Change Analysis on the Spatio-Temporal Patterns of Main Crop Planting in the Middle Yangtze Plain
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. Study Area
2.1.2. Data Collection and Preprocessing
2.2. Methods
2.2.1. ESTARFM for Generating Landsat-MODIS Fusion Data
2.2.2. Construction of Vegetation Index Curves of Main Crops
2.2.3. RSPDCM for Main Crop Planting Extraction
2.2.4. Spatio-Temporal Patterns Change Characteristics of Main Crop Planting
3. Results
3.1. Main Crop Distribution Mapping
3.2. Characteristics of Main Crop Intensification Planting
3.3. Characteristics of Main Crop Large-Scale Planting
3.4. Characteristics of Main Crop Agglomeration Planting
4. Discussion
4.1. Main Crop Planting Situation in Typical Counties
4.2. Potential Driving Forces of Spatio-Temporal Patterns Change of Main Crop Planting
4.3. Uncertainties and Improvement
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, H.; Chang, J.; Havlík, P.; van Dijk, M.; Valin, H.; Janssens, C.; Ma, L.; Bai, Z.; Herrero, M.; Smith, P.; et al. China’s future food demand and its implications for trade and environment. Nat. Sustain. 2021, 4, 1042–1051. [Google Scholar] [CrossRef]
- Hu, Q.; Xiang, M.; Chen, D.; Zhou, J.; Wu, W.; Song, Q. Global cropland intensification surpassed expansion between 2000 and 2010: A spatio-temporal analysis based on GlobeLand30. Sci. Total Environ. 2020, 746, 141035. [Google Scholar] [CrossRef]
- Liu, Y. Introduction to land use and rural sustainability in China. Land Use Policy 2018, 74, 1–4. [Google Scholar] [CrossRef]
- Su, Y.; Li, C.; Wang, K.; Deng, J.; Shahtahmassebi, A.R.; Zhang, L.; Weijiu, A.; Guan, T.; Pan, Y.; Gan, M. Quantifying the spatiotemporal dynamics and multi-aspect performance of non-grain production during 2000–2015 at a fine scale. Ecol. Indic. 2019, 101, 410–419. [Google Scholar] [CrossRef]
- Erokhin, V.; Gao, T.M. Impacts of COVID-19 on trade and economic aspects of food security: Evidence from 45 developing countries. Int. J. Environ. Res. Public Health 2020, 17, 5775. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, Y. Reflections on China’s food security and land use policy under rapid urbanization. Land Use Policy 2021, 109, 105699. [Google Scholar] [CrossRef]
- Annual Data, Census Data and Regional Data. Available online: https://data.stats.gov.cn/.Statistics (accessed on 19 October 2021). (In Chinese)
- Pan, L.; Xia, H.; Zhao, X.; Guo, Y.; Qin, Y. Mapping winter crops using a phenology algorithm, time-series Sentinel-2 and Landsat-7/8 images, and Google Earth Engine. Remote Sens. 2021, 13, 2510. [Google Scholar] [CrossRef]
- Mulla, D. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Tian, H.; Huang, N.; Niu, Z.; Qin, Y.; Pei, J.; Wang, J. Mapping winter crops in China with multi-source satellite imagery and phenology-based algorithm. Remote Sens. 2019, 11, 820. [Google Scholar] [CrossRef] [Green Version]
- Dan, C.A.O.; Feng, J.Z.; Bai, L.Y.; Lan, X.U.N.; Jing, H.T.; Sun, J.K.; Zhang, J. Delineating the rice crop activities in Northeast China through regional parametric synthesis using satellite remote sensing timeseries data from 2000 to 2015. J. Integr. Agric. 2021, 20, 424–437. [Google Scholar]
- Shi, J.; Huang, J.F. Monitoring spatio-temporal distribution of rice planting area in the Yangtze River Delta Region using MODIS images. Remote Sens. 2015, 7, 8883–8905. [Google Scholar] [CrossRef] [Green Version]
- Atzberger, C.; Rembold, F. Mapping the spatial distribution of winter crops at sub-pixel level using AVHRR NDVI time series and neural nets. Remote Sens. 2013, 5, 1335–1354. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Y.; Wang, N.; Zhang, L.; Hao, L.; Hao, C. Automatic crop classification in Northeastern China by improved nonlinear dimensionality reduction for satellite image time series. Remote Sens. 2020, 12, 2726. [Google Scholar] [CrossRef]
- Li, P.; Jiang, L.; Feng, Z.; Sheldon, S.; Xiao, X. Mapping rice cropping systems using Landsat-derived Renormalized Index of Normalized Difference Vegetation Index (RNDVI) in the Poyang Lake Region, China. Front. Earth Sci. 2016, 10, 303–314. [Google Scholar] [CrossRef]
- Yu, B.; Shang, S.H. Multi-year mapping of major crop yields in an irrigation district from high spatial and temporal resolution vegetation index. Sensors 2018, 18, 3787. [Google Scholar] [CrossRef] [Green Version]
- Singha, M.; Wu, B.F.; Zhang, M. An object-based paddy rice classification using multi-spectral data and crop phenology in Assam, Northeast India. Remote Sens. 2016, 8, 479. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wu, B.; Jia, K.; Dong, Q.; Eerens, H.; Zhang, M. Maize acreage estimation using ENVISAT MERIS and CBERS-02B CCD data in the North China Plain. Comput. Electron. Agric. 2011, 78, 208–214. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Matimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Song, Q.; Hu, Q.; Zhou, Q.; Hovis, C.; Xiang, M.; Tang, H.; Wu, W. In-season crop mapping with GF-1/WFV data by combining object-based image analysis and random forest. Remote Sens. 2017, 9, 1184. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Wang, C.; Guo, H.; Li, Q. Detecting winter wheat phenology with SPOT-VEGETATION data in the North China Plain. Geocarto Int. 2014, 29, 244–255. [Google Scholar] [CrossRef]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; De Abelleyra, D.; PDFerraz, R.; Lebourgeois, V.; Lelong, C.; Simoes, M.; RVerón, S. Remote sensing and cropping practices: A review. Remote Sens. 2018, 10, 99. [Google Scholar] [CrossRef] [Green Version]
- You, L.; Wood, S. An entropy approach to spatial disaggregation of agricultural production. Agric. Syst. 2006, 90, 329–347. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; McDermid, G.; Masek, J.G.; Gao, F.; White, J.C. A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens. Environ. 2009, 113, 1613–1627. [Google Scholar] [CrossRef]
- Liao, C.; Wang, J.; Pritchard, I.; Liu, J.; Shang, J. A spatio-temporal data fusion model for generating NDVI time series in heterogeneous regions. Remote Sens. 2017, 9, 1125. [Google Scholar] [CrossRef] [Green Version]
- Filgueiras, R.; Mantovani, E.C.; Fernandes-Filho, E.I.; Cunha, F.F.D.; Althoff, D.; Dias, S.H.B. Fusion of MODIS and Landsat-Like images for daily high spatial resolution NDVI. Remote Sens. 2020, 12, 1297. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Griffiths, P.; Nendel, C.; Hostert, P. Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote Sens. Environ. 2019, 220, 135–151. [Google Scholar] [CrossRef]
- Song, X.P.; Potapov, P.V.; Krylov, A.; King, L.; Di Bella, C.M.; Hudson, A.; Khan, A.; Adusei, B.; Stehman, S.V.; Hansen, M.C.; et al. National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey. Remote Sens. Environ. 2017, 190, 383–395. [Google Scholar] [CrossRef]
- Monfreda, C.; Ramankutty, N.; Foley, J.A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycle 2008, 22, GB1022. [Google Scholar] [CrossRef]
- Portmann, F.; Siebert, S.; Doll, P. MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycle 2010, 24, 1–24. [Google Scholar] [CrossRef]
- Liu, L.; Xu, X.L.; Chen, X. Assessing the impact of urban expansion on potential crop yield in China during 1990–2010. Food Secur. 2015, 7, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Liu, X.; Yao, J.; Zhang, X.; Zhang, H. Mapping the annual dynamics of cultivated land in typical area of the Middle-lower Yangtze plain using long time-series of Landsat images based on Google Earth Engine. Int. J. Remote Sens. 2020, 41, 1625–1644. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, J.; Feng, J.; Zhai, S.; Chen, W.; Liu, J.; Bian, X. Ditch-buried straw return: A novel tillage practice combined with tillage rotation and deep ploughing in rice-wheat rotation systems. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2019; Volume 154. [Google Scholar]
- Zuo, L.; Wang, X.; Zhang, Z.; Zhao, X.; Liu, F.; Yi, L.; Liu, B. Developing grain production policy in terms of multiple cropping systems in China. Land Use Pol. 2014, 40, 140–146. [Google Scholar] [CrossRef]
- Ministry of Finance of China. Notice on printing and distributing the Interim Measures for the Administration of Reward Funds in Major Grain (Oil) Producing Counties. Available online: http://www.mof.gov.cn/zhuantihuigu/cczqzyzfglbf/ybxzyzf_7774/cldxjlzj_7777/201810/t20181010_3042371.htm (accessed on 10 October 2021). (In Chinese)
- Tao, J.; Wu, W.; Liu, W.; Xu, M. Exploring the spatio-temporal dynamics of winter rape on the Middle Reaches of Yangtze River Valley using time-series MODIS data. Sustainability 2020, 12, 466. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.; Haas, R.S.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA: Washington, DC, USA, 1973; pp. 309–317. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Xu, H. A study on information extraction of water body with the modified normalized difference water index (MNDWI). J. Remote Sens. 2005, 9, 589–595. (In Chinese) [Google Scholar]
- Hatfield, J.; Prueger, J.H. Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices. Remote Sens. 2010, 2, 562–578. [Google Scholar] [CrossRef] [Green Version]
- Cassman, K. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. USA 1999, 96, 5952–5959. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Li, X.; Xin, L. Differentiation of scale-farmland transfer rent and its influencing factors in China. Acta Geogr. Sin. 2021, 76, 753–763. (In Chinese) [Google Scholar]
- ArcMap Help–ArcToolbox. Available online: http://www.esri.com/ (accessed on 19 October 2021).
- Wang, X.; Chen, Y.; Sui, P.; Gao, W.; Qin, F.; Zhang, J.; Wu, X. Emergy analysis of grain production systems on large-scale farms in the North China Plain based on LCA. Agric. Syst. 2014, 128, 66–78. [Google Scholar] [CrossRef]
- Decision of The State Council on Further Deepening Reform of Grain Circulation System. Available online: http://www.moa.gov.cn/gk/zcfg/xzfg/200601/t20060123_540354.htm (accessed on 19 November 2021). (In Chinese)
- Chari, A.; Liu, E.M.; Wang, S.Y.; Wand, Y. Property rights, land misallocation, and agricultural efficiency in China. Rev. Econ. Stud. 2021, 88, 1831–1862. [Google Scholar] [CrossRef]
- Regulations on the Administration of Grain Circulation. Available online: http://www.moa.gov.cn/gk/zcfg/xzfg/200601/t20060123_541832.htm (accessed on 20 November 2021). (In Chinese)
- Yi, F.; Sun, D.Q.; Zhou, Y.H. Grain subsidy, liquidity constraints and food security—impact of the grain subsidy program on the grain-sown areas in China. Food Policy 2015, 50, 114–124. [Google Scholar] [CrossRef]
- Yan, H.; Chen, Y.Y.; Ku, H.B. China’s soybean crisis: The logic of modernization and its discontents. J. Peasant Stud. 2016, 43, 373–395. [Google Scholar]
- Sun, J.; Yang, L.; Zhao, F.Q.; Wenbin, W. Domestic dynamics of crop production in response to international food trade: Evidence from soybean imports in China. J. Land Use Sci. 2020, 15, 91–98. [Google Scholar] [CrossRef]
- Sun, J.; Mooney, H.; Wu, W.; Tang, H.; Tong, Y.; Xu, Z.; Huang, B.; Cheng, Y.; Yang, X.; Wei, D.; et al. Importing food damages domestic environment: Evidence from global soybean trade. Proc. Natl. Acad. Sci. USA 2018, 115, 5415–5419. [Google Scholar] [CrossRef] [Green Version]
- Notice on the Acquisition of Rapeseed in 2009. Available online: http://www.gov.cn/govweb/gongbao/content/2009/content_1407886.htm (accessed on 25 November 2021).
- Temporary Purchase and Storage of Cotton in 2011–2014. Available online: http://www.gov.cn/ (accessed on 26 November 2021). (In Chinese)
- National Development and Reform Commission of China; Ministry of Finance of China; Ministry of Agriculture of China. Xinjiang Launched Trials to Subsidize Target Prices for Cotton and Abolished the Temporary Purchase and Storage Policy. Available online: http://www.gov.cn/xinwen/2014-04/12/content_2657725.htm (accessed on 12 October 2021). (In Chinese)
- Huang, J.; Yang, G.L. Understanding recent challenges and new food policy in China. Glob. Food Secur.-Agric.Policy 2016, 12, 119–126. [Google Scholar] [CrossRef]
- Opinions on Guiding Orderly Transfer of Rural Land Management Rights to Develop Moderate Scale Agricultural Operations. Available online: http://www.gov.cn/xinwen/2014-11/20/content_2781544.htm (accessed on 27 November 2021). (In Chinese)
- Wei, Y.; Lu, M.; Yu, Q.; Xie, A.; Hu, Q.; Wu, W. Understanding the dynamics of integrated rice–crawfish farming in Qianjiang county, China using Landsat time series images. Agric. Syst. 2021, 191, 103167. [Google Scholar] [CrossRef]
- Gong, B. Agricultural reforms and production in China: Changes in provincial production function and productivity in 1978–2015. J. Dev. Econ. 2018, 132, 18–31. [Google Scholar] [CrossRef]
Types | 1995 | 2000 | 2005 | 2010 | 2015 | 2020 | |
---|---|---|---|---|---|---|---|
Cultivated land | SA | 3.51 | 3.36 | 3.29 | 3.17 | 3.25 | 2.85 |
RE | −5.70 | −12.60 | −14.56 | −6.45 | −11.12 | −17.13 | |
Single rice | SA | 1.08 | 1.36 | 1.10 | 1.74 | 1.33 | 1.20 |
RE | −15.58 | −14.21 | 16.43 | −11.35 | −16.05 | −11.63 | |
Double-cropping rice | SA | 2.77 | 1.41 | 1.39 | 1.21 | 2.02 | 1.17 |
RE | 17.58 | 16.05 | −14.81 | −13.31 | −15.35 | −14.55 | |
Cotton | SA | 0.37 | 0.57 | 0.37 | 0.46 | 0.28 | 0.22 |
RE | −13.39 | −11.43 | 11.05 | −10.86 | −16.53 | −24.52 | |
Maize | SA | 0.22 | 0.20 | 0.16 | 0.27 | 0.39 | 0.38 |
RE | 14.69 | 12.55 | 18.51 | 15.33 | 13.85 | 15.50 | |
Soybean | SA | 0.17 | 0.20 | 0.30 | 0.15 | 0.18 | 0.17 |
RE | 20.02 | 12.41 | 16.59 | 18.56 | 19.36 | 16.94 | |
Winter wheat | SA | 0.32 | 0.35 | 0.38 | 0.47 | 0.42 | 0.30 |
RE | 12.50 | 17.44 | 13.08 | 12.56 | −10.65 | −11.39 | |
Rapeseed | SA | 0.88 | 0.79 | 0.58 | 0.76 | 1.20 | 0.73 |
RE | 5.05 | 5.37 | 7.57 | 12.71 | −15.77 | −16.95 | |
Mean value | RE | 4.39 | 3.20 | 6.73 | 2.15 | −7.56 | −8.63 |
Year | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|---|---|
Overall accuracy/% | 89.6 | 93.4 | 94.3 | 93.1 | 93.6 | 94.1 | 93.8 |
Kappa coefficient | 0.81 | 0.86 | 0.87 | 0.86 | 0.86 | 0.87 | 0.86 |
Producer’s accuracy/% | 82.3 | 86.5 | 89 | 86.1 | 87.1 | 87.5 | 87.2 |
User’s accuracy/% | 93.5 | 96.5 | 98.5 | 96.8 | 97.3 | 98.1 | 97.5 |
Sample numbers | 13,506 | 14,003 | 13,956 | 14,102 | 13,821 | 13,987 | 14,222 |
Year | Main Crops | Rice | Cotton | Maize | Soybean | Winter Wheat | Rapeseed |
---|---|---|---|---|---|---|---|
1990 | 0.577 | 0.5653 | 0.3179 | 0.215 | 0.2409 | 0.2997 | 0.3494 |
1995 | 0.6017 | 0.5636 | 0.2285 | 0.2753 | 0.2434 | 0.2189 | 0.4898 |
2000 | 0.5514 | 0.469 | 0.3028 | 0.2199 | 0.2755 | 0.2297 | 0.4902 |
2005 | 0.5285 | 0.4739 | 0.284 | 0.2835 | 0.2813 | 0.2474 | 0.41 |
2010 | 0.5289 | 0.4451 | 0.2883 | 0.3138 | 0.2839 | 0.2947 | 0.3531 |
2015 | 0.5717 | 0.5049 | 0.3874 | 0.2856 | 0.2392 | 0.2516 | 0.4256 |
2020 | 0.5116 | 0.4619 | 0.3081 | 0.2575 | 0.2031 | 0.1895 | 0.3903 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Wu, S.; Liu, Y. Change Analysis on the Spatio-Temporal Patterns of Main Crop Planting in the Middle Yangtze Plain. Remote Sens. 2022, 14, 1141. https://doi.org/10.3390/rs14051141
Jiang L, Wu S, Liu Y. Change Analysis on the Spatio-Temporal Patterns of Main Crop Planting in the Middle Yangtze Plain. Remote Sensing. 2022; 14(5):1141. https://doi.org/10.3390/rs14051141
Chicago/Turabian StyleJiang, Luguang, Si Wu, and Ye Liu. 2022. "Change Analysis on the Spatio-Temporal Patterns of Main Crop Planting in the Middle Yangtze Plain" Remote Sensing 14, no. 5: 1141. https://doi.org/10.3390/rs14051141
APA StyleJiang, L., Wu, S., & Liu, Y. (2022). Change Analysis on the Spatio-Temporal Patterns of Main Crop Planting in the Middle Yangtze Plain. Remote Sensing, 14(5), 1141. https://doi.org/10.3390/rs14051141