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Abstract: In this paper, in accordance with fully anisotropic electromagnetic materials, the duality
principle is successfully validated by the fully anisotropic finite-difference time-domain (FDTD) with
Bloch-Floquet periodic boundary condition (BPBC), which in theory is first effectively applied to the
verification of time-domain electromagnetic computation. Starting from the conventional duality
principle of isotropy, those conditions can be given without any loss term. Without loss of generality,
the electromagnetic duality rules involving dielectric and magnetic lossy tensors could be obtained
by combining complex extension from original real parameters. In our further research, we introduce
the duality principle into the BPBC cases, then execute and validate three different fully anisotropic
models by means of the FDTD method under either TE or TM modes. From highly accurate numerical
point of view, we apply ourselves to a more effective verification which can forecast the reflection
and transmission coefficients and detect the subsurface echoes through the duality principle.

Keywords: duality principle; fully anisotropic electromagnetic materials; finite-difference time-domain
(FDTD); Bloch-Floquet periodic boundary; subsurface echoes

1. Introduction

To master the electromagnetic propagation in free space, we concentrate much on
concrete fields and signal process in the final analysis. In electrostatic fields, the actual
excitations are electric charge which causes electrostatics and electric current that engenders
magnetostatics [1]. Thanks to the hypothesis of displacement current proposed by Maxwell
in symmetry relation, it foreshadows that time-varying fields can form the outward radia-
tion which has been validated by Hertz’s experiments afterward. However, it is not the
final destination for scientists in theoretical physics. As early as 1931, Dirac prophesied
existences about magnetic charge or current by supplementary formula [2], and hence
promoted further searching in specific magnetic materials and commonly known duality
principle. Since the birth of computer, numerical techniques applied in electromagnetic
field, such as FDTD [3] et al., have launched the real-time research and simulated the explo-
ration of the Maxwell’s Equations in the interdisciplinary cooperation, which promotes the
industry progress of modern technology and provides the powerful calculating platform
for manufacturing new materials. In view of numerical technique, it is quite significant
for lacking some condition how to launch the technology expansion of electromagnetic
duality principle.

In the early time, the duality principle was employed to solve the field radiation as
the reliable symmetry. Harrison in 1971 proposed the annular slot antenna from its dual-
ity [4], and then determines those responses from an unsheathed coaxial cable connector
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mounted flush with the skin of a missile to intense plane-wave pulses. Afterward in 1988,
Jaggrad et al. came up with canonical sources and duality in chiral media [5] to solve
corresponding radiated problems. The duality transformations were proposed for general
bi-isotropic (nonreciprocal chiral) media by Lindell and Viitanen [6] in 1992 for handling
the plane-wave reflection. Next, Lindell [7] in 1995 put forward the duality transformation
for two-dimensional static problems, and applied to straight TEM transmission-line ge-
ometries. In 2013, Jazebi, et al. [8] raised the duality-synthesized circuit for eddy current
effects in transformer windings, and created a completely dual transformer model for the
calculation in electromagnetic transients. Moreover in 2015, Jazebi and Leon [9] advanced
the duality-based transformer model including eddy current effects in the windings, which
made the model be capable of accurately representing the leakage inductance, copper losses,
as well as skin and proximity effects. Besides, Liang and Wu in 2018 combined the duality
principle of characteristic modes with the analysis and design of aperture antennas [10],
and construct the relationship of the eigenvalues and the eigencurrents for the aperture
and the complementary plate.

On the other hand, it is a vital direction for the duality principle to discuss lumped
circuits under the electromagnetic research. In general, capacitors and inductors can respec-
tively store electric and magnetic potential energy, which shows the duality characteristic
in the lumped component. In 1992, Yang put forward the mutual capacitance-duality prin-
ciple evolved from planar network [11], and further obtained the transitional process from
admittance to impedance in line with the lumped circuits. Next in 1993, Wolfs proposed a
current-sourced DC-DC converter derived via the duality principle from the half-bridge
converter which decrease energy consumption when tackling with the lumped device [12],
and then advanced the application by duality principle for the nonplanar circuits [13] to
seek more new ladder structures with the voltage source. Afterward in 1998, Kaplan and
Suissa [14] came up with the treatment of extremely-low- frequency magnetic and electric
field sensors via electromagnetic duality, and effectively dealt with those DC sensors under
the magnetic and electric fields. Moreover, Bai and Zhang [15] posed the conformation of
multilevel current source converter topologies using the duality principle in 2008. Besides
in 2015, Samie et al. [16] developed the prognostic models with the duality principles for
DC-to-DC converters.

In the recent decade, people gradually realized that the duality principle can be
promoted from the view of the Maxwell’s Equations. Starting from 2005, Lindell and
Sihvola [17] proposed the transformation method for problems involving perfect electro-
magnetic conductor (PEMC) structures which made people understand more explorations
on the magnetic current structure need proceeding. Gheorghisor and Kahn [18] in 2007
put forward electromagnetic fields in complementary and self-complementary structures,
and discovered that at low frequencies, when the only one TEM mode propagates, field
solutions for this TEM mode exhibit discontinuous behavior as the aspect ratio approaches
one from above and below. In 2014, Prudencio, et al. came up with a geometrical approach
to duality transformations for tellegen media [19]. Recently, Kastner in 2020 presented the
half-way duality in electromagnetics by an explicit expression for half-curl operator [20],
and meanwhile achieved the solution to a reactive surface is inferred from its perfect electric
conductor (PEC) half-way duality.

In 2013, Marengo proposed his opinion on the generalized optical theorem in anisotropy
based on modified reciprocity theorem plus duality [21]. Recently, we first presented the
Bloch-Floquet periodic boundary condition (PBC) with fully anisotropic FDTD [22]. The
electromagnetic duality principle brings many new physical properties in engineering
technology in the long-term development; therefore, in the electromagnetic propagation of
fully anisotropy, it needs to further discuss how to expand the new theory in the light of
new technique research.

In this paper, we develop a numerical prediction of duality principle with Bloch-
Floquet PBC in three-dimensional (3D) fully anisotropic FDTD, the new contributions
of this work are: (a) the verification of duality principle is presented under the specific
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relationship with fully anisotropy; (b) the duality principles of electric and magnetic loss
tensors are derived under the Bloch-Floquet PBC; (c) with the Bloch-Floquet PBC, the
cross-boundary calculation is successfully validated by the duality principle, and then we
can capture the almost same transmission results after the radiation of the plane waves
when exchanging parameters.

The organization in this paper is given as follows. We will respectively illustrate the
duality principle of fully anisotropy in Section 2 and the exchange of iterative parameters
in the 3D fully anisotropic FDTD in Section 3. Under duality principle, transmission
coefficients can be discussed in Section 4 by using a fully anisotropic single- and multi-
layered models, and transverse periodic distribution of fully anisotropies to validate our
proposal. Finally, we will draw the conclusion in Section 5.

2. Duality Principle for Fully Anisotropy

As is well known, the duality principle belongs to a common physical concept in
physics, which can solve engineering or physical problems for improving the efficiency,
reducing the problem complexity and leading to the higher solving quality. Besides, it has
the wide application for the duality principle to the engineering electromagnetics. Hence,
with the further research of the duality principle, people will be able to understand more
electromagnetic problems.

Under the condition of linear lossless isotropy, the duality principle in electromag-
netism [23] must meet the requirement as below,

Hdual = E, Edual = −H, µdual = ε, εdual = µ, (1)

For fully anisotropies in our past work [24], Maxwell’s Equations can be defined below

E = χ∇×H (2)

H = −υ∇× E (3)

where the vectors E and H are respectively the electric and magnetic fields, and general
tensor χ and υ can be respectively given as

χ = (jω ε)−1 (4)

υ = (jω µ)−1 (5)

where angular frequency represents ω = 2π f, and the complex permittivity and permeabil-
ity tensors ε̃ and µ̃ under the fixed angular frequency can be defined as

ε̃ = ε0

(
εr − j

σe

ωε0

)
(6)

µ̃ = µ0

(
µr − j

σm

ωµ0

)
(7)

For these two Equations depicted above, the electromagnetic loss tensors σe and
σm belong to the dispersive elements in the complex frequency domain. The complex
permittivity and permeability tensors ε̃ and µ̃ have to meet the exchange rule that the real
and the imaginary parts execute duality principle at the same time, and then we obtain the
dual variables as below

ε0,dual = µ0, µ0,dual = ε0, εr,dual = µr, µr,dual = εr,σe,dual = η−2
0 σm,

σm,dual = η2
0σe

(8)
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where the vacuum wave impedance η0 =
√

µ0
ε0

=
√

ε0,dual
µ0,dual

can be denoted as a constant.
Here, the Equation (8) with duality principle represents the conversion process for the fully
anisotropy in the medium parameters.

3. Duality Principle under Bloch-Floquet Condition

Under the condition of plane waves, our proposal about the Bloch-Floquet PBC mainly
concentrates on the characteristic analysis and the research discussion at the transmission
process with the periodic electromagnetic materials. Transverse wave vectors kx and
ky are the fixed constants for the wave vector k = (kx, ky, kz) when the planes xOz and
yOz is separately chosen as the Bloch-Floquet periodic boundary, therefore in the air, the
longitudinal wave vector kz must satisfy below

kz = ±
√

k · k− (k2
x + k2

y) = ±

√(
2π f
c0

)2
− (k2

x + k2
y) (9)

where c0 represents the light velocity in vacuum and kz needs to be the real number. Hence,
the minimum cut-off frequency f min can be expressed as

fmin =
c0

2π

√
k2

x + k2
y (10)

As the truncation planes xOz and yOz with the Bloch-Floquet periodic boundary, it is
necessary for the time-domain field components at the periodic boundary x = 0 and y = 0 to
satisfy the following BPBCs:

ζt(x = 0, y, z, t) = ζt(x = Lx, y, z, t) ejkx Lx (11)

ζt(x, y = 0, z, t) = ζt(x, y = Ly, z, t) ejky Ly (12)

where the spatial function ζt (x, y, z) represent the time-domain component for arbitrary
direction in electric or magnetic fields, Lw (w = x, y) can be denoted as the periodic length
of the Bloch-Floquet PBC along the w-direction. Taking truncation subscript j = 0 as an
instance, the field components in the periodic alternation are solved in the fully anisotropic
FDTD, expressed as below

Ew,x|n+1
i+ 1

2 ,jmax,k = Ew,x|n+1
i+ 1

2 ,0,ke−jkyTy (13)

Ew,z|ni,jmax,k+ 1
2
= Ew,z|ni,0,k+ 1

2
e−jkyTy (14)

Hw,y
∣∣n+ 1

2
i+ 1

2 ,jmax,k+ 1
2
= Hw,y

∣∣n+ 1
2

i+ 1
2 ,0,k+ 1

2
e−jkyTy (15)

where those specific FDTD iterations can be shown as

Ew,x|n+1
i+ 1

2 ,0,k = [PE]wx Ex|ni+ 1
2 ,0,k − [QE]wx∆z−1(Hy

∣∣n+ 1
2

i+ 1
2 ,0,k+ 1

2
− Hy

∣∣n+ 1
2

i+ 1
2 ,0,k− 1

2
)

+[QE]wx∆y−1(Hz|
n+ 1

2
i+ 1

2 , 1
2 ,k
− Hz|

n+ 1
2

i+ 1
2 ,jmax− 1

2 ,k
e−jkyTy),

(16)

Ew,z|ni,0,k+ 1
2
= [PE]wz Ez|ni,0,k+ 1

2
+ [QE]wz∆x−1(Hy

∣∣n+ 1
2

i+ 1
2 ,0,k+ 1

2
− Hy

∣∣n+ 1
2

i− 1
2 ,0,k+ 1

2
)

−[QE]wz∆y−1(Hx|
n+ 1

2
i, 1

2 ,k+ 1
2
− Hx|

n+ 1
2

i,jmax− 1
2 ,k+ 1

2
e−jkyTy),

(17)

Hw,y
∣∣n+ 1

2
i+ 1

2 ,0,k+ 1
2
= [PH ]wy Hy

∣∣n− 1
2

i+ 1
2 ,0,k+ 1

2
+ [QH ]wy∆x−1(Ez|ni+1,0,k+ 1

2
− Ez|ni,0,k+ 1

2
)

−[QH ]wy∆z−1(Ex|ni+ 1
2 ,0,k+1 − Ex|ni+ 1

2 ,0,k),
(18)
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where iterative tensors from the fully anisotropic FDTD are respectively PH, QH, PE and
QE, as shown below

PH = (µ∆t−1 + 0.5σm)
−1

(µ∆t−1 − 0.5σm) (19)

QH = µ∆t−1 − 0.5σm (20)

PE = (ε∆t−1 + 0.5σe)
−1

(ε∆t−1 − 0.5σe) (21)

QE = ε∆t−1 − 0.5σe (22)

Relying on the duality principle from the Equations (1) and (8), those expressions
with the Equations (12)–(21) can be easily obtained at the truncation plane j = 0 in the fully
anisotropic FDTD. Besides, with regard to the installation from the plane waves, we usually
divide them into TE or TM modes under the condition of oblique incidences. Therefore,
the preprocessing under the TE or TM mode can be respectively executed by the duality
principle, shown in Figure 1.
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nents in TE mode from the initialization to the duality; (b) field components in TM mode from the
initialization to the duality.

Apparently, via the plane-wave mode processed by the above duality principle, we
can take TM mode from TEdual mode, and meanwhile TE mode can be converted from
TMdual mode. As found in Figure 1, only the transverse polarized field Eco exists in the TE
mode while only the transverse polarized field Hco does in the TM mode. Consequently,
when the incident plane waves completely penetrate into the periodic materials, the com-
plex reflection and transmission coefficients with the process of duality principle can be
defined as

Γq,TE( f ) =
Ere f ,q( f )
Einc( f )

∣∣∣∣∣
TE

=
Hdual,re f ,q( f )
Hdual,inc( f )

∣∣∣∣∣
TEdual

(23)

Γq,TM( f ) =
Hre f ,q( f )
Hinc( f )

∣∣∣∣∣
TM

=
Edual,re f ,q( f )
Edual,inc( f )

∣∣∣∣∣
TMdual

(24)
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Tq,TE( f ) =
Etra,q( f )

Einc( f )ejkzdrt

∣∣∣∣
TE

=
Hdual,tra,q( f )

Hdual,inc( f )ejkzdrt

∣∣∣∣∣
TEdual

(25)

Tq,TM( f ) =
Htra,q( f )

Hinc( f )ejkzdrt

∣∣∣∣
TM

=
Edual,tra,q( f )

Edual,inc( f )ejkzdrt

∣∣∣∣∣
TMdual

(26)

where the symbol q can be respectively expressed as the fields’ direction co, cr and ve which
are respectively named as the horizontal co-polarization, the horizontal cross-polarization
and the vertical polarization, and we define the variable drt as the distance between incident
and transmission surface. As is known to all, the interleaving form with the Yee’s grid
appears in the 3D model when employing the FDTD method, however, we still utilize the
fully anisotropic FDTD method to validate the duality principle by the fully anisotropies
under the truncation in line with Bloch-Floquet PBC.

4. Numerical Examples

We apply fully anisotropic FDTD formulations to implementing the proposed electro-
magnetic duality principle in the fully anisotropies. On the one hand, the fully anisotropic
FDTD can validate the general laws of electromagnetic solving method which meets the
physical theory; on the other hand, we are necessary to perform the reasonable equivalent
substitution for seeking some new physical phenomena in the engineering experiments.

4.1. Monolayer Fully Anisotropy

To effectively validate our proposed duality method with the Equations (1) and (8),
we first consider the simplest monolayer problem with fully anisotropies. As seen in
Figure 2, the plane wave is employed by propagating from the top to the bottom of
the monolayer fully anisotropy, and the Bloch-Floquet PBC is applied at the transverse
truncation region in this 3D model. As the air on the top and bottom region, the longitudinal
section is truncated by 8-layered PMLs with the parameters κmax = 7 and αmax = 0.05. The
monolayer fully anisotropy is 10 mm × 10 mm × 10 mm in 3D size, its spatial incremental
is ∆x = ∆y = ∆z = 0.25 mm in 3D directions. The fixed transverse vectors kx and ky are
respectively given as 10 rad/m and 20 rad/m. The specific fully anisotropic parameters
are respectively

εr =

 4.0 0.2 + j1.0 0.1− j0.8
0.2− j1.0 3.0 0.05 + j0.2
0.1 + j0.8 0.05− j0.2 2.0

,

σe =

 0.03 0.05 −0.08
−0.05 0.09 0.02
0.08 −0.02 0.5



µr =

 2.0 0.05− j0.5 0.1 + j0.6
0.05 + j0.5 3.0 0.2− j0.1
0.1− j0.6 0.2 + j0.1 4.0

,

σm =

 3000 1300 −200
−1300 9000 −600

200 600 1000


After running the fully anisotropic FDTD and the Fourier transform methods to

capture the data in the frequency domain, the oblique plane-wave incidences with the TE
and TM modes can be respectively obtained in frequency range [1.8 GHz, 14 GHz], and their
reflection and transmission coefficients Γq (q = co, cr, ve) and Tq (q = co, cr, ve) can be also
computed under the condition of the duality field, shown in Figure 3. Obviously reflected
in Figure 3, the duality-principle-based results have the excellent agreements with those
obtained from the initialized fields in the monolayer fully anisotropy. Therefore, once we
know the complex permittivity and permeability tensors ε̃ and µ̃ from Equations (6) and (7),
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we can easily predict the same numerical results by the duality media parameters ε̃dual and
µ̃dual when exchanging the TE and TM mode.
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4.2. Multi-Layered Fully Anisotropy

As illustrated above, the duality principle with the Equations (1) and (8) has been
validated for the simplest monolayer fully anisotropy by the Bloch-Floquet PBC with 3D
FDTD method, however, it is not quite enough for the single medium to satisfy requirements
of the engineering applications and the physical experiments. Without loss of generality, we
already adopt the longitudinal four-layered fully anisotropies as the modeling continuity,
shown in Figure 4. All constitutive tensors in Figure 4 are listed in the Appendix A.
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Figure 4. The 3D geometry model of multi-layered fully anisotropies.

As shown in Figure 4, the every layer with the same thickness is 10 mm× 10 mm× 10 mm
in size for this 3D multi-layered model. Under the FDTD initialization, its spatial incremental in
all directions is ∆x = ∆y = ∆z = 0.2 mm. The fixed transverse vectors kx and ky are respectively
50 rad/m and 100 rad/m. The transverse sections are truncated by the Bloch-Floquet PBC, and
the longitudinal sections as the air are terminated by 8-layered PMLs with the same conditions
above. After executing the fully anisotropic FDTD and the Fourier transform techniques, we
can obtain the numerical results respectively from both TE and TM modes in frequency range
[5.85 GHz, 14 GHz], and the reflection and transmission coefficients Γq (q = co, cr, ve) and Tq
(q = co, cr, ve) are also achieved compared with the results from duality field, shown in Figure 5.
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As reflected in Figure 5, the reflection curves Γco, Γcr and Γve can obtain the wonderful
numerical agreements after taking the advantage of the duality exchange rules, even
though more 3D complicated geometry is built based on multilayer structures. It is further
turned out that the duality principle can be applied to the Bloch-Floquet PBC with the fully
anisotropic FDTD in the multi-layered cases. It can be clearly seen that the duality rule
is not influenced by the grid transformation to lead to the obvious numerical deformity.
Hence, the numerical prediction can be effectively worked at the vertical stratification and
there is no obvious bias under the fully anisotropic FDTD method.

4.3. Transverse Model Distribution with Multi-Layered Fully Anisotropy

As demonstrated in the Equations (13)–(15), the Yee’s grid distributions are not over-
lapping for the electric and magnetic fields. That is to say, both electric and magnetic fields
have to exchange the temporal iterative sequence and the grid position when processing
the duality principle. However, it may be a very difficult problem for the Bloch-Floquet
PBC. To further expand the application of duality principle, above four kinds of fully
anisotropies are distributed transversely which depicted in Figure 4, therefore, the Bloch-
Floquet PBC has to confront the synchronous process through medium alternation with the
fully anisotropic FDTD iteration, shown in Figure 6. There is only one-layered anisotropy in
this transverse model, but it is actually a multi-layered model because of the air background
in the incident and the transmission regions. More importantly in the general space, air is
also the simplest and most special anisotropy.
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Figure 7. The transmission coefficients of transverse distributed model the fully anisotropies pen-
etrated by the plane waves: (a) Γco, (b) Γcr, (c) Γve, (d) Tco, (e) Tcr, (f) Tve. 

To further verify the reliability and generality of our proposed method, we change 
the longitudinal height of the above 3D transverse model to 6 mm, add a new fully ani-

Figure 6. The 3D transverse distribution model of single-layered fully anisotropies.

As seen in Figure 6, four transverse-distribution-based media in size are equal to
each other with each subdomain 9 mm × 9 mm × 10 mm in size and its spatial incre-
mental ∆x = ∆y = ∆z = 0.15 mm in all directions. The fixed transverse vectors kx and ky
are 100 rad/m and 50 rad/m, respectively. Their transverse sections are truncated by the
Bloch-Floquet PBC, and the longitudinal sections are chosen by 8-layered above PMLs.
Through the complete calculation of the 3D FDTD method and the Fourier transform by
time-domain data, the frequency-domain results can be restricted at the range of [6.0 GHz,
15 GHz] under the incidence with both TE and TM modes, and then their reflection and
transmission coefficients Γq (q = co, cr, ve) and Tq (q = co, cr, ve) are also implemented under
the duality principle, shown in Figure 7. As a result for the fully anisotropic FDTD, the
numerical prediction is available at the Bloch-Floquet boundary even though the sudden
change of medium parameters.
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To further verify the reliability and generality of our proposed method, we change the
longitudinal height of the above 3D transverse model to 6 mm, add a new fully anisotropy
in the upper and lower regions respectively, and the specific parameters of Medium 5
are recorded in the Appendix A. The thickness of the two newly added fully anisotropy
Medium 5 is 2 mm, as shown in Figure 8.
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Figure 8. The 3D transverse distribution model of multi-layered fully anisotropies.
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Through the translucent 3D model, it can be clearly found that the four transversely
distributed Medium 1–4 realize the longitudinal electromagnetic crossing for the upper
and lower Medium 5. The fixed transverse vectors kx and ky can be selected as 12 rad/m
and 34 rad/m. Considering frequency range of [4.0 GHsz, 14.0 GHz], we can obtain the
reflection and transmission coefficient in the TE and TM modes. For the duality principle,
the reflection and transmission coefficient can also be obtained in Figure 9 under their cor-
responding dual field. Obviously, under the Bloch-Floquet periodic boundary, the vertical
and horizontal medium mutations do not affect the dual relationship of fully anisotropy.
From this point of view, Equation (8) meets the requirements of numerical prediction.
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Figure 9. The transmission coefficients of transverse distributed model the multi-layered fully
anisotropies penetrated by the plane waves: (a) Γco, (b) Γcr, (c) Γve, (d) Tco, (e) Tcr, (f) Tve.

5. Conclusions

The discussion of anisotropy is rarely published in lots of papers. Fewer people have
analyzed and introduced the feasibility and effectiveness of the duality principle on the
numerical anisotropy. In this paper, we concentrate on the dual relationship from the
traditional isotropic extension to a wider range of anisotropy, and its correctness is verified
by numerical algorithm, such as the fully anisotropic FDTD method. The duality principle
belongs to a common means for handling the engineering applications and physical ex-
periments, but it is not far enough for everyone to deeply understand and explore more
in the numerical research of the fully anisotropy. Our proposed duality principle can not
only adapt to the 3D fully anisotropic FDTD method, but also suit the other numerical
verifications with the complicated anisotropies. Generally in experiment, the plane wave
is either a simple vertical incidence, or known incident angle or electric field direction.
However, the specific plane-wave mode, such as the TE or TM modes, is difficult to be cali-
brated. By employing the 3D FDTD method, we successfully achieve the exchange rule of
duality principle to the equivalent electromagnetics on the Bloch-Floquet PBC, and master
the plane-wave direction and the specific properties of those fully anisotropies. Mean-
while, the fully anisotropic duality principle can be adopted to determine the transmission
characteristics under another mode by the numerical simulation, which can be applied to
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guiding theory for the unknown topics on the engineering applications or the physical
experiments. With the high accuracy by electromagnetic computation and detection of
subsurface echoes, we believe that the duality principle, as an important verification means,
will be widespread in the more numerical algorithm because of the high symmetry from
the Maxwell’s Equations.
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Appendix A

For the multilayered and the transverse distributed models, their corresponding
parameters about those four kinds of fully anisotropies are respectively shown below

Medium 1:

εr1 =

 3.5 0.1 0.1
0.1 3.0 0.1
0.1 0.1 3.8

,σe1 =

 0.2 0.08 0.08
0.08 0.1 0.08
0.08 0.08 0.05


µr1 =

 3.2 0.05 0.05
0.05 4.3 0.05
0.05 0.05 3.7

,σm1 =

 500 300 300
300 2000 300
300 300 1000


Medium 2:

εr2 =

 3.0 0.2 0.2
0.2 3.1 0.2
0.2 0.2 3.8

,σe2 =

 0.08 0.04 0.04
0.04 0.12 0.04
0.04 0.04 0.06


µr2 =

 3.2 0.1 0.1
0.1 3.6 0.1
0.1 0.1 3.5

,σm2 =

 500 200 200
200 1800 200
200 200 800


Medium 3:

εr3 =

 4.5 0.15 0.15
0.15 3.0 0.15
0.15 0.15 3.6

,σe3 =

 0.04 0.01 0.01
0.01 0.03 0.01
0.01 0.01 0.05


µr3 =

 3.8 0.08 0.08
0.08 3.9 0.08
0.08 0.08 3.1

,σm3 =

 800 200 200
200 900 200
200 200 700


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Medium 4:

εr4 =

 4.1 0.05 0.05
0.05 3.0 0.05
0.05 0.05 3.5

,σe4 =

 0.06 0.03 0.03
0.03 0.09 0.02
0.03 0.03 0.08


µr4 =

 3.6 0.12 0.12
0.12 3.2 0.12
0.12 0.12 3.5

,σm4 =

 900 400 400
400 700 400
400 400 500


Medium 5:

εr5 =

 2.4 0.13 0.13
0.13 1.8 0.13
0.13 0.13 3.2

,σe5 =

 0.04 0.05 0.05
0.05 0.03 0.05
0.05 0.05 0.05


µr5 =

 3.1 0.22 0.22
0.22 1.2 0.22
0.22 0.22 2.5

,σm5 =

 1500 600 600
600 2100 600
600 600 1700


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