A Sea Ice Concentration Estimation Methodology Utilizing ICESat-2 Photon-Counting Laser Altimeter in the Arctic
Abstract
:1. Introduction
2. Data
2.1. ICESat-2 ATLAS/ATL10 Sea Ice Freeboard Data from the Arctic
2.2. National Snow and Ice Data Center CDR Sea Ice Concentration Data
3. Methods
3.1. Sea Ice Concentration Processing Using ICESat-2 Data (IS2-SIC)
3.2. Comparative Evaluation Index
4. Results and Discussion
4.1. Spatial Variability in Sea Ice Concentration
4.2. Sea Ice Concentration and the Number of Tracks in Grid Distributions
4.3. Comparison with NSIDC/CDR Sea Ice Concentration
4.4. SIC Obtained from Weak Beams and ICESat-2 Sea Ice Thickness Product ATL07
5. Summary and Outlook
5.1. Understanding the SIC Differences between ATLAS and SSMIS
5.2. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parkinson, C.L.; Cavalieri, D.J.; Gloersen, P.; Zwally, H.J.; Comiso, J.C. Arctic Sea ice extents, areas, and trends, 1978–1996. J. Geophys. Res. Oceans 1999, 104, 20837–20856. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Vihma, T. Effects of Arctic Sea ice decline on weather and climate: A review. Surv. Geophys. 2014, 35, 1175–1214. [Google Scholar] [CrossRef] [Green Version]
- Screen, J.A.; Francis, J.A. Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability. Nat. Clim. Chang. 2016, 6, 856–860. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, C.L. A 40-y record reveals gradual Antarctic Sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proc. Natl. Acad. Sci. USA 2019, 116, 14414–14423. [Google Scholar] [CrossRef] [Green Version]
- Comiso, J.C.; Cavalieri, D.J.; Parkinson, C.L.; Gloersen, P. Passive microwave algorithms for sea ice concentration: A comparison of two techniques. Remote Sens. Environ. 1997, 60, 357–384. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Markus, T.; Ivanoff, A.; Glick, E. Assessment of AMSR-E Antarctic Winter Sea-Ice Concentrations Using Aqua MODIS. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3331–3339. [Google Scholar] [CrossRef]
- Ye, Y.; Shokr, M.; Heygster, G.; Spreen, G. Improving multiyear sea ice concentration estimates with sea ice drift. Remote Sens. 2016, 8, 397. [Google Scholar] [CrossRef] [Green Version]
- Meier, W.N.; Fetterer, F.; Savoie, M.; Mallory, S.; Duerr, R.; Stroeve, J. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 3; National Snow and Ice Data Center (NSIDC): Boulder, CO, USA, 2017. [Google Scholar]
- Karvonen, J. A sea ice concentration estimation algorithm utilizing radiometer and SAR data. Cryosphere 2014, 8, 1639–1650. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, N.; Johannessen, O.M.; Pedersen, L.T.; Tonboe, R.T. Retrieval of Arctic Sea Ice Parameters by Satellite Passive Microwave Sensors: A Comparison of Eleven Sea Ice Concentration Algorithms. Geosci. Remote Sens. 2014, 52, 7233–7246. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Gloersen, P.; Campbell, W.J. Determination of sea ice parameters with the NIMBUS 7 SMMR. J. Geophys. Res. Atmos. 1984, 89, 5355–5369. [Google Scholar] [CrossRef]
- Markus, T.; Cavalieri, D.J. An enhancement of the NASA Team sea ice algorithm. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1387–1398. [Google Scholar] [CrossRef] [Green Version]
- Comiso, J.C.; Parkinson, C.L. Arctic sea ice parameters from AMSR-E data using two techniques and comparisons with sea ice from SSM/I. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Shokr, M.; Lambe, A.; Agnew, T. A new algorithm (ECICE) to estimate ice concentration from remote sensing observations: An application to 85-GHz passive microwave data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 4104–4121. [Google Scholar] [CrossRef]
- Ye, Y.; Heygster, G. Arctic multiyear ice concentration retrieval from SSM/I data using the NASA Team algorithm with dynamic tie points. In Towards an Interdisciplinary Approach in Earth System Science; Springer: Cham, Switzerland, 2015; pp. 99–108. [Google Scholar]
- Ye, Y.; Heygster, G.; Shokr, M. Improving multiyear ice concentration estimates with reanalysis air temperatures. IEEE Trans. Geosci. Remote Sens. 2015, 54, 2602–2614. [Google Scholar] [CrossRef]
- Kwok, R.; Comiso, J.C. The perennial ice cover of the Beaufort Sea from active-and passive-microwave observations. Ann. Glaciol. 1997, 25, 376–381. [Google Scholar] [CrossRef] [Green Version]
- Tonboe, R.T.; Eastwood, S.; Lavergne, T.; Sørensen, A.M.; Rathmann, N.; Dybkjær, G.; Pedersen, L.T.; Høyer, J.L.; Kern, S. The EUMETSAT sea ice concentration climate data record. Cryosphere 2016, 10, 2275–2290. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; DongChen, E.; Wang, H.; Chao, D.; Hwang, C.; Li, F.; Ai, S. Sea ice concentration over the Antarctic Ocean from satellite pulse altimetry. Sci. China Earth Sci. 2011, 54, 113–118. [Google Scholar] [CrossRef]
- Gabarro, C.; Turiel, A.; Elosegui, P.; Pla-Resina, J.A.; Portabella, M. New methodology to estimate Arctic Sea ice concentration from SMOS combining brightness temperature differences in a maximum-likelihood estimator. Cryosphere 2017, 11, 1987–2002. [Google Scholar] [CrossRef] [Green Version]
- Petty, A.A.; Holland, M.M.; Bailey, D.A.; Kurtz, N.T. Warm Arctic, increased winter sea ice growth? Geophys. Res. Lett. 2018, 45, 12922–12930. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Parrish, C.E.; Magruder, L.A.; Neuenschwander, A.L.; Forfinski-Sarkozi, N.; Alonzo, M.; Jasinski, M. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance. Remote Sens. 2019, 11, 1634. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R.; Markus, T.; Kurtz, N.T.; Petty, A.A.; Neumann, T.A.; Farrell, S.L.; Cunningham, G.F.; Hancock, D.W.; Ivanoff, A.; Wimert, J.T. Surface height and sea ice freeboard of the Arctic Ocean from ICESat-2: Characteristics and early results. J. Geophys. Res. Ocean 2019, 124, 6942–6959. [Google Scholar] [CrossRef]
- Kwok, R.; Cunningham, G.F.; Hoffmann, J.; Markus, T. Testing the ice-water discrimination and freeboard retrieval algorithms for the ICESat-2 mission. Remote Sens. Environ. 2016, 183, 13–25. [Google Scholar] [CrossRef]
- Kwok, R.; Cunningham, G.; Markus, T.; Hancock, D.; Morison, J.H.; Palm, S.P.; Farrell, S.L.; Ivanoff, A.; Wimert, J. ATLAS/ICESat-2 L3A Sea Ice Height, Version 2; NSIDC, National Snow and Ice Data Center: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Kwok, R.; Cunningham, G.F.; Kacimi, S.; Webster, M.A.; Kurtz, N.T.; Petty, A.A. Decay of the snow cover over Arctic Sea ice from ICESat-2 acquisitions during summer melt in 2019. Geophys. Res. Lett. 2020, 47, e2020GL088209. [Google Scholar] [CrossRef]
- Kwok, R.; Cunningham, G.F.; Hancock, D. ‘ICESat-2 Algorithm Theoretical Basis Document for Sea Ice Products (ATL07 & ATL10)’. 2019. Available online: https://icesat-2.gsfc.nasa.gov/sites/default/files/page_files/ICESat2_ATL07_ATL10_ATBD_r004.pdf (accessed on 1 December 2021).
- Kwok, R.; Cunningham, G.; Hancock, D.; Ivanoff, A.; Wimert, J. Ice, Cloud, and Land Elevation Satellite (ICESat-2) Algorithm Theoretical Basis Document (ATBD) for Sea Ice Products; National Aeronautics and Space Administration: Washington, DC, USA; Goddard Space Flight Centre: Greenbelt, MD, USA, 2019.
- Kwok, R.; Kacimi, S.; Markus, T.; Kurtz, N.T.; Studinger, M.; Sonntag, J.G.; Manizade, S.S.; Boisvert, L.N.; Harbeck, J.P. ICESat-2 surface height and sea ice freeboard assessed with ATM lidar acquisitions from Operation IceBridge. Geophys. Res. Lett. 2019, 46, 11228–11236. [Google Scholar] [CrossRef]
- Peng, G.; Meier, W.N.; Scott, D.J.; Savoie, M.H. A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth Syst. Sci. Data 2013, 5, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Brucker, L.; Cavalieri, D.J.; Markus, T.; Ivanoff, A. NASA Team 2 Sea Ice Concentration Algorithm Retrieval Uncertainty. Geosci. Remote Sens. 2014, 52, 7336–7352. [Google Scholar] [CrossRef]
- Kwok, R. Sea ice convergence along the Arctic coasts of Greenland and the Canadian Arctic Archipelago: Variability and extremes (1992–2014). Geophys. Res. Lett. 2015, 42, 7598–7605. [Google Scholar] [CrossRef]
- Petty, A.A.; Webster, M.; Boisvert, L.; Markus, T. The NASA Eulerian Snow on Sea Ice Model (NESOSIM) v1. 0: Initial model development and analysis. Geosci. Model Dev. 2018, 11, 4577–4602. [Google Scholar] [CrossRef] [Green Version]
- Shokr, M.; Dabboor, M. Interannual variability of young ice in the arctic estimated between 2002 and 2009. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3354–3370. [Google Scholar] [CrossRef]
- Krishfield, R.A.; Proshutinsky, A.; Tateyama, K.; Williams, W.J.; Carmack, E.C.; McLaughlin, F.A.; Timmermans, M.L. Deterioration of perennial sea ice in the Beaufort Gyre from 2003 to 2012 and its impact on the oceanic freshwater cycle. J. Geophys. Res. Ocean 2014, 119, 1271–1305. [Google Scholar] [CrossRef]
- Petty, A.A.; Hutchings, J.K.; Richter-Menge, J.A.; Tschudi, M.A. Sea ice circulation around the Beaufort Gyre: The changing role of wind forcing and the sea ice state. J. Geophys. Res. Ocean 2016, 121, 3278–3296. [Google Scholar] [CrossRef] [Green Version]
- Kern, S.; Rösel, A.; Pedersen, L.T.; Ivanova, N.; Saldo, R.; Tonboe, R.T. The impact of melt ponds on summertime microwave brightness temperatures and sea-ice concentrations. Cryosphere 2016, 10, 2217–2239. [Google Scholar] [CrossRef] [Green Version]
- Meier, W.N.; Stewart, J.S. Assessing uncertainties in sea ice extent climate indicators. Environ. Res. Lett. 2019, 14, 035005. [Google Scholar] [CrossRef]
- Laxon, S. Sea ice altimeter processing scheme at the EODC. Int. J. Remote Sens. 1994, 15, 915–924. [Google Scholar] [CrossRef]
- Zwally, H.J.; Yi, D.; Kwok, R.; Zhao, Y. ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. J. Geophys. Res. Ocean 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Laxon, S.W.; Giles, K.A.; Ridout, A.L.; Wingham, D.J.; Willatt, R.; Cullen, R.; Kwok, R.; Schweiger, A.; Zhang, J.; Haas, C.; et al. CryoSat-2 estimates of Arctic Sea ice thickness and volume. Geophys. Res. Lett. 2013, 40, 732–737. [Google Scholar] [CrossRef] [Green Version]
- Forsberg, R.; Skourup, H. Arctic Ocean gravity, geoid and sea-ice freeboard heights from ICESat and GRACE. Geophys. Res. Lett. 2005, 32, 21. [Google Scholar] [CrossRef] [Green Version]
- Farrell, S.L.; Laxon, S.W.; Mcadoo, D.C.; Yi, D.; Zwally, H.J. Five years of arctic sea ice freeboard measurements from the ice, cloud and land elevation satellite. J. Geophys. Res. Ocean 2009, 114. [Google Scholar] [CrossRef]
- Petty, A.A.; Kurtz, N.T.; Kwok, R.; Markus, T.; Neumann, T.A. Winter Arctic Sea ice thickness from ICESat-2 freeboards. J. Geophys. Res. Ocean 2020, 125, e2019JC015764. [Google Scholar] [CrossRef]
- Kacimi, S.; Kwok, R. The Antarctic Sea ice cover from ICESat-2 and CryoSat-2: Freeboard, snow depth, and ice thickness. Cryosphere 2020, 14, 4453–4474. [Google Scholar] [CrossRef]
- Pang, X.; Pu, J.; Zhao, X.; Ji, Q.; Qu, M.; Cheng, Z. Comparison between AMSR2 sea ice concentration products and pseudo-ship observations of the Arctic and Antarctic sea ice edge on cloud-free days. Remote Sens. 2018, 10, 317. [Google Scholar] [CrossRef] [Green Version]
Product | IS2-SIC | NSIDC/CDR SIC |
---|---|---|
Instrument | ATLAS | SMMR, SSM/I, SSMIS |
Satellite | ICESat-2 | DMSP-17 |
Start time | 15 September 2018 | 1 November 1978 |
Inclination angle (°) | 92 | 98.8 |
Operational altitude, R (km) | 496 | 833 |
Swath width (km) | 6 | 1394 |
Footprint | ~13 m | 15 km × 13 km |
Parameter Name | Description | Parameters of the Source |
---|---|---|
Latitude | Lat of segment center | ATL10/gtx/freeboard_beam_segment/height_segments/latitude |
Longitude | Lon of segment center | ATL10/gtx/freeboard_beam_segment/height_segments/longitude |
delta_time | Number of GPS seconds since the ATLAS SDP epoch. | ATL10/gtx/freeboard_beam_segment/height_segments/delta_time |
Segment surface type | Segment surface type: sea ice or different sea surface types, with 0, cloud-covered; 1, all other segments are non-lead snow/ice surfaces; 2~9, lead. | ATL10/gtx/freeboard_beam_segment/height_segments/height_segment_type |
Length of segment | Along-track length of segment containing n_photons_actual ATL07 length_seg) | ATL10/gtx/freeboard_beam_segment/height_segments/height_segment_length_seg |
Spacecraft Orientation | This parameter tracks the spacecraft orientation between the forward, backward and transitional flight modes. | ATL10/orbit_info/sc_orient |
Correlation Coefficient (r) | Standard Deviation (RMSE) | Mean Bias | |||||||
---|---|---|---|---|---|---|---|---|---|
Sep. | Arctic | High Latitude | Middle Latitude | Arctic | High Latitude | Middle Latitude | Arctic | High Latitude | Middle Latitude |
ATL07 strong beams | 0.7498 | 0.7530 | 0.7743 | 0.1865 | 0.1658 | 0.1766 | −0.0710 | −0.0906 | −0.0029 |
ATL10 strong beams | 0.7647 | 0.7552 | 0.7958 | 0.1848 | 0.1593 | 0.1748 | −0.0617 | −0.0833 | −0.0019 |
ATL10 weak beams | 0.7850 | 0.7702 | 0.8148 | 0.1652 | 0.1359 | 0.1674 | −0.0162 | −0.0344 | 0.0203 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Xie, H.; Guo, Y.; Tong, X.; Li, P. A Sea Ice Concentration Estimation Methodology Utilizing ICESat-2 Photon-Counting Laser Altimeter in the Arctic. Remote Sens. 2022, 14, 1130. https://doi.org/10.3390/rs14051130
Liu J, Xie H, Guo Y, Tong X, Li P. A Sea Ice Concentration Estimation Methodology Utilizing ICESat-2 Photon-Counting Laser Altimeter in the Arctic. Remote Sensing. 2022; 14(5):1130. https://doi.org/10.3390/rs14051130
Chicago/Turabian StyleLiu, Jun, Huan Xie, Yalei Guo, Xiaohua Tong, and Peinan Li. 2022. "A Sea Ice Concentration Estimation Methodology Utilizing ICESat-2 Photon-Counting Laser Altimeter in the Arctic" Remote Sensing 14, no. 5: 1130. https://doi.org/10.3390/rs14051130
APA StyleLiu, J., Xie, H., Guo, Y., Tong, X., & Li, P. (2022). A Sea Ice Concentration Estimation Methodology Utilizing ICESat-2 Photon-Counting Laser Altimeter in the Arctic. Remote Sensing, 14(5), 1130. https://doi.org/10.3390/rs14051130