPS/LRI orbit residuals. In both cases,
the accuracy of GPS/LRI orbit determination is higher than the GPS-only. To further analyze
the impact of solar eclipse on GPS/LRI, we calculated the RMS, MEAN and MEDIAN of
orbital residuals. It is shown in Tables 7 and 8 that the RMS values differ by 2.2 mm and
2.1 mm in the 3D-directions. Along the X, Y, Z and 3D direction the 121-days accuracy of
GPS/LRI relative kinematic orbit determination, under the conditions of sunlight and solar
eclipse, is not a significant difference.

Table 7. Statistics of X, Y, Z and 3D residual (unit: m, days 121–242) in Sunlight and Solar eclipse.

Type
GPS/LRI in Sunlight GPS/LRI in Solar Eclipse

X Y Z 3D X Y Z 3D

MEAN 0 0.0007 −0.0009 − 0 −0.0007 −0.0009 −
MEDIAN 0 0.0008 −0.0011 − 0 0 −0.0014 −

RMS 0.0255 0.0282 0.0216 0.0437 0.0260 0.0302 0.0228 0.0459

Table 8. Statistics of X, Y, Z and 3D residual (unit: m, days 121–242) in Sunlight and Solar eclipse.

Type
GPS-Only in Sunlight GPS-Only in Solar Eclipse

X Y Z 3D X Y Z 3D

MEAN 0.0012 0.0018 0.0014 − 0.0007 0.0021 0.0023 −
MEDIAN 0.0007 0.0025 0.0011 − 0 0.0022 0.0017 −

RMS 0.0382 0.0375 0.0374 0.0652 0.0368 0.0362 0.0363 0.0631
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To evaluate the GPS/LRI in satellite orbit maneuver, we analyzed the orbit eccentric-
ity of GRACE-FO satellites for 121 days. Landerer points out that regular orbit mainte-
nance maneuvers will be performed throughout the GRACE-FO mission duration [36].
Figure 13 shows the orbital eccentricity of GRACE-FO satellites and their hourly variation.
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We marked the time of orbital maneuver in the figure with circles. Table 9 shows the date
of the satellite orbit maneuver. Figure 14 shows the comparison results of reference orbits
in the orbit maneuver. Table 10 shows the RMS, MEAN and MEDIAN of orbital residuals
during orbital maneuver.
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Table 9. Days of Orbital Maneuver.

Circle Days

red 135−136
yellow 149−150
green 155−156
purple 163−164

blue 175−176
black 230−231
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Table 10. Statistics of X, Y, Z and 3D residual (unit: m, days 121–242) in Orbital Maneuver.

Type
GPS-Only GPS/LRI

X Y Z 3D X Y Z 3D

MEAN −0.0018 0 0 − −0.0010 0 0 −
MEDIAN −0.0023 0 0 − −0.0011 0 0 −

RMS 0.0367 0.0339 0.0381 0.0604 0.0291 0.0258 0.0228 0.0466

6.2. KBR Validation

The KBR system is one of the key scientific instruments carried by GRACE-FO satellites
with a sampling interval of 5 s, ranging accuracy of 10 um, and range-changing rate
accuracy of 1 um/s [37]. Actually, KBR and LRI are distinctly separate intersatellite ranging
systems. Therefore, KBR can be used as an important external condition to verify GPS/LRI
relative kinematic orbit determination results. The basic principle of KBR check is to
obtain the difference between KBR-observed values and intersatellite baseline, and then
evaluate the quality of the orbit difference between LEO satellites. Figures 15–19 show
the residual distribution of KBR from day 121 to 242 in 2019. It shows that the relative
kinematic orbit determination residuals by GPS only are mainly distributed within±0.05 m,
and the fluctuation of orbit determination residuals presents random distribution with
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some residual spikes. The residual values of a few epochs exceed ±0.075 m. However,
the relative kinematic orbit determination results of joint GPS/LRI are quite smooth with
the residual fluctuation range within±0.01 m, and only very few epochs have KBR residual
values greater than ±0.025 m. Compared with relative kinematic orbit determination by
GPS, relative kinematic orbit determination by joint GPS/LRI reduces the orbital spikes of
relative kinematic orbit determination caused by GPS observation quality, and improves
the orbital accuracy of relative kinematic orbit determination.
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To obtain more detailed statistical information, we have conducted for all 121 days a
comparison between KBR ranges and the relative kinematic orbit determination results.
RMS, MEAN and MEDIAN values of 121 days KBR residuals are listed in Table 11. The ac-
curacy of 121 days’ relative kinematic orbit determination based on GPS only approximates
42.8 mm while that calculated from joint GPS/LRI data approximates 10.7 mm. It indi-
cates that joint GPS/LRI improves the quality of relative kinematic orbit determination,
and confirms the results of reference orbit verification. The mean value of KBR residuals
in 121 days is less than 0.5 mm, indicating no obvious systematic errors in joint GPS/LRI
and GPS relative kinematic orbit determination, and the results of relative kinematic orbit
determination comply with the statistical law.

Table 11. Statistics of KBR check (unit: m).

Day
GPS-Only GPS\LRI

RMS MEAN MEDIAN RMS MEAN MEDIAN

121–151 0.0415 0 0 0.0112 0 −0.0007
151–182 0.0407 0 0 0.0093 0 −0.0006
182–212 0.0458 0 0 0.0086 0 −0.0007
212–242 0.0433 0 0 0.0135 0 −0.0007
Average 0.0428 0 0 0.0107 0 −0.0007

KBR can be used to evaluate the ability of GPS/LRI under sunlight and eclipse
conditions. Figure 20 shows the KBR residuals of GPS/LRI and GPS-only relative kinematic
orbit determination. There is no significant difference in the KBR residuals of GPS/LRI
relative kinematic orbit determination under sunlight and solar eclipse. Table 12 shows
the RMS, MEAN and MEDIAN of KBR residuals for GPS/LRI and GPS-only. Under
the sunlight and solar eclipse, the KBR residuals RMS corresponding to GPS/LRI are
9.3 mm and 9.7 mm, and their differences are very slight. The RMS values of KBR residuals
corresponding to GPS-only are 42.4 mm and 42.2 mm. Their differences are also small.
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ditions. Figure 20 shows the KBR residuals of GPS/LRI and GPS-only relative kinematic 
orbit determination. There is no significant difference in the KBR residuals of GPS/LRI 
relative kinematic orbit determination under sunlight and solar eclipse. Table 12 shows 
the RMS, MEAN and MEDIAN of KBR residuals for GPS/LRI and GPS-only. Under the 
sunlight and solar eclipse, the KBR residuals RMS corresponding to GPS/LRI are 9.3mm 
and 9.7mm, and their differences are very slight. The RMS values of KBR residuals corre-
sponding to GPS-only are 42.4mm and 42.2mm. Their differences are also small. 

  
(a) (b) 

Figure 20. Days 121–242 KBR residuals (unit: m) for the GPS/LRI (a) and GPS-only (b) relative orbit 
in the Sunlight and Solar eclipse). 

  

Figure 20. Days 121–242 KBR residuals (unit: m) for the GPS/LRI (a) and GPS-only (b) relative orbit
in the Sunlight and Solar eclipse).

Table 12. Statistics of KBR residual (unit: m, days 121–242) in Sunlight and Solar eclipse.

Type
GPS/LRI GPS-Only

Sunlight Solar Eclipse Sunlight Solar Eclipse

MEAN 0 0 −0.0007 −0.0006
MEDIAN 0 0.0007 0 0

RMS 0.0093 0.0097 0.0424 0.0422

7. Conclusions

In this manuscript, we studied the LRI ranging system carried by GRACE-FO forma-
tion satellites, achieving high-quality relative kinematic orbit determination based on joint
GPS/LRI data and the Kalman filter. Additionally, we introduced the LRI ranging systems
as well as the LRI observation equation, and described the process of relative kinematic
orbit determination of GPS/LRI in detail. Ultimately, relative kinematic orbit determination
results of GPS/LRI were verified and analyzed by comparing to a reference orbit and veri-
fying KBR. Accordingly, we draw two conclusions: 1. Compared with relative kinematic
orbit determination by GPS only, kinematic orbit determination by GPS/LRI achieves
more robust results, which can weaken some orbits’ error and significantly improve the
accuracy of relative kinematic orbit determination. The accuracy of relative kinematic
orbit determination by GPS/LRI is improved by 17.5 mm in 3D directions, and the accu-
racy of relative kinematic orbit determination is improved by 25.9%, reaching 50.1 mm
(compared with the reference orbit released by GFZ). 2. The results of KBR validation are
ideal. The residual distribution of KBR is smooth without obvious fluctuation. The consis-
tency between the relative kinematic orbit determination and the KBR measurements is at
the +/−10.7 mm level.
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