A Global Assessment of Night Lights as an Indicator for Shipping Activity in Anchorage Areas
Abstract
:1. Introduction
Research Question and Objectives
- To what extent can night-time lights in anchorage areas serve as an indicator of shipping activity in port anchorage areas? To do this, we will examine the correspondence between the night-time lights and shipping data at the port level and the country level.
- Which variables at the country level can explain the intensity of lighting in anchorage areas? To do this, we will examine various variables that represent economic activities such as GDP, exports, etc. and their correspondence with NTL.
2. Materials and Methods
2.1. Process of Creating the Anchorage Polygons
2.2. VIIRS Night–Time Light Data (Response Variables)
- “Avg_rad”—value represents the monthly average value of NTL.
- “Cf_cfg”—cloud–free days (this was important to interpolate monthly radiance values for months that were too cloudy, as detailed below).
2.3. Explanatory Variables
Data collection on Vessel Numbers in Anchorage Areas from Sentinel 1
2.4. Analysis
3. Results
3.1. General Patterns of NTL as an Indicator of Shipping Activity
3.2. Temporal Analysis of NTL Values within Anchorage Areas
3.3. Statistical Analysis at the Country–Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- UNCTAD. 2019 Review of Maritime Transport; UNCTAD: Geneva, Switzerland, 2019; ISBN 9789211129588. [Google Scholar]
- March, D.; Metcalfe, K.; Tintoré, J.; Godley, B. Tracking the global reduction of marine traffic during the COVID-19 pandemic. Nat. Commun. 2020, 12, 2415. [Google Scholar] [CrossRef] [PubMed]
- UNCTAD. Reveiw of Maritime Transport 2018; UNCTAD: Geneva, Switzerland, 2018; ISBN 9789211129281. [Google Scholar]
- Guerrero, D.; Rodrigue, J.P. The waves of containerization: Shifts in global maritime transportation. J. Transp. Geogr. 2014, 34, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Hanson, S.E.; Nicholls, R.J. Demand for Ports to 2050: Climate Policy, Growing Trade and the Impacts of Sea-Level Rise. Earth’s Future 2020, 8, e2020EF001543. [Google Scholar] [CrossRef]
- Liu, A.; Wei, Y.; Yu, B.; Song, W. Estimation of cargo handling capacity of coastal ports in China based on panel model and DMSP-OLS nighttime light data. Remote Sens. 2019, 11, 582. [Google Scholar] [CrossRef] [Green Version]
- Eskafi, M.; Kowsari, M.; Dastgheib, A.; Ulfarsson, G.F.; Taneja, P.; Thorarinsdottir, R.I. Mutual information analysis of the factors influencing port throughput. Marit. Bus. Rev. 2020, 6, 129–146. [Google Scholar] [CrossRef]
- Milenković, M.; Milosavljevic, N.; Bojović, N.; Val, S. Container flow forecasting through neural networks based on metaheuristics. Oper. Res. 2021, 21, 965–997. [Google Scholar] [CrossRef]
- UNCTAD. Review of Maritime Transport 2020; UNCTAD: Geneva, Switzerland, 2020. [Google Scholar]
- Stefan, G. The Lloyd’s List-A Global Intelligence Unit? In Transfer between Sea and Land; Sidestone Press: Leiden, The Netherlands, 2018; pp. 119–130. [Google Scholar]
- Mazzarella, F.; Vespe, M.; Mazzarella, F.; Vespe, M.; Damalas, D.; Osio, G. Discovering vessel activities at sea using AIS data: Mapping of fishing footprints Discovering Vessel Activities at Sea using AIS Data: Mapping of Fishing Footprints. In Proceedings of the 17th International Conference on Information Fusion (FUSION), Salamanca, Spain, 7–10 July 2014; pp. 1–7. [Google Scholar]
- Polinov, S.; Bookman, R.; Levin, N. Spatial and temporal assessment of oil spills in the Mediterranean Sea. Mar. Pollut. Bull. 2021, 167, 112338. [Google Scholar] [CrossRef]
- Halpern, B.S.; Lbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E.; et al. A global map of human impact on marine ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef] [Green Version]
- Deter, J.; Lozupone, X.; Inacio, A.; Boissery, P.; Holon, F. Boat anchoring pressure on coastal seabed: Quantification and bias estimation using AIS data. Mar. Pollut. Bull. 2017, 123, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Levin, N.; Phinn, S. Illuminating the capabilities of Landsat 8 for mapping night lights. Remote Sens. Environ. 2016, 182, 27–38. [Google Scholar] [CrossRef]
- Kang, M.; Ji, K.; Leng, X.; Lin, Z. Contextual region-based convolutional neural network with multilayer fusion for SAR ship detection. Remote Sens. 2017, 9, 860. [Google Scholar] [CrossRef] [Green Version]
- Tello, M.; López-Martínez, C.; Mallorquí, J.J.; Greidanus, H. A novel algorithm for ship detection in ENVISAT SAR imagery based on the wavelet transform. In Proceedings of the 2004 ENVISAT and ERS Symposium, Salzburg, Austria, 6–10 September 2004; pp. 1557–1562. [Google Scholar]
- Wackerman, C.C.; Friedman, K.S.; Pichel, W.G.; Clemente-Colon, P.; Li, X. Automatic detection of ships in RADARSAT-1 SAR imagery. Can. J. Remote Sens. 2001, 27, 568–577. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Zhizhin, M.; Baugh, K.; Hsu, F.C. Automatic boat identification system for VIIRS low light imaging data. Remote Sens. 2015, 7, 3020–3036. [Google Scholar] [CrossRef] [Green Version]
- Hsu, F.C.; Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Ghosh, T.; Kroodsma, D.; Susanto, A.; Budy, W.; Riyanto, M.; Nurzeha, R.; et al. Cross-matching VIIRS boat detections with vessel monitoring system tracks in Indonesia. Remote Sens. 2019, 11, 995. [Google Scholar] [CrossRef] [Green Version]
- Ges, X.; Bará, S.; García-Gil, M.; Zamorano, J.; Ribas, S.J.; Masana, E. Light pollution offshore: Zenithal sky glow measurements in the mediterranean coastal waters. J. Quant. Spectrosc. Radiat. Transf. 2018, 210, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Coesfeld, J.; Kuester, T.; Kuechly, H.U.; Kyba, C.C.M. Reducing variability and removing natural light from nighttime satellite imagery: A case study using the VIIRS DNB. Sensors 2020, 20, 3287. [Google Scholar] [CrossRef] [PubMed]
- Marine Cadaster Anchorage Areas. Available online: https://www.marinecadastre.gov/news/load.php?url=posts/anchorage-areas.html (accessed on 23 September 2021).
- Sanchez de Miguel, A.; Kyba, C.C.M.; Zamorano, J.; Gallego, J.; Gaston, K.J. The nature of the diffuse light near cities detected in nighttime satellite imagery. Sci. Rep. 2020, 10, 7829. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.-C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia-Pac. Adv. Netw. 2013, 35, 62. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- Zhao, X.; Li, D.; Li, X.; Zhao, L.; Wu, C. Spatial and seasonal patterns of night-time lights in global ocean derived from VIIRS DNB images. Int. J. Remote Sens. 2018, 39, 8151–8181. [Google Scholar] [CrossRef]
- Levin, N.; Zhang, Q. A global analysis of factors controlling VIIRS nighttime light levels from densely populated areas. Remote Sens. Environ. 2017, 190, 366–382. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Pesquera, M.Á.; Ruiz, J.R. Sustainable Development Strategies for Cities and Ports; UNCTAD: Geneva, Switzerland, 1996. [Google Scholar]
- UNCTAD. Port Call and Performance Statistics: Time Spent in Ports, Vessel Age and Size, Annual. Available online: https://unctadstat.unctad.org/wds/TableViewer/tableView.aspx?ReportId=194889 (accessed on 21 November 2021).
- Ding, D.; Teo, C.P. World container port throughput follows lognormal distribution. Marit. Policy Manag. 2010, 37, 401–426. [Google Scholar] [CrossRef]
- Fugazza, M.; Hoffmann, J. Liner shipping connectivity as determinant of trade. J. Shipp. Trade 2017, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- UNCTAD. Review of Maritime Transport 2016; UNCTAD: Geneva, Switzerland, 2016; ISBN 9789211128789. [Google Scholar]
- GFW Global Fishing Watch | Data Download Portal. Available online: https://globalfishingwatch.org/data-download/datasets/public-anchorages:v20200316 (accessed on 24 August 2021).
- The World Bank CO2 Emissions. Available online: https://data.worldbank.org/indicator/EN.ATM.CO2E.PC?view=chart (accessed on 23 November 2021).
- UNCTAD. Stat Annual Container Port Throughput. Available online: https://unctadstat.unctad.org/wds/TableViewer/tableView.aspx?ReportId=13321 (accessed on 23 November 2021).
- The World Bank. Electric Power Consumption (kWh per Capita). Available online: https://data.worldbank.org/indicator/EG.USE.ELEC.KH.PC?view=chart (accessed on 23 November 2021).
- The World Bank. Fossil Fuel Energy Consumption (% of Total). Available online: https://data.worldbank.org/indicator/EG.USE.COMM.FO.ZS?view=chart (accessed on 23 November 2021).
- The World Bank. GDP per Capita. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.CD (accessed on 23 November 2021).
- The World Bank. GDP, Annual Growth. Available online: https://data.worldbank.org/indicator/NY.GDP.PCAP.KD.ZG?view=chart (accessed on 23 November 2021).
- Trade Map Country Import. Available online: https://www.trademap.org/Country_SelProduct_TS.aspx?nvpm=1%7C%7C%7C%7C%7CTOTAL%7C%7C%7C2%7C1%7C1%7C1%7C2%7C1%7C2%7C1%7C1%7C1 (accessed on 23 November 2021).
- The World Bank. Population Growth (Annual %). Available online: https://data.worldbank.org/indicator/SP.POP.GROW (accessed on 23 November 2021).
- The World Bank. Country Population, Total. Available online: https://data.worldbank.org/indicator/SP.POP.TOTL (accessed on 23 November 2021).
- Santos Port Authority. Santos Port Authority Mensário Estatístico. Available online: http://www.portodesantos.com.br/informacoes-operacionais/estatisticas/mensario-estatistico/ (accessed on 1 February 2022).
- Grover, A.; Kumar, S.; Kumar, A. Ship Detection Using Sentinel-1 SAR Data. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences; Copernicus GmbH: Göttingen, Germany, 2018; Volume 4, pp. 317–324. [Google Scholar]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int. J. Remote Sens. 1997, 18, 1373–1379. [Google Scholar] [CrossRef]
- Henderson, J.V.; Storeygard, A.; Weil, D.N. Measuring economic growth from outer space. Am. Econ. Rev. 2012, 102, 994–1028. [Google Scholar] [CrossRef] [Green Version]
- Kyba, C.C.M.; Garz, S.; Kuechly, H.; de Miguel, A.S.; Zamorano, J.; Fischer, J.; Hölker, F. High-resolution imagery of earth at night: New sources, opportunities and challenges. Remote Sens. 2015, 7, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Davies, T.W.; Duffy, J.P.; Bennie, J.; Gaston, K.J. The nature, extent, and ecological implications of marine light pollution. Front. Ecol. Environ. 2014, 12, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.; Ge, W.; Shi, K. Airport’s Throughput Estimation Using Nighttime Light Data in China Mainland. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1357–1360. [Google Scholar] [CrossRef]
- Mellander, C.; Lobo, J.; Stolarick, K.; Matheson, Z. Night-time light data: A good proxy measure for economic activity? PLoS ONE 2015, 10, e0139779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Liu, Y.; Sun, C.; Dong, Y.; Zhang, S. Satellite Observation of the Marine Light-Fishing and Its Dynamics in the South China Sea. J. Mar. Sci. Eng. 2021, 9, 1394. [Google Scholar] [CrossRef]
- Zhong, L.; Liu, X.; Yang, P.; Lin, R. Explore the application of high-resolution nighttime light remote sensing images in nighttime marine ship detection: A case study of LJ1-01 data. Open Geosci. 2020, 12, 1169–1184. [Google Scholar] [CrossRef]
- Li, C.; Chen, G.; Luo, J.; Li, S.; Ye, J. Port economics comprehensive scores for major cities in the Yangtze Valley, China using the DMSP-OLS night-time light imagery. Int. J. Remote Sens. 2017, 38, 6007–6029. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Chen, F. Spatiotemporal Analysis of Venezuela’s Nighttime Light during the Socioeconomic Crisis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2396–2408. [Google Scholar] [CrossRef]
- Lind, M.; Ward, R.; Bergmann, M.; Haraldson, S.; Zerem, A.; Hoffmann, J.; Eklund, E. Maritime Informatics for Increased Collaboration. In Maritime Informatics for Increased Collaboration; Springer: Cham, Switzerland, 2021; pp. 113–136. [Google Scholar]
- Hoffmann, J.; Wilmsmeier, G.; Lun, Y.H.V. Connecting the world through global shipping networks. J. Shipp. Trade 2017, 2, 2. [Google Scholar] [CrossRef]
- UNCTAD. Manual on a Uniform System of Port Statitstics and Performance Indicators; UNCTAD: Geneva, Switzerland; p. 1987.
- Jacquillat, A.; Odoni, A.R. A roadmap toward airport demand and capacity management. Transp. Res. Part A Policy Pract. 2018, 114, 168–185. [Google Scholar] [CrossRef]
- Poulsen, R.T.; Sampson, H. ‘Swinging on the anchor’: The difficulties in achieving greenhouse gas abatement in shipping via virtual arrival. Transp. Res. Part D Transp. Environ. 2019, 73, 230–244. [Google Scholar] [CrossRef]
- IMO. Ship-Port Interface Guide Practical Measures to Reduce GHG Emissions; International Maritime Organization: London, UK, 2021. [Google Scholar]
- Shahpanah, A.; Hashemi, A.; Nouredin, G.; Zahraee, S.M.; Helmi, S.A. Reduction of ship waiting time at port container terminal through enhancement of the tug/pilot machine operation. J. Teknol. Sci. Eng. 2014, 68, 63–66. [Google Scholar] [CrossRef] [Green Version]
- Stergiopoulos, G.; Valvis, E.; Mitrodimas, D.; Lekkas, D.; Gritzalis, D. Analyzing Congestion Interdependencies of Ports and Container Ship Routes in the Maritime Network Infrastructure. IEEE Access 2018, 6, 63823–63832. [Google Scholar] [CrossRef]
- Ducruet, C.; Cuyala, S.; El Hosni, A. Maritime networks as systems of cities: The long-term interdependencies between global shipping flows and urban development (1890–2010). J. Transp. Geogr. 2018, 66, 340–355. [Google Scholar] [CrossRef] [Green Version]
- Ducruet, C.; Cuyala, S.; EL Hosni, A. The changing influence of city-systems on global shipping networks: An empirical analysis. J. Shipp. Trade 2016, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Tao, S.; Ciais, P.; Shen, H.Z.; Huang, Y.; Chen, H.; Shen, G.F.; Wang, B.; Li, W.; Zhang, Y.Y.; et al. High-resolution mapping of combustion processes and implications for CO2 emissions. Atmos. Chem. Phys. 2013, 13, 5189–5203. [Google Scholar] [CrossRef] [Green Version]
- Coesfeld, J.; Anderson, S.J.; Baugh, K.; Elvidge, C.D.; Schernthanner, H.; Kyba, C.C.M. Variation of individual location radiance in VIIRS DNB monthly composite images. Remote Sens. 2018, 10, 1964. [Google Scholar] [CrossRef] [Green Version]
- Bennett, M.M.; Smith, L.C. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sens. Environ. 2017, 192, 176–197. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.Ö.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Geronimo, R.C.; Franklin, E.C.; Brainard, R.E.; Elvidge, C.D.; Santos, M.D.; Venegas, R.; Mora, C. Mapping fishing activities and suitable fishing grounds using nighttime satellite images and maximum entropy modelling. Remote Sens. 2018, 10, 1604. [Google Scholar] [CrossRef] [Green Version]
- Levin, N.; Kyba, C.C.M.; Zhang, Q.; Sánchez de Miguel, A.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Mills, S.; Weiss, S.; Liang, C. VIIRS day/night band (DNB) stray light characterization and correction. In Proceedings of the Earth Observing Systems XVIII, San Diego, CA, USA, 23 September 2013; Volume 8866, pp. 549–566. [Google Scholar]
- Li, X.; Ma, R.; Zhang, Q.; Li, D.; Liu, S.; He, T.; Zhao, L. Anisotropic characteristic of artificial light at night–Systematic investigation with VIIRS DNB multi-temporal observations. Remote Sens. Environ. 2019, 233, 111357. [Google Scholar] [CrossRef]
- Bandara, D.; Woodward, M.; Chin, C.; Jiang, D. Augmented reality lights for compromised visibility navigation. J. Mar. Sci. Eng. 2020, 8, 1014. [Google Scholar] [CrossRef]
- Han, G.-Y. Ship Design Rules and Regulations-An overview of major themes. Rogue Waves Work. 2004, 2004, 20–22. [Google Scholar]
- Nguyen, K.Q.; Winger, P.D. Artificial Light in Commercial Industrialized Fishing Applications: A Review. Rev. Fish. Sci. Aquac. 2019, 27, 106–126. [Google Scholar] [CrossRef]
- Peng, P.; Yang, Y.; Cheng, S.; Lu, F.; Yuan, Z. Hub-and-spoke structure: Characterizing the global crude oil transport network with mass vessel trajectories. Energy 2019, 168, 966–974. [Google Scholar] [CrossRef]
- Kyba, C.C.M.; Giuliani, G.; Franziskakis, F.; Tockner, K.; Lacroix, P. Artisanal and Small-Scale Mining Sites in the Democratic Republic of the Congo Are Not Associated with Nighttime Light Emissions. J. 2019, 2, 152–161. [Google Scholar] [CrossRef] [Green Version]
Number of Consecutive Missing Months with Cloud Free Days (CFD) Value < 1 | Sum of Months in Each Group across all Anchorage Areas | % of the Sum of Months in Each Group across all Anchorage Areas (out of 57,696) | Number of Anchorage Areas in Each Group of Missing Months | % Number of Anchorage Areas in Each Group of Missing Months (out of 601) |
---|---|---|---|---|
0 | 54,589 | 94.6% | 113 | 18.8% |
1 | 1772 | 3.1% | 488 | 81.2% |
2 | 731 | 1.3% | 344 | 57.2% |
3 | 375 | 0.6% | 235 | 39.1% |
4 | 149 | 0.3% | 126 | 21.0% |
5 | 56 | 0.1% | 53 | 8.8% |
6 | 24 | 0.04% | 24 | 4.0% |
Parameter | C—Country P—port | Years | Data Source |
---|---|---|---|
Number of anchorage points | C/P | 2019 | [35] |
Average cargo carrying capacity | C | 2018–2020 | [31] |
Average container carrying capacity | C | 2018–2020 | [31] |
Average size of vessel | C | 2018–2020 | [31] |
Average CO2 emissions | C | 2016 | [36] |
Container port throughput (CPT) | C | 2016–2019 | [37] |
Electric power consumption | C | 2013–2014 | [38] |
Fossil fuel consumption | C | 2013–2015 | [39] |
Gross domestic product (GDP) | C | 2016–2020 | [40] |
GDP growth (annual %) | C | 2016–2020 | [41] |
Import | C | 2016–2020 | [42] |
LSCI | C | 2016–2020 | [31] |
Maximum cargo carrying capacity of vessels | C | 2018–2020 | [31] |
Maximum container carrying capacity of vessel | C | 2018–2020 | [31] |
Maximum size of vessels | C | 2018–2020 | [31] |
Median time in port (days) | C | 2018–2020 | [31] |
Population growth (%) | C | 2016–2020 | [43] |
Population total | C | 2016–2020 | [44] |
Monthly average number of vessels in the PAA of Santos | P | 2016–2020 | Sentinel 1 |
Santos port statistics (Import/Export, ship numbers by class and by waiting time) | P | 2016–2020 | [45] |
Remote Sensing | Official Statistics from the Port of Santos | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VIIRS monthly sum | Ships counted Sentinel 1 | Exports | Imports | Ships waiting | Ships waiting > 72 h | General cargo ships | Bulk solid ships | Tankers | Passenger ships | Roll–on/roll–off ships | Others ships | Total number of ships | |
VIIRS monthly sum | 1 | ||||||||||||
Ships counted Sentinel 1 | 0.51 | 1 | |||||||||||
Exports | 0.37 | 0.59 | 1 | ||||||||||
Imports | 0.24 | 0.34 | 0.42 | 1 | |||||||||
Ships waiting | 0.17 | 0.44 | 0.82 | 0.45 | 1 | ||||||||
Ships waiting > 72 h | 0.41 | 0.68 | 0.78 | 0.25 | 0.72 | 1 | |||||||
General cargo ships | −0.20 | 0.03 | 0.23 | 0.20 | 0.54 | 0.06 | 1 | ||||||
Bulk solid ships | 0.41 | 0.50 | 0.87 | 0.39 | 0.85 | 0.80 | 0.18 | 1 | |||||
Tankers | −0.07 | 0.15 | 0.21 | 0.38 | 0.34 | 0.19 | 0.05 | 0.12 | 1 | ||||
Passenger ships | 0.09 | −0.12 | −0.48 | −0.29 | −0.62 | −0.38 | −0.34 | −0.54 | −0.31 | 1 | |||
Roll–on/roll–off ships | −0.19 | −0.06 | 0.20 | −0.15 | 0.23 | 0.26 | −0.10 | 0.13 | 0.28 | −0.36 | 1 | ||
Others ships | 0.03 | 0.03 | −0.10 | 0.29 | −0.11 | −0.13 | 0.05 | −0.14 | 0.05 | 0.12 | −0.16 | 1 | |
Total number of ships | 0.22 | 0.48 | 0.74 | 0.38 | 0.85 | 0.67 | 0.47 | 0.72 | 0.33 | −0.22 | 0.10 | −0.02 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polinov, S.; Bookman, R.; Levin, N. A Global Assessment of Night Lights as an Indicator for Shipping Activity in Anchorage Areas. Remote Sens. 2022, 14, 1079. https://doi.org/10.3390/rs14051079
Polinov S, Bookman R, Levin N. A Global Assessment of Night Lights as an Indicator for Shipping Activity in Anchorage Areas. Remote Sensing. 2022; 14(5):1079. https://doi.org/10.3390/rs14051079
Chicago/Turabian StylePolinov, Semion, Revital Bookman, and Noam Levin. 2022. "A Global Assessment of Night Lights as an Indicator for Shipping Activity in Anchorage Areas" Remote Sensing 14, no. 5: 1079. https://doi.org/10.3390/rs14051079
APA StylePolinov, S., Bookman, R., & Levin, N. (2022). A Global Assessment of Night Lights as an Indicator for Shipping Activity in Anchorage Areas. Remote Sensing, 14(5), 1079. https://doi.org/10.3390/rs14051079