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Abstract: NASA’s Ice, Cloud and land Elevation Satellite-2 (ICESat-2) mission was launched in
September 2018. The sole instrument onboard ICESat-2 is ATLAS, a highly precise laser that now
provides routine, very-high-resolution, surface height measurements across the globe, including
over the Arctic. To further improve the detection accuracy of the sea ice concentration (SIC), we
demonstrate a new processing chain that can be used to convert the along-track sea ice freeboard
products (ATL10) obtained by ICESat-2 into the SIC, with our initial efforts being focused on the
Arctic. For this conversion, we primarily make use of the classification results from the type (sea
ice or lead) and segment length data gathered from ATL10. The along-track SIC is the ratio of the
area that is covered by sea ice segments to the area of all of the along-track segments. We generated
a monthly gridded SIC product with a 25 km resolution and compared this to the NSIDC Climate
Data Record (CDR) sea ice concentration. The highest correlation was determined to be 0.7690 in
September at high latitudes and the lowest correlation was found to be 0.8595 in June at mid-latitudes.
The regions with large standard deviations in summer and autumn are mainly distributed in the
thin-ice areas at mid-latitudes. In the Laptev Sea and Kara Sea of east Siberia, the differences in the
standard deviation were large; the maximum bias was −0.1566, in November, and the minimum bias
was −0.0216, in June. ICESat-2 shows great potential for the accurate estimation of the SIC.

Keywords: arctic; ICESat-2; sea ice concentration; polar oceans; lidars

1. Introduction

Spatial–temporal changes in sea ice extent are sensitive indicators of climate change.
The sea ice concentration (SIC) is an important parameter for the study of sea ice changes.
The SIC represents the density of the sea ice in space and refers to the ratios of ice-covered
areas to the total unit area. From this definition, it follows that the SIC depends on the mea-
surement resolution. The SIC estimations are a powerful tool that can be used for research
and predictions focusing on sea ice changes and for the analysis of the interaction between
sea ice and seawater, providing an opportunity for the exploration and development of
Arctic energy and for the opening of Arctic waterways; this has become a strategic goal of
some countries [1–5].

Due to the high spatial and temporal coverage of polar regions, polar-orbiting satellites
have been key to observing changes in Arctic sea ice. Currently, visible near-infrared and
active or passive microwave remote sensing (especially passive microwave remote sensing;
PM) are commonly used to monitor the SIC [6–9]. Optical images can provide information
on sea ice coverage and area. These images are highly affected by clouds and nights and
polar nights exist in the polar regions. Therefore, this method is suitable for small areas
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with clear skies and areas that do not experience polar night periods. Conventional SAR
systems can distinguish between open water and different ice types with high resolution
through the application of different parameters, such as radar backscattering. However,
the radar backscattering coefficients of sea ice and open water might vary significantly
under different environmental conditions, indicating the need for additional information
(e.g., polarimetry) for improved ice monitoring [10]. Since the launch of the Scanning
Multichannel Microwave Radiometer (SMMR) in 1978, continuous observation data have
been available, creating the advantages of large coverage and a short re-entry period.
Passive microwave remote sensing data have become the main data source for long-
term series and large-scale research on polar sea ice [11]. The main algorithms for SIC
inversion using microwave radiometer brightness temperature data include the bootstrap
(BT) algorithm and the NASA team (NT) algorithm developed by the NASA Goddard
Space Flight Center [12]. The European Organization for the Exploitation of Meteorological
Satellites (EUMETSAT) has released quasi-real-time SIC data called OSI-SAF. The OSI
SAF algorithm combines the Bristol algorithm and the bootstrap (BT) algorithm. How to
interpret the mixed sea ice and seawater pixels is the key for the application of passive
microwave remote-sensing technology [13–19].

Radar altimeters measure the heights to the bottom of a snow layer. Some scholars
use the ERS-1(a radar) echo waveform data (ERS.ALT WAP) to determine the SIC [20]. The
basic algorithm judges whether the illuminated area is sea ice or seawater based on the
echo waveforms that are collected along the track. By gridding the study area to a certain
scale, each grid can be roughly covered by the radar’s illuminated area, so that the SIC of
the sea area can be calculated. The techniques used to date to estimate the SIC have some
limitations, such as the influence of the atmosphere, the physical temperature of the ice and
the presence of snow and melt [21]. ICESat-2 was launched by National Aeronautics and
Space Administration (NASA) in September 2018 to probe the Earth’s surface with three
pairs of laser beams. ICESat-2 utilizes photon-counting techniques to achieve higher spatial
resolutions and it is expected that this will improve the accuracy of SIC detection and that
it will allow us to explore new data sources as useful complements to optical imaging [22].
However, no SIC products have been estimated using IS-2 data as of yet.

Therefore, this study proposes a method that can be implemented to obtain the SIC
based on ICESat-2 using the ATL10 sea ice freeboard products and compares and evaluates
these new SIC estimates with National Snow and Ice Data Center’s (NSIDC) CDR SIC
products. In the following sections, we describe the ATL10 freeboard data, the NSIDC/CDR
SIC data that are utilized here (Section 2) and the approach that we used to estimate the SIC
(Section 3). We demonstrate the production of gridded fields to obtain sea ice concentration
data, highlight the regional and seasonal variability in these fields and make a comparison
with coincident estimates obtained from the NSIDC/CDR SIC data (Section 4). We draw
our conclusions in Section 5.

2. Data
2.1. ICESat-2 ATLAS/ATL10 Sea Ice Freeboard Data from the Arctic

The laser altimeter that is onboard ICESat-2 is known as the photon-counting Ad-
vanced Topographic Laser Altimeter System (ATLAS) [23]. The time tags of detected
single-photon events are recorded based on the time-of-flight ranging principle. The laser
emission frequency is 10 kHz. Each pair of beams contains a strong beam and a weak
beam. According to the satellite orbit height and satellite motion speed of ICESat-2, laser
footprints that are about 13 m in size are created on the Earth’s surface, each of which are
located 0.7 m apart. The vertical orbit distance of each pair of beams is about 3.3 km and
the vertical orbit distance between the strong and weak beams in each pair of beams is
about 90 m [24].

We used the ICESat-2 ATL10 sea ice freeboard products (Release 003), which are
available to the public through NSIDC [25]. ICESat-2 has 21 standard data products that
are divided into three levels, namely, ATL01~ATL21. ATL10 uses all of the available sea
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surface height measurements to estimate the sea ice freeboard at a specific spatial scale,
including the estimation of statistics regarding sea surface and sea ice height. The data
are stored in the H5 file format [26–30]. The ATL10 products provide freeboard estimates
within 10 km segments that include at least one sea surface reference. The local sea surface
reference height(h_ref) is from available lead(s) within a 10 km segment and each lead
may contain one or more consecutive sea surface height segments (SSHseg). The freeboard
height (h_f) is calculated as the difference between the surface height (h_s) and the local sea
surface reference (i.e., h_f = h_s − h_ref). In ATL10, the freeboard is only provided if the
SIC is above 50% and if the height of the sample is at least 50 km from the coast (to avoid
uncertainty in coastal tide correction). More details on the sea ice algorithms can be found
in [30]. Based on the work in [31], the freeboard height of IS-2 was assessed first.

For sea ice profiling, individual segment heights are produced from each beam using
150-photon aggregates in an effort to produce the heights, as described in the ATL07 sea
ice/sea surface height product description and Algorithm Theoretical Basis Document. The
IS-2 ATL03 photon datasets, as well as the ATL07 and ATL10 freeboard data, are shown
in Figure 1. The ATL07 removes the mean sea surface (MSS) heights, which are bilinearly
interpolated to the photon locations.
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Figure 1. Profile of ATL03 photons (gray dots) from the strong Beam 6 (gt1l in this orbit cycle). These
data were collected on 2 June 2019; along-track surface height profiles from ATL07 (blue line) and
ATL10 freeboard data (red line) for a small (~1 km) profile (location in 83.7 N, 101.9 W).

2.2. National Snow and Ice Data Center CDR Sea Ice Concentration Data

We compared our IS-2 SIC with the NSIDC/CDR SIC estimated from an SSMIS (Special
Sensor Microwave Imager Sounder) mounted on DMSP-F17 (Defense Meteorological
Satellite Program). We used the ATL10 data from 1 January 2019 to 31 December 2019 and
selected the CDR SIC data from the same period for a comparative analysis. Near-real-time
daily data from CDR version 4 were obtained from NSIDC. These data comprise polar
stereographic projections with a grid cell size of 25 × 25 km. The principle of the inversion
algorithm is to use the relationship between the brightness temperature value and the
polarization mode of different sea ice types in different microwave channels. The CDR was
generated using an algorithm that was derived by combing the NASA Team and bootstrap
algorithms [32,33]. Table 1 presents the parameter comparison between SSMIS and ATLAS.
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Table 1. Comparison of parameters between SSMIS and ATLAS.

Product IS2-SIC NSIDC/CDR SIC

Instrument ATLAS SMMR, SSM/I, SSMIS
Satellite ICESat-2 DMSP-17

Start time 15 September 2018 1 November 1978
Inclination angle (◦) 92 98.8

Operational altitude, R (km) 496 833
Swath width (km) 6 1394

Footprint ~13 m 15 km × 13 km

3. Methods
3.1. Sea Ice Concentration Processing Using ICESat-2 Data (IS2-SIC)

The ICESat-2 ATL10 freeboard dataset for the Arctic was preprocessed to obtain the
longitude, latitude, delta time and segment length. After preprocessing the ATL10 data,
the time resolution was set to one month and the spatial resolution was set as a 25 km grid.
Polar stereographic projection was used and the data were calculated by grid. We used the
classification results from the ATL10 products to determine the type (sea ice or lead). The
coverage area of the segment, which is the area of a circle whose diameter is the segment
length, needed to be calculated. The number of tracks, the number of segments and the
segment distribution in each grid affect the SIC estimation accuracy. When the segments
are uniformly distributed within the grid, it can be assumed that the along-track SIC in
the grid is equal to the actual SIC of that grid. The along-track SIC is the ratio of the area
that is covered by sea ice segments to the area of all of the along-track segments. Segments
that are only distributed on a small part of the grid cannot be representative of the whole
grid due to severe data scarcity. If the latitude difference between the segments in the grid
is less than 0.1 degrees, or if there are no segments in the grid, then we do not calculate
the SIC for that grid. A schematic of the method that was used in this study is shown in
Figure 2. This method mainly included the steps below.
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Figure 2. Schematic of the method used in this study to derive the sea ice concentration. The blue
points indicate that the segment surface type is leads; the white points indicate that the segment
surface type is sea ice. I denotes the SIC of the grid.

First, we extracted the longitude, latitude, delta time, segment surface type, seg-
ment length and Spacecraft Orientation parameters from the ATL10 freeboard data. The
parameters used in the present study are summarized in Table 2.
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Table 2. ATL10 parameters used in the paper.

Parameter Name Description Parameters of the Source

Latitude Lat of segment center ATL10/gtx/freeboard_beam_seg-
ment/height_segments/latitude

Longitude Lon of segment center ATL10/gtx/freeboard_beam_seg-
ment/height_segments/longitude

delta_time Number of GPS seconds since
the ATLAS SDP epoch.

ATL10/gtx/freeboard_beam_seg-
ment/height_segments/delta_time

Segment surface type

Segment surface type: sea ice or different
sea surface types, with 0, cloud-covered;
1, all other segments are non-lead snow/
ice surfaces; 2~9, lead.

ATL10/gtx/freeboard_beam_seg-
ment/height_segments/height_segment_type

Length of segment Along-track length of segment containing
n_photons_actual ATL07 length_seg)

ATL10/gtx/freeboard_beam_seg-
ment/height_segments/height_segment_length_seg

Spacecraft Orientation
This parameter tracks the spacecraft
orientation between the forward, backward
and transitional flight modes.

ATL10/orbit_info/sc_orient

We used the strong beams (Beam 1l, 2l and 3l) to calculate the SIC. In this paper, the
flight direction parameter sc_orient was used to judge the strong and weak beams. This
parameter tracks the direction of the spacecraft between forward flight mode, backward
flight mode and transition flight mode. Its values are 0, 1 and 2. When the strong beam
guides the weak beam, the backward flight mode is being used, sc_orient = 0 and the
strong beam is on the left. When the weak beam guides the strong beam, ICESat-2 flies
forward, sc_orient = 1 and the strong beam is on the right. ICESat-2 is considered to be in a
transitional state when it is moving between the two directions; in this case, sc_orient = 2
and the data quality may deteriorate during the transition process. The segment length of
the strong beam ranges from 10 m to 200 m (average of 15 m) and the segment length of
the weak beam ranges from 40 m to 800 m (average of 60 m). When calculating the spatial
resolution of the segments, the segment length of a single laser footprint is 14 m; that is,
the average segment length of strong beam ranges is ~30 m and that of the weak beam
is ~75 m. Based on the value of the flight direction parameter, the strong beam in ATL10
was retained. Only the strong beam was used in the subsequent calculations, as it provides
higher along-track resolutions than the weak beams due to their smaller segment length,
improving the calculation accuracy.

Second, the spatial distribution of the SIC varies with the climate temperature, so
we divided the ATL10 by month according to the delta_time and calculated the SIC for
different months. For the monthly ATL10, we applied the monthly ATL10 data to the
NSIDC 25 × 25 km polar stereographic grid according to the latitude and longitude in-
formation in order for it to be consistent with the international products. The coordinate
origin was located at the North Pole, the standard latitude line was 70 N and the grid
included 304 columns and 448 rows. The longitude and latitude corresponding to each grid
were provided by the NSIDC website (https://nsidc.org/data/polar-stereo/ps_grids.html,
accessed on 1 December 2021).

The SIC of each grid in different months could be calculated for each monthly gridded
ATL10, such as the SIC of the October grid. The SIC of a grid I is equal to the sea ice area in
the grid divided by the area of the grid, which can be calculated as follows:

I =
SI
S

× 100% (1)

where SI is the sea ice area in the grid and S is the area of the grid. When the segments are
uniformly distributed within the grid, it is assumed that the SIC of the grid I is equal to the

https://nsidc.org/data/polar-stereo/ps_grids.html
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along-track SIC. The along-track SIC Itrack can be obtained based on the ATL10 freeboard
data. Based on Equation (1), the formula to calculate the along-track SIC Itrack in the grid is

Itrack = SI_track/Strack (2)

SI_track =
N

∑
i=1

Pi

∑
j=1

π(Lij /2)2·k·Wij (3)

Strack =
N

∑
i=1

Pi

∑
j=1

π(Lij /2)2k (4)

where SI_track is the area of along-track sea ice, Strack is the along-track area, N is the number
of tracks in the grid, Pi is the number of segments along the track i in the grid and ϕij is the
latitude. Lij is the segment length, so the segment-covered area can be calculated as a circle
with a diameter of π(Lij /2)2. Wij is the surface type of the segment, where 1 indicates an
ice/snow surface and 0 indicates a non-snow/ice surface. The segment surface type can be
obtained from the parameter seg_surf_type (Table 2). k is the projection deformation factor
in the latitude direction and we use the polar stereographic projection k = cos ϕij.

The SIC for each grid needs to be calculated separately to determine the monthly
gridded SIC products. Substitute SI_track and Strack in Formula (1) as SI and S, respectively.
According to the assumptions, I = Itrack. When all of the segments in the grid have ice-
and snow-covered surfaces, SI_track = Strack, then I = 1; when all segments are leads,
SI_track = 0 and I = 0. The actual situation is somewhere in between, where the range of I
is (0, 1). The ICESat-2 SIC processing algorithm is shown in Figure 3.
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Figure 3. ICESat-2 sea-ice-concentration processing algorithm. Figure 3. ICESat-2 sea-ice-concentration processing algorithm.

The ATL10 along-track height segments overlap with each other over at least half of
the length of the segment. To analyze the effect of segment overlapping on the results, we
used three methods to calculate the sea ice concentration and a diagram representing the
segment overlap area is shown in Figure 4.
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Figure 4. Segment overlap area diagram. Selected grid location in the Arctic Ocean (left); in this grid
(middle), all of the segments with white dots represent a sea ice segment and blue dots represent
lead; several segment areas are shown to overlap in the grid (right).

A. Use all of the segments within the grid with approximately 50% overlap (e.g.,
segment 1 and segment 2). The SIC is 0.79263. The selected grid has 14 tracks and
19,394 segments, including 16,695 sea ice segments.

B. Take a segment at an interval (e.g., segment 1 and segment 3) where only half of the
data are used and where there is a small overlap of about 5% between the segments. There
are 9698 segments (including 8349 sea ice segments) and the SIC is 0.79261.

C. Take a segment at two intervals (e.g., segment 1 and segment 4) and use 1/3 of the
data. The segments do not overlap at all. There are 6464 segments (including 5558 sea ice
segments) and the SIC is 0.79255.

The areas of the segments overlap and when the ratio of the sea ice area to the total
area is calculated, they cancel each other out. Therefore, the differences in the SIC grid
estimated by these three methods are small and the differences begin to differ from the
fourth decimal place onwards. Therefore, in order to make full use of the observed data,
we used all of the segments to calculate the SIC.

3.2. Comparative Evaluation Index

Through the above steps, the monthly gridded SIC products were obtained. The IS-2
SIC can be assessed in comparison with the NSIDC/CDR SIC by using the mean bias,
root-mean-squared error (RMSE) and correlation coefficient (r). In a unified coordinate
grid, according to the latitude and longitude of the center location of the grid, the grid cor-
responding to the relationship between the ICESat-2 products and NSIDC/CDR products
with a 25 km resolution was found. The mean bias and RMSE can be expressed as

Bias =

n
∑

j=1
(Ij − Nj)

n
(5)

RMSE =

√√√√√ n
∑

j=1
(Ij − Nj)

2

n
(6)

where Ij is the monthly gridded ICESat-2 SIC; Nj is the monthly gridded NSIDC/CDR
SIC; j is the serial number of the grid; and n is the total number of matching grids in the
sea ice area.

r =
E((Ij − µIS−2)(Nj − µN))

σIS−2σN
(7)
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where σIS−2 and σN represent the standard deviation of the ICESat-2 SIC and NSIDC/CDR
SIC and µIS−2 and µN represent the average values of ICESat-2 SIC and NSIDC/CDR
SIC, respectively.

4. Results and Discussion

In this study, monthly gridded SIC products were obtained using ICESat-2 ATL10 data
for the entire Arctic for the entirety of the year 2019. The spatial distribution characteristics
and time change characteristics were analyzed and the validation data were selected from
the NSIDC/CDR SIC products. To ensure the reliability of the analysis results, potential
outliers needed to be filtered out based on the three-sigma rule.

We analyzed the results obtained in the Central Arctic, Beaufort Sea, Chukchi Sea,
East Siberian Sea, Laptev Sea, Kara and Barents Sea, Greenland Sea, Baffin Bay Sea, Bering
Sea and Canadian Archipelago. The “Arctic Ocean” domain includes the Central Arctic,
Beaufort Sea, Chukchi Sea, East Siberian Sea and Laptev Sea. A map of these regions is
shown in Figure 5.
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Figure 5. Map of the Arctic highlighting the various study regions analyzed: Arctic Ocean (Cen-
tral Arctic, Beaufort Sea, Chukchi Sea, East Siberian Sea and Laptev Sea); Kara and Barents Seas;
Greenland Sea; Baffin Bay Sea; Bering Sea; Canadian Archipelago.

4.1. Spatial Variability in Sea Ice Concentration

The monthly maps of our SIC estimates from three strong beams for 2019 in the entire
Arctic are shown in Figure 6. Due to a spacecraft anomaly, there was an observation gap
between 26 June and 26 July 2019.
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Figure 6. Monthly (from January to December) sea ice concentration from ICESat-2.

Across all months, the SIC showed a general increase toward the coastlines of Green-
land and the Canadian Archipelago, which is the region where ice convergence is often
observed and where there is consistently older ice and snow [34,35]. Our estimates of the
spatial variability in the SIC are entirely reasonable. The SIC of the newly formed first year
ice (FYI) region in the Beaufort/Chukchi Sea and the eastern part of the Arctic Ocean was
less than 0.7~0.8 and the SIC of the older and deformed multiyear ice (MYI) region in the
Central Arctic was about 0.9~1.

Maximum Arctic Sea ice coverage occurred in March; the minimum was observed in
September and it was stable in March and April. The glacial period spans from October to
March and the melting period is from May to September. During the melting period (from
May to September), the ice-covered area was smaller than it was during the freezing period
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(from October to March). The area that was covered by the MYI was relatively stable. After
the summer melt, the FYI only accounted for about 10% of the area and the MYI accounted
for the majority of the area in September. The observational gap caused by the spacecraft
anomaly may result in smaller sea ice coverage being observed in July compared to August.

In October, late sea ice freeze-up was observed across the East Siberian Sea region
(location circled in red). In November, there was an increase in the ice coverage toward the
southern Arctic peripheral seas, including in the Chukchi Sea, East Siberian Sea, Laptev
Sea, Kara Sea and Baffin Bay, indicating the formation of relatively new ice. November
was the month where thin, young ice showed its maximum extension; this was especially
the case through the Beaufort Sea since the ice in the Laptev and Kara seas remains thin
throughout winter (from 1 December to 30 February) [36]. In December, the coverage
extended through the Bering Strait and Canadian Archipelago. December showed a higher
SIC through the southern Beaufort Sea, which is likely due to the anticyclonic drift of the
Beaufort Gyre driving the import of older ice from the Central Arctic [37,38]. In January,
the ice extended further south, including the ice in the Bering Sea. In Section 4.2, we show
binned SIC estimates, which enabled us to produce monthly differences and to estimate
the spatial patterns of the changes in the seasonal SIC more quantitatively.

4.2. Sea Ice Concentration and the Number of Tracks in Grid Distributions

In this section, we calculated the seasonal evolution of the monthly number of tracks
in the grid and the SIC distribution in the Arctic for 2019, which is shown in Figure 7. Maps
of the Arctic region are provided in Figure 5. The mean monthly SIC values increased from
0.74 to 0.82 (from January to May) and then began to decrease to 0.47, which was the mini-
mum value in August, before they finally increased to 0.68. The SIC distribution showed a
unimodal distribution from June to November and monotonic increases in January, Febru-
ary, March, April, May and December. Initially, the SIC showed a unimodal distribution
from early spring (June) to the end of fall (November) and the bimodal distribution curve
in August was flat. The Arctic is dominated by the MYI. The SIC distribution increased
monotonically in winter.
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Figure 7. Monthly (from January to December) histograms of the number of tracks in the grid (left)
and the sea ice concentration within this Arctic domain (right). The lines are plotted through the bin
centers of the underlying histogram values using a bin width of 0.03. The vertical lines show the
mean monthly values for all data within this Arctic domain.

The seasonal evolution of the regional SIC distributions across all six of our Arctic
study regions is shown in Figure 8. The Arctic Ocean includes the Central Arctic, Beaufort,
Chukchi, E. Siberian and Laptev regions. The MYI in the Central Arctic region was thicker
than it was in all of the regions and we saw in this more reduced Arctic domains than in the
all-Arctic region. A gradual monotonic increase in the sea ice thickness could be observed
from January to May. The Arctic Ocean region had the greatest sea ice thickness among
all of the regions. The SIC distribution from January to June showed a monotonically
increasing distribution curve, with an average SIC of 0.84 and a maximum mean SIC value
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of 0.90 in May. The mean value started to decrease in June and the lowest mean SIC dropped
to 0.49 in August, decreasing by about 0.40. The curve increased monotonically from June
to November and, from October to December, the SIC distribution showed another gradual
monotonic increasing trend (the mean SIC was 0.62 in October, 0.63 in November and 0.73
in December).
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Figure 8. Monthly (from January to December in 2019) histograms of the regional sea ice concentration.
The Arctic Ocean includes the Central Arctic, Beaufort, Chukchi, E. Siberian and Laptev regions:
(a) Arctic Ocean; (b) Canadian Archipelago; (c) Baffin Bay; (d) Greenland Sea; (e) Kara and Barents
Seas; (f) Bering Sea. The lines are plotted through the bin centers of the underlying histogram values
using a bin width of 0.03. The dashed lines show the mean monthly values for all data within this
Arctic domain. The Y axis is unified to 0~0.2.

The SIC in the Canadian Archipelago Sea was 0.88 in January; it began to decrease in
June, reached a minimum of 0.34 in August and then gradually increased and rose to 0.79
in December. The SIC fluctuated greatly. This is because thinner FYI grows faster. There
was no sea ice cover in the Kara Sea from July to October, but the sea ice cover increased
from November to December and, from January to June, the SIC increased gradually. The
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Barents Sea was largely free of sea ice throughout the year. The initial decline in the SIC
in the Barents and Kara Seas appeared to be due to the presence of FYI throughout the
study area, with the winter seasonal variation in the FYI SIC distribution being stronger
(the distribution flattened/widened) than the MYI one.

4.3. Comparison with NSIDC/CDR Sea Ice Concentration

We compared our monthly IS-2 SIC estimates with the NSIDC/CDR SIC product.
The CDR product is the daily SIC of the Arctic and the data coverage is different every
day. The data are accumulated and averaged and are finally integrated into the monthly
SIC. The grid has 304 columns and 448 rows. The grid values from 1 to 250 were retained
and normalized to 0~1. The values that were outside of this range, such 251,252, were
filtered out because these are fill values and represent other land cover types, such as land,
lakes, etc. The spatial distribution of the SIC bias determined using the NSIDC/CDR and
ICESat-2 data is shown in Figures 9–11.

The Chukchi Sea and the East Siberian Sea are close to 70◦N and the Laptev Sea is
located at about 80◦N, so 70◦N and 80◦N were taken as the cut-off points and the Arctic
region was divided into areas with a high SIC in high latitude regions (80◦~90◦N) and
areas with a low SIC in mid-latitude regions (70◦~80◦N). The bias of the SIC estimated
determined by ATLAS and SSMIS at different latitudes were compared and analyzed. The
consistency of Arctic region data and other remote sensing data can be further verified and
analyzed through comparison and bias, the RMSE and the correlation coefficient. The full
comparison statistics for the correlation coefficient (r), mean bias and standard deviation
for January–December are shown in Figures 12 and 13.
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Figure 9. Comparisons of the gridded 2019 IS2 SIC data with NASA NSIDC/CDR SIC: (Left) ICESat-
2 SIC; (Middle) NSIDC/CDR SIC; (Right) ICESat-2 SIC minus NSIDC/CDR SIC for the period be-
tween January and April 2019. 
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The Chukchi Sea and the East Siberian Sea are close to 70° N and the Laptev Sea is 
located at about 80° N, so 70° N and 80° N were taken as the cut-off points and the Arctic 
region was divided into areas with a high SIC in high latitude regions (80°~90° N) and 
areas with a low SIC in mid-latitude regions (70°~80° N). The bias of the SIC estimated 
determined by ATLAS and SSMIS at different latitudes were compared and analyzed. The 
consistency of Arctic region data and other remote sensing data can be further verified 
and analyzed through comparison and bias, the RMSE and the correlation coefficient. The 
full comparison statistics for the correlation coefficient (r), mean bias and standard devia-
tion for January–December are shown in Figures 12 and 13. 

The correlation was between 0.37 and 0.77. Across the Arctic, the correlation was the 
highest in September (r = 0.7690) and the lowest in November (r = 0.3717). At high lati-
tudes, the highest correlation was in September (r = 0.7604) and the lowest was in May (r 
= 0.2681). At middle latitudes, the highest correlation was in June (r = 0.8595) and the low-
est correlation was in July (r = 0.5340). In July, the IS-2 SIC coverage area was smaller than 
that of the NSIDC/CDR coverage area. This observational gap may result in a smaller sea 
ice coverage in July compared to August. With the exception of July 2019, the other IS-2 
SIC maps showed good consistency in terms of the spatial distribution of the SIC. On the 
other hand, during summer in the Northern Hemisphere, which is in July, the sea ice that 
appears on a large number of melting pools influences the SIC estimations [33,39]. After 
the melting pool appears on the surface of the sea ice, its albedo, brightness, temperature 
and other characteristics are close to those of seawater and it is difficult to effectively dis-
tinguish the data obtained by microwave radiation sensors effectively. Therefore, it is easy 
to underestimate the SIC when calculating the sea ice coverage area in the grid [40]. 

When comparing the NSIDC/CDR SIC and SICCI (European Space Agency’s climate 
change initiative sea ice project) products, it was found that the NSIDC product was better 
than the SICCI product in terms of reflecting the high-latitude and high-SIC regions, es-
pecially the regions near the North Pole. Analyzing the correlation coefficient between the 
IS-2 SIC and NSIDC/CDR SIC products enables a linear correlation in the Arctic region, 
but this is not enough to evaluate the product accuracy. The statistical results show that it 
is still effective to study the seasonal variation in the SIC using ATL10 and more work is 
needed to understand possible biases in the IS-2 data to increase our confidence in these 
findings. 

Figure 11. Same as Figure 9: (Left) ICESat-2 SIC; (Middle) NSIDC/CDR SIC; (Right) ICESat-2 SIC
minus NSIDC/CDR SIC for the period between September and December 2019.

Remote Sens. 2022, 14, 1130 17 of 23 
 

 

 
Figure 12. Variation curves of the correlation coefficient, mean bias and standard deviation between 
IS2 SIC and NSIDC/CDR SIC in Arctic from summer to autumn in 2019. 

  
(a) (b) 

Figure 13. Variation curves of the correlation coefficient, mean bias and standard deviation between 
IS2 SIC and NSIDC/CDR SIC from summer to autumn in 2019: (a) high latitudes; (b) mid-latitudes. 

The mean bias was 2ICESatI −  minus NSIDCI , which is negative, meaning that 2ICESatI −  
was less than NSIDCI . The SIC bias decreased as the latitude increased and was negative 
at high latitudes. The mean bias south of 80° N was due to the different resolutions of 
individual islands, narrow channels and bays with different sea ice concentration inver-
sion capabilities. In the Arctic region, the maximum bias was −0.1566 in November (RMSE 
= 0.3139) and the minimum bias was −0.0174 in May (RMSE = 0.1805). In high-latitude 
regions, the maximum bias was −0.1722 in November (RMSE = 0.2211) and the minimum 
bias was −0.0216 in June (RMSE = 0.0771). At mid-latitudes, the maximum bias was −0.0737 
and the RMSE 0.1693 in December; the minimum bias was −0.0016 in June (RMSE= 0.1202). 
In spring (from March to June) and autumn (from September to November), the RMSE in 
the sea ice margin and inland region was larger and the bias was larger the closer it was 
to the region. In summer, the bias decreased to the minimum in June. The bias of highly 
concentrated regions was smaller than that of mid-latitude regions and the biases of the 
East Siberia, Laptev Sea and Kara Sea were larger. In winter, sea ice began to freeze rapidly 
and the biases of areas with high concentrations of ice cover decreased. 

The bias and RMSE were small, probably because of the larger number of segments, 
so the estimated SIC was more accurate. The grids with a large bias and RMSE had the 
following characteristics: ice areas with small, dispersed water areas; low-concentration 
ice areas with more crushed ice; areas with blurred boundaries between ice and water; 
and areas where thick crushed ice and thinner melting ice coexisted. The reasons for the 
increases in the bias lay mainly in the fact that two products can have different inversion 

Figure 12. Variation curves of the correlation coefficient, mean bias and standard deviation between
IS2 SIC and NSIDC/CDR SIC in Arctic from summer to autumn in 2019.

Remote Sens. 2022, 14, 1130 17 of 23 
 

 

 
Figure 12. Variation curves of the correlation coefficient, mean bias and standard deviation between 
IS2 SIC and NSIDC/CDR SIC in Arctic from summer to autumn in 2019. 

  
(a) (b) 

Figure 13. Variation curves of the correlation coefficient, mean bias and standard deviation between 
IS2 SIC and NSIDC/CDR SIC from summer to autumn in 2019: (a) high latitudes; (b) mid-latitudes. 

The mean bias was 2ICESatI −  minus NSIDCI , which is negative, meaning that 2ICESatI −  
was less than NSIDCI . The SIC bias decreased as the latitude increased and was negative 
at high latitudes. The mean bias south of 80° N was due to the different resolutions of 
individual islands, narrow channels and bays with different sea ice concentration inver-
sion capabilities. In the Arctic region, the maximum bias was −0.1566 in November (RMSE 
= 0.3139) and the minimum bias was −0.0174 in May (RMSE = 0.1805). In high-latitude 
regions, the maximum bias was −0.1722 in November (RMSE = 0.2211) and the minimum 
bias was −0.0216 in June (RMSE = 0.0771). At mid-latitudes, the maximum bias was −0.0737 
and the RMSE 0.1693 in December; the minimum bias was −0.0016 in June (RMSE= 0.1202). 
In spring (from March to June) and autumn (from September to November), the RMSE in 
the sea ice margin and inland region was larger and the bias was larger the closer it was 
to the region. In summer, the bias decreased to the minimum in June. The bias of highly 
concentrated regions was smaller than that of mid-latitude regions and the biases of the 
East Siberia, Laptev Sea and Kara Sea were larger. In winter, sea ice began to freeze rapidly 
and the biases of areas with high concentrations of ice cover decreased. 

The bias and RMSE were small, probably because of the larger number of segments, 
so the estimated SIC was more accurate. The grids with a large bias and RMSE had the 
following characteristics: ice areas with small, dispersed water areas; low-concentration 
ice areas with more crushed ice; areas with blurred boundaries between ice and water; 
and areas where thick crushed ice and thinner melting ice coexisted. The reasons for the 
increases in the bias lay mainly in the fact that two products can have different inversion 

Figure 13. Variation curves of the correlation coefficient, mean bias and standard deviation between
IS2 SIC and NSIDC/CDR SIC from summer to autumn in 2019: (a) high latitudes; (b) mid-latitudes.



Remote Sens. 2022, 14, 1130 17 of 22

The correlation was between 0.37 and 0.77. Across the Arctic, the correlation was
the highest in September (r = 0.7690) and the lowest in November (r = 0.3717). At high
latitudes, the highest correlation was in September (r = 0.7604) and the lowest was in May
(r = 0.2681). At middle latitudes, the highest correlation was in June (r = 0.8595) and the
lowest correlation was in July (r = 0.5340). In July, the IS-2 SIC coverage area was smaller
than that of the NSIDC/CDR coverage area. This observational gap may result in a smaller
sea ice coverage in July compared to August. With the exception of July 2019, the other IS-2
SIC maps showed good consistency in terms of the spatial distribution of the SIC. On the
other hand, during summer in the Northern Hemisphere, which is in July, the sea ice that
appears on a large number of melting pools influences the SIC estimations [33,39]. After
the melting pool appears on the surface of the sea ice, its albedo, brightness, temperature
and other characteristics are close to those of seawater and it is difficult to effectively
distinguish the data obtained by microwave radiation sensors effectively. Therefore, it is
easy to underestimate the SIC when calculating the sea ice coverage area in the grid [40].

When comparing the NSIDC/CDR SIC and SICCI (European Space Agency’s climate
change initiative sea ice project) products, it was found that the NSIDC product was
better than the SICCI product in terms of reflecting the high-latitude and high-SIC regions,
especially the regions near the North Pole. Analyzing the correlation coefficient between the
IS-2 SIC and NSIDC/CDR SIC products enables a linear correlation in the Arctic region, but
this is not enough to evaluate the product accuracy. The statistical results show that it is still
effective to study the seasonal variation in the SIC using ATL10 and more work is needed
to understand possible biases in the IS-2 data to increase our confidence in these findings.

The mean bias was IICESat−2 minus INSIDC, which is negative, meaning that IICESat−2
was less than INSIDC. The SIC bias decreased as the latitude increased and was nega-
tive at high latitudes. The mean bias south of 80◦N was due to the different resolutions
of individual islands, narrow channels and bays with different sea ice concentration in-
version capabilities. In the Arctic region, the maximum bias was −0.1566 in November
(RMSE = 0.3139) and the minimum bias was −0.0174 in May (RMSE = 0.1805). In high-
latitude regions, the maximum bias was −0.1722 in November (RMSE = 0.2211) and the
minimum bias was −0.0216 in June (RMSE = 0.0771). At mid-latitudes, the maximum
bias was −0.0737 and the RMSE 0.1693 in December; the minimum bias was −0.0016 in
June (RMSE= 0.1202). In spring (from March to June) and autumn (from September to
November), the RMSE in the sea ice margin and inland region was larger and the bias was
larger the closer it was to the region. In summer, the bias decreased to the minimum in June.
The bias of highly concentrated regions was smaller than that of mid-latitude regions and
the biases of the East Siberia, Laptev Sea and Kara Sea were larger. In winter, sea ice began
to freeze rapidly and the biases of areas with high concentrations of ice cover decreased.

The bias and RMSE were small, probably because of the larger number of segments,
so the estimated SIC was more accurate. The grids with a large bias and RMSE had the
following characteristics: ice areas with small, dispersed water areas; low-concentration ice
areas with more crushed ice; areas with blurred boundaries between ice and water; and ar-
eas where thick crushed ice and thinner melting ice coexisted. The reasons for the increases
in the bias lay mainly in the fact that two products can have different inversion algorithms
based on different principles in different frequencies bands as well as differences in the
identification of melt pools and interglacial waterways with different spatial resolutions.

Different scholars have proposed different methods to classify ice and water via satel-
lite altimetry. The authors of [41] used the pulse peak (PP) as a waveform classification
index and distinguished the sea ice and interglacial channel by analyzing the echo wave-
form. Reference [42] took the lowest elevation point on the ICESat satellite track (the
average of the lowest 2% of the difference between the observed height and the 50 km mean
height) as the elevation of the interglacial channel. The authors of [43] used a Gaussian
model to fit the echo waveform and based on the original PP index of the CryoSat-2 data
and the pulse-cumulative standard deviation (CSD) index was added to identify the inter-
glacial channels. Reference [44] used the least-squares configuration adjustment method
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to select the lowest elevation point within a certain range as the sea level to distinguish
sea ice from seawater. For the ICESat-2 mission, Reference [26] studied the ice–water
discrimination by analyzing variables such as the background photon rate, surface photon
rate, solar altitude angle and surface roughness. The authors of [45] distinguished sea ice
from seawater based on the necessary surface reflectivity and waveform parameters. Other
methods for distinguishing sea ice from seawater have also been established [46,47].

The concentration comparisons demonstrate that the spatial distribution range of the
SIC in different seasons was consistent. The SIC increased with latitude. The regions with
extreme values were largely consistent. Although the locations of areas with the highest
SIC are all located in offshore waters at high latitudes, there were differences; the largest dif-
ferences typically occurred near the ice edge and sea–land boundary. The main advantage
of the IS-2 process seems to be a more precise estimation of the boundaries of different ice
concentration zones. For example, there was no sea ice in summer near the Arctic continent
at 68◦, 80◦ and 93◦N and floating discrete sea ice was determined via IS-2 measurements.

4.4. SIC Obtained from Weak Beams and ICESat-2 Sea Ice Thickness Product ATL07

The beams within each pair have different transmit energies (“weak” and “strong”,
with an energy ratio between them of approximately 1:4). The weak-beam segments are
longer than the strong-beam segments. We also applied this method to the weak beams and
analyzed what the SIC differences between strong and weak beams were. The SIC that was
obtained from three weak beams in September is shown in Figure 14d. Compared to the
NSIDC/CDR SIC data, the correlation coefficient was 0.7850 in the Arctic, 0.7702 at high
latitudes and 0.8148 at mid-latitudes. The correlation coefficients estimated by weak ATL10
beams were higher than those estimated by strong ATL10 beams. The consistency of the
strong ATL10 beams, weak ATL10 beams and NSIDC/CDR SIC could be further verified
and analyzed by comparing deviation, standard deviation and correlation coefficient. The
relevant evaluation indexes are shown in Table 3. We note that a more detailed assessment
exploring weak-beam SIC products is needed, so we view this as an initial comparison
rather than a complete validation analysis.

Stricter data selection criteria were applied to ATL10 for the freeboard calculations
compared to ATL07, such as freeboards only being calculated when the SIC > 50%, when
the height of the samples was at least 50 km away from the coast and when the 10 km
segments contained a local sea surface reference [29]. This means that, in regions outside
these criteria in ATL10, the surface types that were still valid and available from ATL07
could be used to calculate SIC. We used strong ATL07 beams to obtain the SIC (show in
Figure 14b). Compared to the NSIDC/CDR SIC data, the correlation coefficient was 0.7498
in the Arctic, 0.7530 at high latitudes and 0.7743 at mid-latitudes. The three correlation
coefficients were lower than those estimated by the strong ATL10 beams. This is possibly
due to the ATL07 data being affected by tides and waves (Algorithm Theoretical Basis
Document). However, the difference was not obvious. ATL07 was also a suitable data
choice for SIC calculation. The relevant evaluation indexes are shown in Table 3.

Table 3. Correlation coefficient, deviation and standard deviation of strong ICESat-2 ATL07 beams,
strong ATL10 beams, weak ATL10 beams and NSIDC/CDR SIC at a sea ice concentration with a 25
km spatial resolution were evaluated.

Correlation Coefficient (r) Standard Deviation (RMSE) Mean Bias

Sep. Arctic High
Latitude

Middle
Latitude Arctic High

Latitude
Middle
Latitude Arctic High

Latitude
Middle
Latitude

ATL07 strong beams 0.7498 0.7530 0.7743 0.1865 0.1658 0.1766 −0.0710 −0.0906 −0.0029
ATL10 strong beams 0.7647 0.7552 0.7958 0.1848 0.1593 0.1748 −0.0617 −0.0833 −0.0019
ATL10 weak beams 0.7850 0.7702 0.8148 0.1652 0.1359 0.1674 −0.0162 −0.0344 0.0203
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5. Summary and Outlook

In this study, we present our new processing chain for converting the official along-
track ICESat-2 sea ice freeboard product (ATL10) into the SIC in the Arctic region using
data from the year 2019. The along-track SIC is the ratio of the area covered by sea ice
segments to the area of all of the along-track segments, which is assumed to be equal to
the SIC of the grid. The coverage area of a segment is the area of a circle with a diameter
that is the same as the segment length. If there were no segments in the grid, then we
did not calculate the SIC for that grid. We only used strong beams in this initial effort,
but there was good consistency across the strong beams in terms of our regional sea ice
concentration distribution.

After analyzing the full year 2019 for the entire Arctic region, we found that the sea
ice concentration that could be obtained with our method was in good agreement with
the NSIDC/CDR SIC dataset. The results show that the SIC trends and the sea ice extent
were consistent and that the IS-2 SIC was generally less than the CDR. Subsequently, the
relevant factors between these differences were analyzed and the differences between them
were counted. The comparisons showed moderate/strong correlations but biases of up
to ten percent, depending on the month or NSIDC/CDR SIC product that was analyzed.
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The results show that the algorithm that is proposed in this paper is feasible and effective.
When comparing the ATLAS and SSMIS, more work needs to be carried out to understand
possible IS-2 biases in order to increase our confidence in these findings.

The spatial distribution of the two kinds of data, obviously, had seasonal differences.
The areas with large differences between spring and winter were largely concentrated at
the edges of the thin ice area and the average deviation increased in winter. On this basis,
the variation in the SIC according to latitude was calculated and analyzed. The comparison
with the SSMIS data showed that there were less differences in the SIC in high-latitude
regions and that the different SIC obtained by the two satellite monitoring techniques was
affected by seasonality.

5.1. Understanding the SIC Differences between ATLAS and SSMIS

A potential cause of these SIC biases between ICESat-2 and SSMIS could be due to
the difference in seawater classification methods. The ICESat-2 photon-counting Laser
Altimeter detection method used to determine sea ice is more sensitive. In addition, the
accuracy of the NASA sea ice estimation CDR algorithm is lower during spring than in
autumn and decreases significantly in summer due to ice melt. There is a lot of new sea ice
in November and the results obtained by this algorithm may be underestimated for sea
areas with extensive new sea ice, such as ice rind and high-SIC areas. Another aspect is
that different sea ice boundary location extraction methods are used. Most of researchers in
China and abroad use a 15% concentration as a threshold to distinguish ice-bearing and
ice-free areas, while some studies have used other thresholds, such as 20% [48]. It is also
worth recognizing that satellites have different orbit cycles and thus represent different
profiles across the Arctic Ocean, although the relatively high monthly coverage in both
products should mitigate this possible issue.

Therefore, due to the influence of the factors mentioned for the two different datasets
mentioned above, the NSIDC/CDR SIC may be higher than the ICESat-2 SIC, overall.
Providing a more accurate sea ice area can mitigate these issues. The advantages of high-
resolution satellite remote-sensing concentration data are not only in the resolution, but
also in their more accurate SIC inversion.

5.2. Future Work

A quantitative verification of the results using ground experimental data would make
them more effective for determining the SIC algorithm evaluation from ICESat-2 ATL10
data. This would allow us to deepen the analysis mechanism of the relevant influencing
factors and to study the complementarity of the algorithms. The complementarity of the
two kinds of satellite monitoring technologies combined should be studied to determine
the SIC method. One next step would be to extend the analysis to cover more years with
smaller grid sizes to confirm the results of our case study with a larger amount of data.

The changes in the SIC in key areas of the Arctic shipping channel have a significant
impact on the navigation safety of merchant ships in the navigation window. The existing
SIC data cannot fully meet the needs of shipping safety and the demand for relevant real-
time and high-precision sea ice data still exists. Due to the objective existence of various
sea ice data, there are great differences among different products. How to scientifically
analyze the influence of different factors on product accuracy, integrate multi-source fusion
data, improve the reliability and real-time performance of remote sensing sea ice services
and improve the inversion results of relevant models are important directions for sea ice
research in the future.
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