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Abstract: Accurate interferometric phase filtering is an essential step in InSAR data processing. The
existing deep learning-based phase-filtering methods were developed based on local neighboring
pixels and only use local phase information. The idea of nonlocal processing has been proven to
be very effective for improving the accuracy of interferometric phase filtering. In this paper, we
propose a deep convolutional neural network-based nonlocal InSAR filtering method via a nonlocal
phase filtering network (NL-PFNet) based on the encoder–decoder structure and nonlocal feature
selection strategy. Thanks to the powerful phase feature extraction ability of the encoder–decoder
structure and the utilization of nonlocal phase information, NL-PFNet can predict an accurately
filtered interferometric phase after training using a large number of interferometric phase images
with different noise levels. Experiments on both simulated and real InSAR data show that the
proposed method significantly outperforms three traditional well-established methods and another
deep learning-based method. Compared with the InSAR-BM3D filter and another deep learning-
based method, the mean square error of the proposed method is 25% and 11% lower when processing
simulated data, respectively, and when processing the real Sentinel-1 interferometric phase, the
no-reference evaluation metric Q of the proposed method is 25% and 9% higher, respectively. In
addition, the running time of the proposed method is tens of times less than that of the traditional
filtering methods.

Keywords: interferometric synthetic aperture radar; deep convolutional neural network; nonlocal
phase filtering

1. Introduction

Interferometric synthetic aperture radar (InSAR) is becoming increasingly important in
the field of remote sensing and has been successfully applied in topography mapping and
deformation monitoring [1–5]. In the InSAR data processing pipeline, the interferometric
phase is formed by two or more SAR complex images acquired at different viewing angles
or at different times. Due to the influence of system thermal noise, time decorrelation,
baseline decorrelation, and other decorrelation factors, noise is inevitably introduced into
the interferometric phase [6]. The presence of noise increases the difficulty of the subse-
quent phase unwrapping process, and may even lead to the failure of phase unwrapping;
therefore, accurate interferometric phase filtering is an essential step.

In recent decades, many interferometric phase-filtering methods have been proposed
and can generally be divided into three categories: spatial domain methods [7–9]; trans-
form domain methods [10–12]; and nonlocal methods [13–15]. The basic idea of most
spatial domain and transform domain methods is to filter out noise through the window
processing of local neighboring pixels in the image spatial domain or transform domain,
such as the well-established Lee filter [7] and Goldstein filter [10]. In these two types of
methods, the inherent nonlocal (NL) self-similarity of interferometric phase images has
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not been utilized. The nonlocal self-similarity means that the same phase fringe structure
repeatedly appears in different image regions. Taking advantage of this similarity, nonlo-
cal interferometric phase-filtering methods efficiently filter out noise by performing the
weighted averaging of similar images patches in recent years, such as NL-InSAR [13] and
InSAR-BM3D filter [14], and they usually have better filtering performance than the spatial
domain and transform domain methods.

Recently, deep convolutional neural networks (DCNNs) have been successfully ap-
plied to interferometric phase filtering [16,17]. Due to its powerful feature extraction
capability, the results of the DCNN-based filtering method are better than those of tradi-
tional filtering methods. For example, a deep learning framework for InSAR phase filtering
was proposed in [16], and a phase-filtering method that works via a phase-filtering network
(PFNet) based on DCNNs was proposed in [17]. In these DCNN-based filtering methods,
the inherent nonlocal self-similarity property of the interferometric phase was not been
taken into account. Inspired by the traditional nonlocal filtering methods, we combined
DCNNs with the idea of nonlocal processing, aiming to exploit the advantages of both in
interferometric phase filtering to improve the filtering performance.

In this paper, we propose a DCNN-based phase-filtering method for InSAR. In this
method, a nonlocal phase filtering network (NL-PFNet) is designed based on the encoder–
decoder architecture [18] and nonlocal feature selection strategy [19]. Thanks to the pow-
erful phase feature extraction ability of the encoder–decoder structure and the utilization
of nonlocal phase information, NL-PFNet can predict accurate filtered phase from a large
number of interferometric phase images with different noise levels. Experiments both on
simulated and real InSAR data show that the proposed method significantly outperforms
the three conventional well-established methods and a deep learning-based method.

The remainder of this paper is organized as follows. In Section 2, we describe the
interferometric phase noise model and how to employ neural networks to achieve nonlocal
filtering. Section 3 presents the details of the proposed nonlocal phase-filtering method.
In Section 4, the filtered results of the proposed method on simulated and real InSAR
data are presented. Quantitative and qualitative comparisons with four well-established
filtering methods using simulated and real data, and a generalization ability analysis of the
proposed method are presented in Section 5. Section 6 gives conclusions and future work.

2. Review and Analysis

In this section, we will review the phase noise model and analyze how to employ
neural networks to achieve nonlocal phase filtering.

2.1. Phase Noise Model

The interferometric phase φ is obtained by the conjugate multiplication of two co-
registered complex SAR images (S1 and S2), which can be expressed as

φ = angle(S1 · S∗2) (1)

where angle (·) denotes a function that returns the phase angle, and ∗ denotes the complex
conjugate. The noise level of the interferometric phase is usually evaluated by the amplitude
of the correlation coefficient:

ρ = | E{S1 · S∗2}√
E{|S1|2} · E{|S2|2}

| (2)

where ρ is the coherence. A higher coherence means a lower noise level, and a coherence
value of 1 means that the interferometric phase is noise-free (ideal). An additive noise
model of the interferometric phase was proven in [7] and can be expressed as

φ = φc + vs. (3)
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where φc is the ideal interferometric phase, and vs. is the zero-mean additive Gaussian
noise. φc and vs. are independent variables. The purpose of phase filtering is to estimate φc
from φ.

In the process of interferometric phase filtering, the phase jumps from −π to π
or π to −π should be preserved in order to correctly unwrap the interferometric phase;
therefore, the interferometric phase is usually processed in the complex domain. According
to [20], the phase noise model in the complex domain can be expressed as

φreal = cos(φ) = Nc cos(φc) + vr

φimag = sin(φ) = Nc sin(φc) + vi
(4)

where φreal and φimag are real and imaginary parts of the interferometric phase φ; vr and vi
are the zero-mean additive noise; and Nc is a quality index monotonically increasing with
the coherence ρ. Therefore, the filtering object is converted into the real and imaginary parts
rather than the interferometric phase itself. After obtaining the filtered real and imaginary
parts, the final filtered interferometric phase can be estimated by

φ′c = angle(φ′real + jφ′imag). (5)

2.2. Problem Analysis

According to (5), we can use a neural network to predict the filtered real and imaginary
parts of the interferometric phase and then calculate the filtered interferometric phase.
Following this processing idea, some methods [16,17] have successfully used DCNNs to
achieve phase filtering and rely on the powerful feature extraction capabilities of DCNNs
to obtain a filtering performance beyond traditional phase filtering methods to a certain
extent, but these methods are achieved based on local neighboring pixels and only use
local phase information. However, interferometric phase images have the property of the
nonlocal self-similarity, that is, the similar phase fringe structure appears repeatedly in
different image regions. If this self-similarity property can be incorporated into network
processing to achieve nonlocal phase filtering, it is expected to further improve the accuracy
of phase filtering.

In addition, because the noise in the interferometric phase is affected by many factors,
such as system thermal noise, time decorrelation, etc., it has strong spatial variability,
that is, the noise level is different in different image regions. The spatial variability of
the noise requires that the filtering method can handle the interferometric phase images
with different noise levels in a balanced manner, otherwise, the low-coherence area may
be under-filtered, and the high-coherence area may be over-filtered. Therefore, we use
interferometric images with different noise levels as training data to improve the accuracy
of the neural network.

3. Proposed Method

Based on the analysis in Section 2, we propose a nonlocal phase filtering method that
works via a nonlocal phase filtering network (NL-PFNet) based on the encoder–decoder
architecture and nonlocal feature selection strategy. The processing flow of the proposed
method is shown in Figure 1. During training, NL-PFNet takes interferometric phase
images with different noise levels as inputs and outputs the estimated real and imaginary
parts of the interferometric phase. Due to the powerful feature extraction of the encoder–
decoder architecture and the use of nonlocal phase information, NL-PFNet can predict the
accurate real and imaginary parts of the interferometric phase after training using a large
number of interferometric phase images with different noise levels. Finally, the filtered
interferometric phase can be obtained by (5). Then, NL-PFNet will be introduced in detail.
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Figure 1. The processing flow of the proposed nonlocal phase filtering method.

3.1. Nonlocal Phase Filtering Network

Based on the encoder–decoder structure and nonlocal features’ selection strategy
achieved by the neural nearest neighbors block (N3 block), we designed NL-PFNet special-
ized for interferometric phase filtering. The detailed structure and parameters of NL-PFNet
are shown in Figure 2 and Table 1. It can be divided into three sub-networks: encoder part
(Encoder), N3 block, and decoder part (Decoder). In the process of building the proposed
network, we considered the five following points to adapt to the characteristics of phase
filtering. Firstly, the real and imaginary parts of the interferometric phase can be simul-
taneously fed into the network and the filtered versions can be output at the same time,
eliminating the trouble of separate processing. Secondly, the encoder extracts the hierar-
chical phase features while reducing the image size, which can reduce the computational
resource requirements in the N3 block processing. Thirdly, the N3 block is used for the
extraction of nonlocal phase feature maps, which is conducive to improving filtering perfor-
mance. Fourth, the decoder is used to fuse the output of the decoder and N3 block, which
allows the nonlocal phase information to be effectively fused in a nonlinear way. Fifth,
the skip connections [21] is used for the fusion and complementation of different levels of
phase features, which helps to accelerate training while improving filtering accuracy. Then,
the encoder–decoder structure and N3 block used in NL-PFNet will be described in detail.

Input

Encoder Decoder

1

Conv + BN + ReluConv + BN + Relu Output

2 3 4 1 2 3 4

Skip connectionSkip connection

Embedding 
network

Continuous nearest
neighbors selection

TT

Neural Nearest Neighbors Block

Conv + ReluConv + Relu

DD

ConvConv

Up + Conv + BN + ReluUp + Conv + BN + Relu

Y

Figure 2. The overall architecture of NL-PFNet. Given the input of the embedding network is
Y, the embedding network outputs a pairwise distance matrix D between the query element and
nonlocal elements in Y, and a temperature matrix T for each element.
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Table 1. Detailed layers and parameters of NL-PFNet.

Block Name Layer Name Filter Size # Channels Stride Padding Output Size

Encoder block-1
Conv + Relu 3× 3 64 1 1 M× N × 64

Conv + BN + Relu 3× 3 64 1 1 M/2× N/2× 64
Conv + BN + Relu 3× 3 64 2 1 M/2× N/2× 64

Encoder block-2
Conv + BN + Relu 3× 3 128 1 1 M/2× N/2× 128
Conv + BN + Relu 3× 3 128 1 1 M/2× N/2× 128
Conv + BN + Relu 3× 3 128 1 1 M/2× N/2× 128

Encoder block-3
Conv + BN + Relu 3× 3 256 1 1 M/2× N/2× 256
Conv + BN + Relu 3× 3 256 1 1 M/2× N/2× 256
Conv + BN + Relu 3× 3 256 1 1 M/2× N/2× 256

Encoder block-4
Conv + BN + Relu 3× 3 256 1 1 M/2× N/2× 256
Conv + BN + Relu 3× 3 256 1 1 M/2× N/2× 256

Conv 3× 3 8 1 1 M/2× N/2× 8

Neural Nearest
Neighbors Block M/2× N/2× 64

Decoder block-1
Conv + Relu 3× 3 256 1 1 M/2× N/2× 256

Conv + BN + Relu 3× 3 256 1 1 M/2× N/2× 256
Conv + BN + Relu 3× 3 256 1 1 M/2× N/2× 256

Decoder block-2
Conv + BN + Relu 3× 3 128 1 1 M/2× N/2× 128
Conv + BN + Relu 3× 3 128 1 1 M/2× N/2× 128
Conv + BN + Relu 3× 3 128 1 1 M/2× N/2× 128

Decoder block-3
Conv + BN + Relu 3× 3 64 1 1 M/2× N/2× 64
Conv + BN + Relu 3× 3 64 1 1 M/2× N/2× 64
Conv + BN + Relu 3× 3 64 1 1 M/2× N/2× 64

Decoder block-4
Up + Conv + BN + Relu 3× 3 8 1 1 M× N × 8

Conv + BN + Relu 3× 3 8 1 1 M× N × 8
conv 3× 3 2 1 1 M× N × 2

3.1.1. Encoder–Decoder Structure

Following the classic encoder–decoder structure [18], the encoder and decoder consist
of four encoder blocks and four decoder blocks, and each block consists of three convolution
layers. In contrast to [18], the N3 block is utilized to connect the encoder and decoder.
To ensure that the N3 block can extract enough phase information in nonlocal processing,
the encoder only reduces the image size using the convolution with a stride of two in the
encoder block-1; otherwise, the small input feature maps may cause the nonlocal processing
to fail. Correspondingly, the decoder only performs the upsampling operation with a scale
factor of two in decoder block-4 to ensure that the output image size of the encoder is the
same as that of the input image. At the same time, different levels of phase feature maps
can be fused by skip connections [21]. In addition, batch normalization (BN) layers are
employed to accelerate the network training and boost the network’s performance [22,23].

3.1.2. Neural Nearest Neighbors Block

The nonlocal feature selection strategy is achieved by the N3 block. The block im-
plements nonlocal processing that leverages the property of phase self-similarity and is
achieved by a differentiable and continuous version of the k-nearest neighbors (KNN) rule.
The N3 block is composed of an embedding network and continuous nearest neighbors
selection. Following the classic architecture of the N3 block [19], the embedding network is
a multi-layer perceptron with a depth of three and is the same as [19]. Given that the input
of the embedding network is Y, the embedding network outputs a pairwise distance matrix
D between the query element and nonlocal elements in Y, and a temperature matrix T for
each element. The continuous nearest neighbors selection is used to calculate k continuous
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nearest nonlocal maps and concatenates these maps and Y as output. In the following, how
to obtain the k continuous nearest nonlocal maps will be introduced in detail.

The N3 block processes phase images at the patch level, that is, the nonlocal items
consist of image patches instead of a single pixel. This can employ the broader contextual
phase information. Concretely, given a query image patch q and a dataset of candidate
nonlocal self-similarity patches xi with i ∈ I = {1, . . . , M}, a distance measure function
between the query patch and the nonlocal patches can be expressed as

di = d(q, xi). (6)

The Euclidean distance is selected as the distance measure function because it works
well in the additive noise case [19]. The first element of the weighted vector can be
calculated by the softmax function:

wi(1) =
e−di/T

∑i′∈I e−di′/T (7)

Using an iterative scheme to construct the weighted vector including k elements for
the KNN rule. The (j + 1)-th element of the weighted vector can be calculated by

wi(j + 1) =
e−di(j+1)/T

∑i′∈I e−di′ (j+1)/T
(8)

where −di(j + 1)/T = −di(j)/T + log(1 − wi(j)) and j = 1, . . . , k. The k continuous
nearest neighbors {X(1), . . . , X(k)} of the query image patch q can be calculated by

X(j) = ∑
i∈I

wi(j)xi (9)

where the query image patch is obtained by the weighted average of the nonlocal phase
information. After processing all image patches, the k continuous nearest nonlocal maps
can be obtained.

Following the common parameter configuration of the N3 block [19], the encoder
outputs eight feature maps which are fed into the N3 block. For each input feature map
of the N3 block, the N3 block computes seven neighbor nonlocal maps, so it outputs 64
feature maps (8× 7 nonlocal maps + 8 input maps). The N3 block calculates seven neighbor
nonlocal maps for each input feature map and outputs 64 feature maps. The size of the
image patches is set to 10× 10 pixels with a stride of five, and 224 nonlocal candidate
image patches are matched in an image region with a size of 128× 128 pixels for each
query image patch.

3.2. Data Generation

To enhance the generalization capability of NL-PFNet, we used a digital elevation
model (DEM) to generate interferometric phase images with topography features, which
can enhance the phase feature similarity between the simulated and real InSAR data [24,25].
According to the ambiguity height h2π of the InSAR system and terrain height, the interfer-
ometric phase can be calculated by

φ(i, j) = angle(exp(j2π
H(i, j)

h2π
)) (10)

where h2π represents the height change value corresponding to a phase change of 2π.
The ambiguity height used to generate samples is set to 92.13 m and is the same as that of
the real InSAR data employed in the following experiments. After generating the interfero-
metric phase, its real and imaginary parts can be obtained by (4). In addition, to increase
the network’s ability to handle different levels of noise, we generated interferometric
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phase images with different coherences according to the phase noise model described in
Section 2.1, and the coherence range is in [0.5, 0.95] with an interval of 0.05. This range can
cover most interferometric phase data in practical application [24] and avoid data with
coherence ρ < 0.5 from affecting the filtering performance during the training process.

The DEM used to generate the training data is shown in Figure 3a. These DEM
data, which cover the eastern part of Turkey (2048× 2048 pixels), are from SRTM 1Sec
HGT. Examples of the ideal and noisy interferometric phase are shown in Figure 3b–d.
The topographic features of Figure 3a are similar to those of the real InSAR data employed
in the following experiments. To reduce the memory requirement and augment data,
the whole interferometric phase image is cut into patches (256 × 256 pixels) with 50%
overlap. Therefore, the total number of interferometric phase image patches for training
is 2250.

The DEM data (1024× 1024 pixels) used to generate the testing data are shown in
Figure 4a and are different from the one used for training data. The DEM is also from SRTM
1Sec HGT, and the simulation parameter settings are the same as those for the training data.
Examples of the ideal and noisy interferometric phase are shown in Figure 4b–d. The total
number of interferometric phase image patches for testing is 490; therefore, the ratio of the
testing data to the training data is 22%.
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Figure 3. Training data: (a) reference DEM; (b) ideal interferometric phase simulated by Figure 3a;
(c) noisy interferometric phase with a coherence of 0.75; (d) noisy interferometric phase with a
coherence of 0.5.

3.3. Loss Function

According to the clean and filtered real and imaginary parts of the interferometric
phase, the mean squared error (MSE) is used to optimize the parameters of NL-PFNet. It
can be defined as

L =
1

2N
(‖φc,real − φ′real‖

2 + ‖φc,imag − φ′imag‖2) (11)

where N is the number of phase image pixels; φc,real and φc,imag are the clean real and
imaginary parts of the interferometric phase, respectively, and φ′real and φ′imag are the
filtered real and imaginary parts of the interferometric phase, respectively.
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Figure 4. Testing data: (a) reference DEM; (b) ideal interferometric phase simulated by Figure 4a;
(c) noisy interferometric phase with a coherence of 0.75; and (d) noisy interferometric phase with a
coherence of 0.5.

3.4. Performance Evaluation

In order to evaluate the performance of the proposed method, we conducted a series of
experiments using simulated and real InSAR data and compared the proposed method with
the Lee filter [7], Goldstein filter [10], InSAR-BM3D filter [14], and a deep learning-based
filtering method (PFNet) [17]. Both the qualitative evaluation through visual observation
and quantitative evaluation indexes were employed. The quantitative indexes are the
number of residues (NOR) [1] remaining after filtering, the MSE between the filtered phase
and the corresponding ideal phase, the mean structural similarity index (MSSIM) [26]
between the filtered phase and the corresponding ideal phase, and running time (T).
Lacking the ideal interferometric phase, the no-reference metric Q [26,27] was used in the
experiments on real data. The metric Q can provide a quantitative measure of the phase
detail information. A higher Q means that more phase details are preserved after filtering.

All experiments were performed on a computer with an Inter(R) Core(TM) i9-9900k
CPU and an NVIDIA GeForce GTX 1080Ti GPU. NL-PFNet was trained using the Adam
optimization method [28] with a batch size of two. We trained 50 epochs with an initial
learning rate of 1× 10−3 which exponentially decayed from 1× 10−3 to 1× 10−6 on the
PyTorch platform, and the training process took approximately 2.5 h.

4. Results

In this section, we used simulated and real InSAR data to verify the effectiveness of
the proposed method.

4.1. Experiments on Simulated InSAR Data

We first selected a sample with a coherence of 0.5 to visually analyze the filtering effect
of the proposed method and then calculate the mean evaluation indexes of the proposed
method for all testing samples.

Figure 5a shows a testing sample with a coherence of 0.5, and its corresponding ideal
phase is shown in Figure 5b. Figure 6 shows the filtering result and phase error result
obtained by the proposed method. The phase error result was obtained by subtracting the
filtered phase from the ideal phase. From Figure 6, we can see that the phase error of the
proposed method is close to zero, that is, the filtered phase of the proposed method is close
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to the ideal phase. In addition, the mean value of NOR, MSSIM, MSE, and T for all testing
samples were calculated and listed in Table 2. We can see that the proposed method can
filter noise and preserve the phase detail information for simulated InSAR data.
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Figure 5. Simulated interferometric phase: (a) clean interferometric phase; (b) noisy version of
(a) with a coherence of 0.5.
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Figure 6. Filtered result and phase error result of the proposed method on simulated data: (a) filtered
interferometric phase; and (b) phase error.

Table 2. Quantitative indexes of the proposed method on simulated data.

Method NOR MSSIM MSE (Rad2) T (s)

No filtering 7217 0.074 3.47 -
Proposed method 0 0.81 0.48 0.023

4.2. Experiments on Real InSAR Data

In this section, a real interferometric phase image (2048× 2048 pixels) covering the
eastern part of Turkey was used to evaluate the performance of the proposed method.
The interferometric phase (coherence = 0.63) is shown in Figure 7a, and is obtained by
the interferometric wide swath mode of the Sentinel-1 SAR satellite. The filtered result
obtained by the proposed method is shown in Figure 7b. To better observe the filtering
effects, a local area (black rectangle in Figure 7a and the corresponding filtered result are
enlarged in Figure 8. For further quantitative analysis, the NOR, the percentage of the
reduced residues (PRR), the no-reference metric Q, and running time were calculated and
listed in Table 3. We can see that the proposed method can filter noise and preserve the
phase detail information for real InSAR data.
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Figure 7. Real InSAR data and the filtered result using the proposed methods: (a) a real interferometric
phase image of Sentinel-1; (b) filtered result.
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Figure 8. Filtered results of a local area in Figure 7a (black rectangle) using the proposed method:
(a) black rectangle area in Figure 7a; and (b) filtered result.

Table 3. Quantitative indexes of the proposed method on real InSAR data.

Method NOR PRR (%) Metric Q T (s)

No filtering 546,647 0 2.08 -
Proposed method 1624 99.70 31.70 5.35

5. Discussion

In this section, we use simulated and real InSAR data to compare the proposed method
with the Lee filter, Goldstein filter, InSAR-BM3D filter and PFNet.

5.1. Comparison Experiments on Simulated InSAR Data

Figure 9 shows the filtering results of Figure 5a and phase error results obtained by
the four reference methods. From Figures 6 and 9, we can see that the phase error of the
proposed method is closer to zero than other methods, that is, the filtered phase of the
proposed method is closest to the ideal phase. In order to further verify this inference,
the fitted histogram curves of the phase errors are given in Figure 10. The fitted histogram
curve can clearly compare the error distribution of various methods. As can be seen
from Figure 10, the error curve of the proposed method is sharper near zero than other
methods, that is, the proposed method outperforms other methods from the perspective
of phase error.

To verify the performance of the proposed method under different noise levels,
the quantitative indexes were calculated for all testing samples with the same coherences,
and the results are shown in Figure 11. From Figure 11, we can see that the proposed
method has the highest MSSIM and lowest MSE among the five methods under all con-
sidered cases, that is, the proposed method can obtain the highest filtering performance.
In addition, the mean NOR, MSSIM, MSE, and T of the four reference methods for all
testing samples were calculated and listed in Table 4. From Tables 2 and 4, we can see
that the InSAR-BM3D filter, PFNet, and the proposed method have sufficient filtering
power to filter out all residues from the perspective of NOR. Among these five methods,
the proposed method has the highest MSSIM and the smallest MSE. Compared with the
InSAR-BM3D filter and PFNet, the MSSIM of the proposed method is 8% and 3% higher,
respectively, and the MSE of the proposed method is 25% and 11% higher, respectively.
This indicates that the proposed method has the best filtering performance. In addition,
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the proposed method has a significant advantage of computational efficiency compared to
traditional methods. Compared with PFNet, the proposed method has the same level of
running time because the required running time for nonlocal processing is also small when
the image size is small.
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Figure 9. Filtered results (top) and phase error results (bottom) of the four reference methods on
simulated data: (a) Lee filter; (b) Goldstein filter; (c) InSAR-BM3D filter; and (d) PFNet.
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Figure 10. Fitted phase error histogram curves of the five methods. The standard deviation of the six
curves are 4.57, 2.45, 1.73, 1.10, 0.68 and 0.62.

Table 4. Quantitative indexes of the reference methods on simulated images.

Method NOR MSSIM MSE (Rad2) T (s)

Lee filter 268 0.36 1.62 2.88
Goldstein filter 14 0.57 1.12 2.70

InSAR-BM3D filter 0 0.75 0.64 6.95
PFNet 0 0.79 0.54 0.028

5.2. Comparison Experiments on Real InSAR Data

The filtered results of Figure 7a obtained by the four reference methods are shown
in Figure 12a–d, respectively. To better observe the filtering effects, a local area (black
rectangle in Figure 7a) and the corresponding filtered results are enlarged in Figure 13.
From Figures 7, 8, 12 and 13, we can see that compared with PFNet and the proposed
method, the denoising power of the Lee filter, Goldstein filter and InSAR-BM3D filter is not
enough. Compared with the proposed method, the result of PFNet is over-filtered, that
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is, more phase detail information is lost. However, the proposed method better balances
denoising and phase detail preservation.
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Figure 11. Quantitative indexes of the proposed and reference methods for phase filtering results on
simulated images with different coherences: (a) mean structural similarity index (MSSIM); (b) mean
square error (MSE).

For further quantitative analysis, the evaluation indexes of the four reference methods
were calculated and listed in Table 5. From Tables 3 and 5, it can be seen that compared with
the Lee filter, Goldstein filter and InSAR-BM3D filter, the PRR and metric Q of the proposed
method and PFNet are significantly higher, which indicates that the proposed method and
PFNet have better filtering performance. Comparing the proposed method and PFNet,
although the proposed method has a lower PRR, it has a higher metric Q. This indicates
that PFNet loses more phase detail information due to the excessive denoising ability, while
the proposed method maintains the balance of denoising and phase detail preservation.
Compared with the InSAR-BM3D filter and PFNet, the metric Q of the proposed method is
25% and 9% higher, respectively. Furthermore, due to the time consumption of nonlocal
phase information processing, the running time of the proposed method is higher than
PFNet, but still several tens of times less than the Lee filter, Goldstein filter, and InSAR-
BM3D filter.
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Figure 12. Filtered results of Figure 7a using the four reference methods: (a) Lee filter; (b) Goldstein
filter; (c) InSAR-BM3D filter; and (d) PFNet.
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Figure 13. Filtered results of a local area in Figure 7a (black rectangle) using the four reference
methods: (a) Lee filter; (b) Goldstein filter; (c) InSAR-BM3D filter; and (d) PFNet.

Table 5. Quantitative indexes of the four reference methods on real InSAR data.

Method NOR PRR (%) Metric Q T (s)

Lee Filter 85,930 84.28 9.93 180.26
Goldstein Filter 31,024 94.32 17.55 174.73

InSAR-BM3D Filter 5936 98.91 25.44 483.47
PFNet 415 99.92 29.02 0.25

5.3. Generalization Ability to Real InSAR Data

To further analyze the filtering performance of the proposed method for low-coherence
areas, a low-coherence region (coherence = 0.44) of Figure 7a (white rectangle) and the
corresponding filtered results obtained by the proposed and reference methods are shown in
Figure 14. For further quantitative analysis, the evaluation indexes of the five methods were
calculated and listed in Table 6. Comparing the proposed method and PFNet, although the
proposed method has a lower PRR, it has a higher metric Q. Compared with the InSAR-
BM3D filter and PFNet, the metric Q of the proposed method is 37% and 19% higher,
respectively. Therefore, we can see that the proposed method maintains the balance
of denoising and phase detail preservation for the low-coherence area better than the
reference methods.

To verify the generalization ability of the proposed method for different studied areas,
we processed the real InSAR data with different terrain from the training data. The real
interferometric phase image also comes from the interferometric wide swath mode of the
Sentinel-1 SAR satellite. The interferometric phase (1024× 1024 pixels, coherence = 0.62) is
shown in Figure 15a. The filtered results obtained by the proposed and reference methods
are shown in Figure 15b–f, respectively. For further quantitative analysis, the evaluation
indexes of the five methods were calculated and listed in Table 7. From Figure 15 and
Table 7, we can see that the proposed method maintains the balance of denoising and phase
detail preservation better than the reference methods. Compared with the InSAR-BM3D
filter, the metric Q of the proposed method is 24% higher. According to Section 5.2, in the
case of the real data with the same terrain as the training data, the improvement of the
metric Q is 25% higher. It can be seen that there is a slight drop in filtering performance
when the terrain of the study area is different from that of the training data. Therefore, to a
certain extent, the proposed method has good generalization ability to different studied
areas in this experiment. In practical applications, the need to regenerate training data
and retrain can be determined based on a combination of the three following factors: the
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required filtering performance, the required training time and whether there is the DEM of
the studied area to generate training data. Furthermore, the ambiguity height of the InSAR
system directly affects the density of phase fringes related to the filtering performance.
Therefore, to enhance the phase feature similarity between simulated and real InSAR
data [24,25], the ambiguity height used in the process of generating the training data is the
same as that of the real InSAR system.
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Figure 14. Filtered results of a low-coherence area using the proposed and reference methods:
(a) a low-coherence area (the white rectangle in Figure 7a); (b) Lee filter; (c) Goldstein filter;
(d) InSAR-BM3D filter; (e) PFNet; and (f) proposed method.

Table 6. Quantitative indexes of the proposed and reference methods on a low-coherence area of real
InSAR data (the white rectangle in Figure 7a).

Method NOR PRR (%) Metric Q

No filtering 11,142 0 1.80
Lee filter 3011 72.98 11.17

Goldstein filter 1550 86.09 17.16
InSAR-BM3D filter 585 94.75 27.10

PFNet 59 99.47 32.13
Proposed method 78 99.30 37.71

In addition, as with the terrain-induced interferometric phase, the deformation-
induced interferometric phase, such as the co-seismic interferogram, also has the property
of the nonlocal phase self-similarity. Therefore, the proposed nonlocal filtering method
should also be applicable to deformation-induced interferometric phase filtering and can
obtain a better filtering performance than the four reference methods used in this paper.
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Figure 15. Filtered results of Figure 15a using the reference and proposed methods: (a) a real
interferometric phase image of Sentinel-1 with a different terrain from the training data; (b) Lee filter;
(c) Goldstein filter; (d) InSAR-BM3D filter; (e) PFNet; and (f) proposed method.

Table 7. Quantitative indexes of the proposed and reference methods on real InSAR data with
different terrain from the training data.

Method NOR PRR (%) Metric Q T (s)

No filtering 139,099 0 1.99 -
Lee filter 19,805 85.76 10.74 44.82

Goldstein filter 6288 95.48 19.11 44.44
InSAR-BM3D filter 893 99.36 27.65 120.11

PFNet 94 99.93 32.20 0.14
Proposed method 113 99.92 34.17 1.37

6. Conclusions

In this paper, a nonlocal InSAR phase filtering method via NL-PFNet was proposed to
improve the filtering performance. NL-PFNet is designed based on the encoder–decoder
structure and nonlocal feature selection strategy. Thanks to the powerful phase feature
extraction ability of the encoder–decoder structure and the utilization of nonlocal informa-
tion in the N3 block, NL-PFNet can predict an accurate filtered phase after training using
a large number of interferometric phase images with different noise levels. Experiments
both on simulated and real InSAR data show that the proposed method significantly out-
performs the three traditional well-established methods and another deep learning-based



Remote Sens. 2022, 14, 1174 16 of 17

method. In experiments on simulated data, compared with the InSAR-BM3D filter and
PFNet, the MSE of the proposed method is 25% and 11% lower, respectively. Furthermore,
when processing the Sentinel-1 interferometric phase, compared with the InSAR-BM3D
filter and PFNet, the metric Q of the proposed method is 25% and 9% higher, respectively.
In addition, the running time of the proposed method is tens of times less than that of the
traditional filtering methods. In future work, to further improve filtering performance, we
will combine more advanced nonlocal processing methods with the deep learning networks
to achieve InSAR phase filtering.
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