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Abstract: The point clouds scanned by lidar are generally sparse, which can result in fewer sampling
points of objects. To perform precise and effective 3D object detection, it is necessary to improve
the feature representation ability to extract more feature information of the object points. Therefore,
we propose an adaptive feature enhanced 3D object detection network based on point clouds (AFE-
RCNN). AFE-RCNN is a point-voxel integrated network. We first voxelize the raw point clouds and
obtain the voxel features through the 3D voxel convolutional neural network. Then, the 3D feature
vectors are projected to the 2D bird’s eye view (BEV), and the relationship between the features in
both spatial dimension and channel dimension is learned by the proposed residual of dual attention
proposal generation module. The high-quality 3D box proposals are generated based on the BEV
features and anchor-based approach. Next, we sample key points from raw point clouds to summarize
the information of the voxel features, and obtain the key point features by the multi-scale feature
extraction module based on adaptive feature adjustment. The neighboring contextual information
is integrated into each key point through this module, and the robustness of feature processing is
also guaranteed. Lastly, we aggregate the features of the BEV, voxels, and point clouds as the key
point features that are used for proposal refinement. In addition, to ensure the correlation among the
vertices of the bounding box, we propose a refinement loss function module with vertex associativity.
Our AFE-RCNN exhibits comparable performance on the KITTI dataset and Waymo open dataset to
state-of-the-art methods. On the KITTI 3D detection benchmark, for the moderate difficulty level of
the car and the cyclist classes, the 3D detection mean average precisions of AFE-RCNN can reach
81.53% and 67.50%, respectively.

Keywords: 3D object detection; multi-scale feature extraction; adaptive and robust; residual of dual
attention; loss function with vertex associativity

1. Introduction

In recent years, with the rapid development of intelligent driving technology, it is
necessary to improve the performance of 3D object detection, as 3D object detection is a
key technology of intelligent driving. At present, the popular 3D detection datasets are
the KITTI dataset [1] and the Waymo open dataset [2]. There are mainly two types of 3D
object detection method based on point clouds, i.e., point-based method and voxel-based
method. The point-based method uses the multi-layer perceptron (MLP) [3] and sets
abstraction to process raw point clouds. This kind of method usually has high detection
precision, such as in refs. [4–10]. However, using the same MLP to process all points cannot
express the relevancy of the spatial-variant well. Voxel-based methods generally convert
the unstructured point clouds into a 3D voxel or a 2D bird’s eye view grid, such as in
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refs. [11–16]. After voxelization, the 3D voxel or 2D bird’s eye view grid can be processed
by convolutional neural networks. Compared with MLP, the convolution operation has
stronger spatial-variant processing capability. However, the voxelization operation will
lose structure information.

To combine the advantages of point-based methods and voxel-based methods, Shaoshuai
Sh et al. proposed PV-RCNN [17] for 3D object detection. In the voxel-based branch, PV-
RCNN can efficiently generate high-quality 3D box proposals. The point-based branch
effectively preserves the location information of the input data by processing the raw
point clouds directly. The PV-RCNN can achieve the precise fine-grained box refinement
by fusing the features of bird’s eye view (BEV), raw point clouds, and voxel. Figure 1
shows the schematic diagram of these three features; the spatially sparse convolution is
composed of sparse convolution [10] and submanifold convolution [18]. The submanifold
convolution is an efficient convolution operation for sparse data, which can greatly reduce
the convolution computation when processing sparse data. The structure of the sparse
convolution is located in the lower part of the figure. The boxes with colors in the sparse
convolution part represent voxels with points; the white boxes represent the voxels without
points. For the sparse convolution, a matrix is firstly constructed by the convolution kernel
and the index of input features. Secondly, a general matrix multiplication-based algorithm
(GEMM) is used for the matrix computation. Finally, the spatial positions of the output
features are recovered. More details can be obtained from ref. [10]. As shown in Table 1,
the feature fusion method can improve the 3D detection performance.
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Figure 1. Diagrams of raw point clouds, voxels, and bird’s eye view. Nin is the number of input
features; Nout is the number of output features. N is the number of gathered features in non-empty
voxels. GEMM represents the general matrix multiplication-based algorithm [10].

Table 1. The ablation experiments on the features of raw point clouds, voxel, and BEV. Note that
the results in this table are provided in rows 4–6 of Table 8 in ref. [17]. The mAP| 40 calculated from
40 recall positions is used as the evaluation metric. Here is the example of the 3D detection mAP| 40
for the car class with moderate-level difficulty. Note that the experiment is based on the KITTI dataset.

Voxel Features BEV Features Raw Point Cloud Features Moderate mAP|40
√

84.54√ √
84.69√ √ √
84.72
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However, like refs. [11,19,20], PV-RCNN processes the BEV features with the tradi-
tional convolutional neural network (CNN) in part of the region proposal network (RPN).
To generate the high-quality proposals, more consideration is needed on the correlation
of features in the channel branch and the spatial branch. Like refs. [4,7], Pointnet [21]
or Pointnet++ [22] are used to process the raw point clouds in PV-RCNN, which cannot
efficiently aggregate neighboring contextual information. Furthermore, like refs. [7,10],
the smooth-L1 loss is used for box regression in PV-RCNN, which ignores the correlation
among the vertices of the bounding box. In order to solve the above problems, we improve
the PV-RCNN from the aspects of point cloud feature extraction, the RPN, and the loss
function of the box proposal regression.

The main contributions are as follows:

1. We design a residual of dual attention proposal generation module, i.e., RDA module.
This module learns the correlation of features in both channel branch and spatial
branch, while reducing the loss of the information transmission process. The RDA
module leads to the higher quality box proposals and enhances the features of BEV.
The enhanced features are beneficial to the box proposal refinement.

2. We design a multi-scale feature extraction module based on feature adaptive ad-
justment, i.e., MSAA. The proposed module uses the multi-scale feature extraction
method to enhance the robustness of sparse point cloud features. Meanwhile, to
fully mine the neighboring contextual information among all points, we introduce a
feature adaptive adjustment method to make the key points better describe the local
neighborhood region.

3. We design a loss function module based on vertex associativity, i.e., VA module.
This module constructs a regression loss function based on the projection of the 3D
detection box into the BEV coordinate system and the DIoU loss.

2. Related Work

Point cloud feature extraction methods: Pointnet [21] adopts 3D spatial transform
net (STN) and Maxpooling to solve the disorder and rotation of point clouds. However,
Pointnet simply joins point sets to obtain the global features and the features of individual
points. After that, Pointnet++ [22] is proposed, which extends Pointnet with the farthest
sampling layer and grouping layer to increase the information contained in each point.
While the max pooling operation of Pointnet is followed in the feature extraction of ref. [21],
it still cannot effectively aggregate the information in the local region. To obtain a richer
semantic representation of each point, Wang Yue et al. proposed DGCNN [23] to construct
a local neighborhood through EdgeConv. Although EdgeConv considers the distance
between point coordinates and neighboring points, it ignores the vector direction between
neighboring points. As a result, part of the local geometric information is lost. In order
to process the contextual information of point clouds better, Li Yangyan et al. proposed
PointCNN [24], which processes the order of features through the “X”-transformation
matrix, so that the convolution operator can be used to process the disordered point clouds.
Unlike ref. [24], Hengshuang Zhao et al. focused on the interaction between points in each
local neighborhood, and proposed the Pointweb [25] to extract contextual features from
local neighborhoods in the point clouds. Pointweb makes the points more descriptive of
local regions, which is due to fully mining the contextual information among all points. For
more robustness in processing sparse point clouds, we combine the multi-scale approach
with the method in Pointweb.

Attention mechanism in convolutional neural networks: A large number of studies
have shown that the attention mechanism is beneficial to improve the performance of
a CNN. Hu Jie et al. [26] proposed a channel attention network, i.e., SENet. This atten-
tion module is composed of three parts, i.e., squeeze, excitation, and scale. Based on
SENet, Sanghyun Woo et al. [27] proposed CBAM (convolutional block attention module);
performance is further improved by increasing spatial attention. Moreover, a residual
attention network [28] can obtain abundant key features through residual attention learn-
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ing. FuJun et al. [29] proposed a double attention network, i.e., DANet, to capture the
global feature dependency in the spatial and channel dimensions, which can improve
segmentation results by modeling the contextual dependencies of local features. How-
ever, DANet is computationally intensive when modeling both the spatial and channel
dimensions. HuajunLiu et al. [30] proposed a polarized self-attention mechanism, i.e., PSA.
The PSA block uses a unique filtering approach to control the complexity of the model
while maintaining a high resolution in both the spatial and channel dimensions. Generally,
directly inserting the attention module into the network may not work well and can even
lead to performance degradation, which may be caused by some important features being
weakened, gradient disappearance, or over-fitting. To solve these problems, some tricks or
methods can be used to improve the attention module. For example, the residuals can be
used to correct the output of the attention block, which allows rich, simple information to
propagate directly to deeper layers and ensures the integrity of the information during the
transmission, e.g., ref. [31].

The loss function for object detection: Fast R-CNN [32] uses a smooth-L1 loss func-
tion to regress the coordinate values, but this loss function ignores the correlation among
coordinates. IoU Loss [33] regards the location information as a whole to train the net-
work, which considers the correlation among the vertices of the detection box. However,
IoU Loss cannot optimize the two non-overlapping boxes, and cannot reflect the distance
between two boxes. In order to solve the above problems, Hamid Rezatofighi et al. [34]
proposed Generalized IoU Loss, i.e., GIoU. GIoU can be used as a distance measurement
directly and can handle the case of non-overlapping boxes well. However, the convergence
speed of GIoU is slow. To improve the convergence speed and regression accuracy, Zheng
Zhaohui et al. [35] proposed Distance IoU Loss, i.e., DIoU for box regression, which takes
three geometric factors into account, i.e., the overlap region, centroid distance, and aspect
ratio. However, DIoU Loss is usually used for the calculation for a 2D bounding box, which
is not effectively introduced into 3D object detection.

3. AFE-RCNN for Point Cloud Object Detection

The overall architecture of our AFE-RCNN is shown in Figure 2. We propose three
novel modules, i.e., (a) the residual of dual attention proposal generation module (RDA
module) (Figure 2a); (b) multi-scale adaptive feature extraction module based on point
clouds (MSAA) (Figure 2b); (c) refinement loss function module with vertex associativity
(VA module) (Figure 2c). In our AFE-RCNN, the input point clouds are processed by two
branches; that is, a voxel-based branch and a point-based branch. In the voxel-based branch,
we first voxelize the raw point clouds. Referring to ref. [17], we divide the raw point clouds
into small voxel grids of the same scale in x,y,z directions. Then, we use the average of the
features of all points inside the non-empty voxel as the features of the voxel. Secondly, we
obtain the voxel features through a 3D spatially sparse convolutional network [10]. Next,
we project the point clouds to the 2D BEV coordinate by eight times downsampling (i.e.,
stack the Z-axis features together to generate the 2D BEV feature maps), and obtain the 2D
BEV features through the RDA module. Finally, the RPN generates box proposals based
on the anchor box approach and BEV features. In the point-based branch, to summarize
the information of the scene, we sample the key points through farthest point sampling
(FPS), then the features of key points are obtained by MSAA. Next, as the rich features
are beneficial to the box proposal refinement, the features of BEV, raw point clouds, and
voxels are fused to build the key point features. To make the foreground points contribute
more to refinement, the weights of the key points are adjusted by the weighting module
(see ref. [17]). At last, the box proposal refinement is completed based on the key point
features and the key point-to-grid RoI feature abstraction (see ref. [17]); the grid point is
the center point of the voxel grid. We guarantee the correlation among the vertices of the
box to optimize the box proposal regression by the advantages of the VA module. Details
of the main operations are given in the subsections.
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3.1. The Residual of Dual Attention Proposal Generation Module

Our AFE-RCNN firstly divides the raw point clouds into the several uniform scales
of voxel grids, and then obtains the 3D voxel features through a 3D spatially sparse
convolutional network. Secondly, the proposed network projects the information of 3D
features to the 2D BEV coordinate. The network of the BEV feature extraction in ref. [17]
consists of the traditional 2D CNN, which usually processes all features equivalently and
cannot reflect the variability requirements in object detection tasks. Moreover, the extracted
feature map only aggregates the spatial and channel information in the local receptive field,
which will lead to a lack of relevance of global information.

To solve the above problems, we propose the residual of dual attention proposal
generation module (RDA module). Inspired by the polarized self-attention block [30],
we construct the attention block by the residual connection to ensure the integrity of
information transmission for feature processing, which can process both the spatial and
channel dimensions of features with very little calculation increase. The diagram of the
proposed RDA module is shown in Figure 3. The input of the module is used to mainly
control the direction of information processing, avoiding the situation in which background
points are overly focused. The proposed module can strengthen the correlation between
object features in the spatial domain and global feature channel, which can fully excavate
semantic information in both spatial dimension and channel dimension.

We first assume that the input features X are independent; the channel attention branch
Bc(X) ∈ RC×1×1 is defined as Equation (1).

Bc(X) = FSG[Conv z((τ 1(Conv v(X))× FSM(τ 2(Conv q(X)))] (1)

where Cnvq, Convv, and Convz are all 1 × 1 convolutional layers, τ1 and τ2 are two vector
transformation symbols, × presents matrix dot product operation, FSG() is a sigmoid
operator, and FSM() is a SoftMax operator. The output of channel attention branch is:

Oc= Bc(X)�c X ∈ RC×H×W (2)

where �c is the channel multiplication operator.
Here, the spatial attention branch Bs(X) ∈ R1×H×W is defined as Equation (3):

Bs(X) = FSG[τ 3(F SM(τ 1(F GP(Conv q(X))))× τ2(Conv v(X)))] (3)
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where τ1, τ2, and τ3 are vector transformation symbols; FGP() is a global pooling operator.
The output of the spatial attention branch is shown as Equation (4). �s is the spatial
multiplication operator.

Os= Bs(O c)�
s Oc (4)

The output of one residual block Or is:

Or= X + εOs (5)

where ε is the weighting factor of the attention module. Here, the range of ε is 0~1; the
best performance can be achieved when ε = 0.1. After a lot of experiments, we found that
the average running times before and after adding the RDA module to the RPN stage are
~0.0060 s and ~0.0071 s run on the same processor, respectively, which is a difference of
milliseconds. The use of the attention network did not result in a significant decrease in the
efficiency of our proposed network.
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Figure 3. The architecture of the RDA module. The symbol ⊗ represents element addition, and
the symbol � represents element multiplication. The drawing of this figure is inspired by ref. [30].
Conv2D represents a 2D convolution operation, Deconv represents a deconvolution operation.
Layernorm represents normalization of the channel dimensions. The other symbols are described in
this section.

3.2. Multi-Scale Feature Extraction Module Based on Adaptive Feature Adjustment

In ref. [17], a certain number of points are sampled as the key points. That sampling
approach may cause poor robustness features in the sparse region of the point clouds.
To solve this problem, we propose a multi-scale feature extraction module based on adap-
tive feature adjustment (MSAA) as shown in Figure 4. Firstly, we sample 2048 points
through FPS to summarize the information of the scene. This is followed by two times
4-fold downsampling and points grouping; the sampling layers with different scales that
containing 512 and 128 points are obtained, respectively. Inspired by ref. [25], to extract
richer feature information, we process the features for each grouping layer based on adap-
tive feature adjustment (AFA). The interaction between points can be found through the
AFA, which can also integrate the neighboring contextual information into the features of
each point. Moreover, the multi-scale point clouds can be constructed by different sampling
and grouping layers. Thus, the features of all sampling layers are interpolated to the same
feature shape and concatenated together, which can construct multi-scale features of the
key points.
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size of it is C × N. C is the number of channels in each point features. (b) Difference map F(i)
di f . For

each Fi, the difference of point features between each point pair is F(i)
di f = [F 1−Fi, . . . , Fi, . . . , FN−Fi

]
.

(c) Impact map βi. F(i)
di f learns the amount of impact among point features through MLP to get the

impact map. (d) Adjusted feature map F′i , it is the final adjustment vector.

In the point cloud feature extraction for each sampling layer, first, the features of
each point (Figure 4a) in the region Q consist of the feature set F, which can be expressed
as F = {F 1, F2, . . . , Fn}. In order to focus on the correlation between each point pair, we
connect the points in region Q into a local network, which can learn the interactions between
all point pairs. We get the difference map F(i)

di f (Figure 4b) at the same time. And then, F(i)
di f

learns the amount of impact among point features through the impact function to get the
impact map βi Figure 4c, this is so that the points in region Q can merge the neighboring
contextual information, and the features of each point have better local neighborhood
representation ability. The adjusted feature F′i is defined as Equation (6).

F′i = Fi + Fmod
i ,

Fmod
i = fmodual(F i, F)

(6)

where Fi is one of the features in the feature set F. Fmod
i represents the amount of impact,

which is affected by each feature in F on Fi. Fmod
i is obtained by adaptive learning of the

feature modulator in the feature set F. The learning process of the feature modulator fmodual
is defined as Equation (7), where ·means product operation.

fmodual(F i , F) =
n

∑
j=1

fimpact(F i, Fj) f relation(Fi, Fj) (7)

The learning process of the feature modulator is mainly involved in two functions;
one is the amount of impact of Fj on Fi, which is represented by the function fimpact. The
other is the relation function frelation. The impact function fimpact is calculated by the MLP
operation. The function fimpact is defined as Equation (8):

fimpact(F i, Fj) = MLP( f relation(F i, Fj)) (8)
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In the relation function frelation, the amount of impact is calculated by the difference
between the two feature vectors Fi and Fj in feature set F. Specifically, when i = j, the
amount of impact on Fi is the feature Fi itself. frelation is defined as Equation (9):

frelation(F i, Fj) =

{
Fi − Fj, i 6= j

Fi, i = j
(9)

For each feature in the local region Q, the total output of the learned feature is shown
as Equation (10). Hence, F′i incorporates contextual information from the entire region
through the above densely connected local network of points.

F′i = β
(i)
i ·Fi +

N
∑

j=1,j 6=i
β
(i)
j ·(F j − Fi)

β
(i)
j =

{
− f impact(F i, Fj), i 6= j

fimpact(F i, Fj) + 1, i = j

(10)

In different sampling layers, we firstly use interpolation to upsample the point clouds
to the same number, and then concatenate these feature vectors as multi-scale features for
key points. The interpolation process can be expressed as:

ˆ
Flay

j =
∑K

j=1 ωj(p lay
i )Flay

j

∑K
j=1 ωj(p lay

i )
(11)

ωj(p i) =


1

||p lay
i −play

j ||2
, play

j ∈ Play(p lay
i )

0, other
(12)

where play
i is one of the points in the sampling point set Play. Flay

j is the feature of play
i ;

ˆ
Flay

j is the feature obtained by interpolation. We calculate the distance weight ωj between

play
i and play

j through the K-nearest neighbors. As shown in Equation (12), the further away

from play
i , the smaller the contribution on play

i . Here, K = 3.
In the point sampling and grouping stage, the feature set of the (k + 1)-th layer is

F (k+1)lay, which is represented by Equation (10). To make the features of the (k + 1)-th
layer consistent with the features of the previous layer in the point dimension, F (k+1)lay is
processed by interpolation to obtain ˆF (k+1)lay. Finally, the previous layer F(k)lay is obtained
by concatenating F (k)lay and ˆF (k+1)lay. The feature set of the k-th layer is:

F(k)lay = F (k+1)lay + ˆF (k+1)lay, k = 1, 2

F(k)lay = F (k)lay, k = 3
(13)

In addition, to provide rich feature information for box proposal refinement, we con-
vert the BEV features obtained in Section 3.1 to key point features by bilinear interpolation,
then the set abstraction operation in ref. [22] is used to fuse the features of voxels into key
points. After the above operation, the features of BEV, raw point clouds, and voxels are
fused as the key point features. Finally, we sample m grid points in each box proposal.
Here, m = 216. For each grid point, we aggregate the features of neighboring key points to
it to help the box proposal refinement.

3.3. Refinement Loss Function Module with Vertex Associativity

The refinement network is mainly used to learn the center point, size, and direction of
the detection box. Two MLP layers are used to construct the refinement network, which
finally performs the two tasks of confidence prediction and box regression. Generally, for
the box regression loss, the vertices are usually regarded as independent of each other.
However, the vertices of the bounding box are related to each other to a certain extent.
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The intersection over union (IoU) [33] is used to evaluate the effectiveness of the detection
boxes. For different detection boxes, there may be a situation where the smooth-L1 loss is
similar but the IoU varies greatly. In order to solve this problem, we propose the refinement
loss function module with vertex associativity (VA module), as shown in Equation (14).
The VA module trains the bounding box as a whole and solves the problem in which the
anchor cannot be regressed when the prediction box does not intersect with the ground
truth box.

Lreg
(
xpre, xgt

)
= Lsmooth_L1

(
xpre, xgt

)
+Lcorner+αLDIoU (14)

The weight coefficient α of LDIoU is referred to the dataset and experiment. According
to the statistics of multiple experiments, a better result can be achieved when the α value
is in the range 0.1~1. The best performance can be achieved when α = 0.3. Lsmooth_L1 and
Lcorner are shown as Equations (15) and (16). cornpre is the predicted corner; corngt is the
ground truth corner.

Lsmooth_L1
(
xpre, xgt

)
=

 0.5(x pre − xgt

)2
i f
∣∣xpre−xgt

∣∣< 1∣∣xpre − xgt
∣∣ − 0.5 otherwise

(15)

Lcorner = mean
(
Lsmooth_L1

(
cornpre, corngt

))
(16)

Here, the normalized distance between the center points of the prediction box and
the ground truth box is directly minimized to achieve rapid convergence. We choose the
height value of the 3D bounding box within a certain angular range on the lidar coordinate.
The height values are then normalized as a partial value for the length and width of the
bounding box. We project the 3D bounding box to the 2D BEV coordinate through the
above approach, so that the DIoU can be calculated by the 2D BEV information. LDIoU is
shown as Equation (17) [35]:

LDIoU= LIoU +
ρ2(b, b gt

)
c2 (17)

where b represents the center point of the prediction box; bgt is the center point of the
ground truth box. ρ() represents the function of the Euclidean distance between two center
points. c represents the diagonal distance of the smallest rectangle that can cover the
predicted box and the ground truth box at the same time.

For the confidence prediction, the IoU between the ground truth boxes and the box
proposals are used as the optimization object.

LIoU = −uklog(ũk) − (1 − u k) log(1− ũk) (18)

Here, uk is the confidence of the optimization object for the k-th box proposals. ũk is
the predicted score.

3.4. Training Losses

Our AFE-RCNN is trained end-to-end. According to Figure 2, the training losses Ltrain
consist of the region proposal loss Lrpn, the segmentation loss Lseg, and the refinement
loss Lrcnn.

1 The proposal generation network performs the classification and regression of anchor
boxes based on the BEV features. The region proposal loss Lrpn is:

Lrpn= Lcls + Lsmooth_L1

(
ϑ̃gen, ϑgen

)
(19)

Among them, the anchor box regression is calculated through Lsmooth_L1. ϑ̃gen is the
predicted residual for the anchor box; ϑgen is the regression target for the anchor box.
ϑ̃gen, ϑgen represents the position parameters (x, y, z, h, l, w) and pose parameters (θ) of the
3D bounding box. Lcls is the anchor classification loss as shown in Equation (20).
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Lcls =


−β

(
1−

∼
X
)g

log
(∼

X
)

, X = 1

−(1− β)
∼
X

g
log
(

1−
∼
X
)

, X = 0
(20)

Among them, X ∈ {0, 1} is the ground truth label;
∼
X is the predicted input. β is the

balance factor; g is the focusing parameter that is used to adjust the sample weights. Here,
we set β = 0.25, g = 2.0.

2 The key point segmentation loss Lseg is used to filter the foreground, where the
calculation method is the same as the classification loss Lcls.

3 The refinement network performs the confidence prediction and regression of the
box proposals based on the rich feature information of key points. LIoU is used
for confidence prediction, while Lreg in Section 3.3 is used for box regression. The
proposal refinement loss Lrcnn is:

Lrcnn= LIoU + Lreg

(∼
ϑ

re f
, ϑre f

)
(21)

Among them,
∼
ϑ

re f
is the predicted box residual; ϑre f is the proposal regression object.

∼
ϑ

re f
, ϑre f represent the position parameters and pose parameters of the bounding box.
The training loss Ltrain can now be expressed as the Equation (22):

Ltrain= Lrpn+Lseg + Lrcnn (22)

4. Experiments and Results

In the experimental part, we first test AFE-RCNN on the KITTI dataset and compare it
with the state-of-art methods, then we conduct ablation experiments to verify the effective-
ness of each part for the proposed AFE-RCNN. In addition, we also conduct experiments
on the Waymo dataset to prove the robustness of AFE-RCNN.

4.1. Dataset and Implementation Details

KITTI dataset: The KITTI dataset is widely used in the evaluation of 3D object
detection networks. The annotation file of KITTI contains 15 items, which indicate target
category, truncation rate, occlusion level, observation angle (−π~π), 2D bounding box
coordinates, height, width, and length of the 3D bounding box, 3D coordinates of the object
position in camera coordinates, and the rotation angle relative to the y axis. The detection
task is divided into three difficulty levels, i.e., easy, moderate, and hard. The objects in
the easy level are fully visible, while their minimum bounding box height is 40 pixels and
maximum cutoff is 15%. The objects in the moderate level are partially occluded, while
their minimum bounding box height is 25 pixels and maximum cutoff is 30%. The objects
in the hard level are difficult to observe, while their minimum bounding box height is
25 pixels and maximum cutoff is 50%. We compared AFE-RCNN with the state-of-the-art
methods on the online test server, and conducted ablation experiments on the validation set.
For voxelization, we set the point cloud range as (0, 70.4) m in the X axis, (−40, 40) m in the
Y axis, and (−3, 1) m in the Z axis. We also set the size of voxel grids as (0.05, 0.05, 0.1) m.

The training and test sets contain 7481 training samples and 7518 test samples, respec-
tively. In the evaluation of the test set, we randomly divided 80% of the training set for
training and the remaining 20% for validation. In the ablation experiment, we randomly
divided the training data into 3712 training split and 3769 validation split.

According to ref. [36] and the KITTI official metrics, we set the IoU threshold for the
car class as 0.7 and for the cyclist class as 0.5. The mAP| 40 and the average orientation
similarity (AOS| 40) calculated from 40 recall positions were used as the evaluation indica-
tors for the test sets and the validation sets. The mAP was calculated on the set of recall
Rn= {1/n, 2/n, . . . , 1} as Equation (23):
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mAP| R =
1
|R| ∑

r∈R
ρinterp(r) (23)

where Θobj represents the target box, Θdet represents the detected box, ρinterp(r) = maxr′:r′≥rρ(r
′).

ρ(r) represents the precision calculated at the recall position r.
The AOS is calculated as Equation (24):

AOS =
1
|R| ∑

r∈R
maxr′ :r′≥rs(r′) (24)

where s(r) represents the orientation similarity rate calculated at the recall position r.
Waymo open dataset: The Waymo dataset is a large-scale 3D detection dataset. The

training set has 798 sequences while the validation set has 202 sequences. The objects
in the Waymo dataset are divided into two difficulty levels; level one comprises objects
containing at least five points, and level two comprises objects containing at least one point
or objects directly marked as level two. For voxelization, we set the point cloud range as
(−75.2, 75.2) m for the X and the Y axes, and (−2, 4) m for the Z axis. We set the size of
voxel grids as (0.1, 0.1, 0.15) m.

We used 200 sequences for training and in total 202 sequences for validation. The
mAP and the mean average precision weighted by heading (mAPH) [2] are two official
evaluation indicators, which were used to evaluate the performance of our AFE-RCNN in
vehicle (IoU thresh = 0.7) and cyclist (IoU thresh = 0.5) detection.

Implementation details: Our AFE-RCNN is optimized by the ADAM optimizer. On
the KITTI dataset, we trained our network with the batch size 6 and initial learning rate
0.01 for 80 epochs on 3 RTX 2080 GPUs. On the Waymo dataset, we trained our network
with the batch size 4 and initial learning rate 0.01 for 30 epochs on 2 RTX 2080 GPUs.

4.2. Evaluation on the KITTI Online Test Server

We evaluated the test set based on the KITTI official test server and compared the
performance of AFE-RCNN with the state-of-the-art methods. The results are shown in
Tables 2 and 3.

According to the official information from the KITTI benchmark, we mainly com-
pared the performance of AFE-RCNN with the state-of-the-art methods on moderate-
difficulty mAP| 40 as of 5 January 2022. The following conclusions can be observed from
Tables 2 and 3 and Figure 5. Note that refs. [9,37] do not list the performance of orienta-
tion. These papers are not focused on the 3D object orientation evaluation, which mainly
provides the mAP| 40 of cars. To ensure the fairness of the comparisons, the comparison
algorithms used in Tables 2 and 3 are different according to the results provided in the
corresponding references.

For the performance of 3D detection, our AFE-RCNN has 3 evaluation indicators (total
6 indicators) ranked Top 1 of all comparison algorithms as shown in Table 2. Besides, from
the results shown in Table 2, we can make the following observations.

(1) Our AFE-RCNN outperforms the voxel-based methods on moderate and hard
difficulty levels of the car and all difficulty levels of the cyclist. For cars, our network
improves at least 1.25% on the moderate-difficulty mAP| 40 than the compared voxel-based
methods. For cyclists, our network improves at least 3.98% on the moderate-difficulty
mAP| 40 than the compared voxel-based methods. (2) Our AFE-RCNN outperforms the
point-based methods on moderate and hard difficulty levels of cars and all difficulty
levels of cyclists. For cars, our network improves at least 1.41% on the moderate-difficulty
mAP| 40 than the compared point-based methods. For cyclists, our network improves at
least 3.40% on the moderate-difficulty mAP| 40 than the compared point-based methods.
(3) Compared with the method combining point clouds and voxels, our AFE-RCNN reaches
81.53% on the moderate-difficulty level mAP| 40 for cars, which is comparable to the 81.55%
of mAP| 40 in ref. [38]. In all the difficulty levels for cyclists, our AFE-RCNN outperforms
the compared algorithms.
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Table 2. The performance of 3D detection on the KITTI online test server; the mAP| 40 is calculated
with 40 recall positions. Note that the red, green, and blue represent the results of ranking first,
second, and third, respectively.

Method Modality
Car-3D Detection (mAP|40) Cyclist-3D Detection (mAP|40)

Easy Moderate Hard Easy Moderate Hard

EBM3DOD [39] (CVPR Workshops 2021)

Point

91.05 80.12 72.78 - - -
Faraway-Frustum [37] (IEEE ITSC 2021) 87.45 79.05 76.14 77.36 62.00 55.40

3DSSD [9] (CVPR 2020 Oral) 88.36 79.57 74.55 82.48 64.10 56.90
Point-GNN [8] (CVPR 2020) 88.33 79.47 72.29 78.60 63.48 57.08

EPNet [40] (ECCV 2020) 89.81 79.28 74.59 - - -
PointRCNN [7] (CVPR 2019) 86.96 75.64 70.70 74.96 58.82 52.53

CIA-SSD [14] (AAAI 2021)

Voxel

89.59 80.28 72.87 78.69 61.59 55.30
MGAF-3DSSD [41] (ACMMM 2021) 88.16 79.68 72.39 80.64 63.43 55.15

Part-A2 [11] (TPAMI 2020) 87.81 78.49 73.51 79.17 63.52 56.93
TANet [42] (AAAI 2020) 84.39 75.94 68.82 75.70 59.44 52.53

Associate-3Ddet [16] (CVPR 2020) 85.99 77.40 70.53 - - -
PointPillars [15] (CVPR 2019) 82.58 74.31 68.99 77.10 58.65 51.92

SA-SSD [43] (CVPR 2020)

Point-Voxel
combination

88.75 79.79 74.16 - - -
SPG [44] (ICCV 2021) 90.50 82.13 78.90 - - -

DVFENet [45] (Neurocomputing 2021) 86.20 79.18 74.58 79.17 63.52 56.93
Hˆ23D R-CNN [38] (TCSVT2021) 90.43 81.55 77.22 78.67 62.74 55.78

SE-SSD [46] (CVPR 2021) 91.49 82.54 77.15 - - -
PV-RCNN [17] (CVPR2020) 90.25 81.43 76.82 78.60 63.71 57.65

AFE-RCNN(Ours) 88.41 81.53 77.03 82.78 67.50 61.18

Table 3. The performance of orientation estimation on the KITTI online test server. Note that the red,
green, and blue represent the results of ranking first, second, and third, respectively.

Method Modality
Car-Orientation (AOS|40) Cyclist-Orientation (AOS|40)

Easy Moderate Hard Easy Moderate Hard

EBM3DOD [39] (CVPR Workshops 2021)

Point

96.39 92.88 87.58 - - -
Point-GNN [8] (CVPR 2020) 88.33 79.47 72.29 - - -

EPNet [40] (ECCV 2020) 96.13 94.22 89.68 - - -
PointRCNN [7] (CVPR 2019) 95.90 91.77 86.92 85.94 72.81 65.84

CIA-SSD [14] (AAAI 2021)

Voxel

96.65 93.34 85.76 - - -
TANet [42] (AAAI 2020) 93.52 90.11 84.61 81.15 66.37 60.10

MGAF-3DSSD [41] (ACMMM 2021) 94.45 93.77 86.25 86.28 70.16 62.99
Part-A2 [11] (TPAMI 2020) 95.00 91.73 88.86 88.70 77.52 70.41

Associate-3Ddet [16] (CVPR 2020) 0.52 1.20 1.38 - - -
PointPillars [15] (CVPR 2019) 93.84 90.70 87.47 83.97 68.55 61.71

SA-SSD [43] (CVPR 2020)

Point-Voxel
combination

39.40 38.30 37.07 - - -
SPG [44] (ICCV 2021) 40.02 38.73 38.52 - - -

Hˆ23D R-CNN [38] (TCSVT2021) 96.13 93.03 90.33 85.09 72.20 65.25
DVFENet [45] (Neurocomputing 2021) 95.33 94.44 91.55 85.48 73.43 66.87

SE-SSD [46] (CVPR 2021) 96.55 95.17 90.00 - - -
PV-RCNN [17] (CVPR2020) 98.15 94.57 91.85 86.43 79.70 72.96

AFE-RCNN(Ours) 95.84 94.63 92.07 88.89 79.18 73.65

For the performance of orientation estimation, our AFE-RCNN has 5 evaluation
indicators ranked Top 3 of all comparison algorithms. As shown in Table 3, 3 indicators of
our AFE-RCNN ranked first, and 2 indicators of our AFE-RCNN ranked second. From the
results listed in Table 3, it is easily to draw the conclusions below.
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Figure 5. The RP curves of 3D detection for cars (thresh = 0.7) and cyclists (thresh = 0.5). (a) 3D
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(1) Our AFE-RCNN outperforms the voxel-based methods in 5 evaluation indicators.
For cars, our network improves at least 0.86% on the moderate-difficulty AOS| 40 than the
compared voxel-based methods. For cyclists, our network improves at least 1.66% on the
moderate-difficulty AOS| 40 than the compared voxel-based methods. (2) Our AFE-RCNN
outperforms the point-based methods in 5 evaluation indicators. For cars, our network
improves at least 0.41% on the moderate-difficulty AOS| 40 than the compared point-based
methods. For cyclists, our network improves at least 6.37% on the moderate-difficulty
AOS| 40 than the compared point-based methods. (3) Compared with the method com-
bining point clouds and voxels, our AFE-RCNN outperforms the compared algorithms in
3 evaluation indicators. For cars, our network improves at least 0.22% on the hard-difficulty
AOS| 40 than the compared combining methods. For cyclists, our network improves at
least 2.46% on the easy-difficulty AOS| 40 than the compared combining methods.

4.3. Ablation Experiments Based on KITTI Validation Set

To evaluate the individual components of our method, we conducted ablation exper-
iments. As AFE-RCNN is proposed based on PV-RCNN, we regarded PV-RCNN as the
baseline from which to compare the performance of each module. The ablation experiment
results are shown in Table 4. Note that we used the same metric as the ablation experiment
in PV-RCNN, i.e., the mAP| 40 was calculated with 40 recall positions. The experiments
show that each component of AFE-RCNN has a performance gain on the original model.

Effect of RDA module: The RDA module learns the relevance of features in both
channel and spatial dimensions, and assigns weights to features to suppress background
points by filtering high-value features. This module improves the precision of subsequent
processing. As shown in Table 4, Ours1 outperforms PV-RCNN with 0.08%, 0.46%, and
0.12% of mAP| 40 gains at each difficulty level for cars. For cyclists, Ours1 can also out-
perform PV-RCNN with 1.49%, 1.77%, and 1.52% of mAP| 40 gains at each difficulty level,
which proves that the RDA module can achieve obvious improvements.

Effect of MSAA: We performed three levels of feature extraction on the raw point
clouds. The MSAA ensures the robustness of sampling in sparse regions of the point
cloud by multi-scale grouping and sampling and finds the interaction between points in a
local region base on the adaptive feature adjustment method. According to Table 4, Ours2
outperforms Ours1 with 0.09%, 0.23%, and 0.31% of mAP| 40 gains at each difficulty level for
cars, and Ours2 can also outperform Ours1 with 0.62%, 2.86%, and 2.67% of mAP| 40 gains
at each difficulty level for cyclists. Besides, compared with PV-RCNN, the 3D detection
mAP| 40 of Ours2 at each difficulty level of the car has improved by 0.17%, 0.69%, and
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0.43%, respectively. At the same time, the 3D detection mAP| 40 of Ours2 at each difficulty
level of the cyclist has improved by 2.11%, 4.63%, and 4.19%, respectively. We note that the
gain brought by the MSAA module is the most obvious, especially for cyclists. The possible
reasons can be summarized in the following two aspects. Firstly, directly processing the
raw point clouds can effectively reduce the information loss. Secondly, benefiting from the
multi-scale network structure and the method of adaptive feature adjustment, the points in
the local region can better aggregate the regional contextual information.

Effect of VA module: To avoid the problem in which the correlation among the
vertices of the bounding box is ignored, we optimized the loss function based on DIoU
Loss. Experiments show that the AFE-RCNN has a certain improvement when compared
with Ours2; the 3D detection mAP| 40 of AFE-RCNN at each difficulty level of the car has
improved by 0.08%, 0.26%, and 0.17%, respectively. At the same time, the 3D detection
mAP| 40 of AFE-RCNN at each difficulty level of the cyclist has improved by 0.33%, 0.38%,
and 0.43%.

Compared with PV-RCNN: According to Table 4, our AFE-RCNN has 10 evaluation
indicators (total 12 indicators) better than the PV-RCNN. For the 3D detection mAP| 40,
AFE-RCNN outperforms PV-RCNN with 0.25%, 0.95%, and 0.60% of mAP| 40 gains at each
difficulty level for cars, and AFE-RCNN has improved by 2.44%, 5.01%, and 4.62% for
cyclists than PV-RCNN. For the orientation estimation, AFE-RCNN outperforms PV-RCNN
with 0.03% and 1.94% of AOS| 40 gains at moderate and hard difficulty levels for cars,
and outperforms PV-RCNN with 2.13% and 3.13% of AOS| 40 gains at moderate and hard
difficulty levels for cyclists.

Table 4. Ablation experiment results. The evaluation result of the car class on the KITTI validation
set. The results of PV-RCNN were obtained based on official pre-trained models.

Method

Proposed Modules 3D Detection (mAP|40)

RDA MSAA VA
Easy Moderate Hard

Car Cyclist Car Cyclist Car Cyclist

PV-RCNN Baseline 92.10 89.10 84.36 70.38 82.48 66.17

Ours
Ours1

√
92.18 90.59 84.82 72.15 82.60 67.69

Ours2
√ √

92.27 91.21 85.05 75.01 82.91 70.36
AFE-RCNN

√ √ √
92.35 91.54 85.31 75.39 83.08 70.79

RDA MSAA VA Orientation Estimation (AOS|40)

PV-RCNN Baseline 98.25 97.04 94.26 82.11 92.07 77.88

AFE-RCNN
√ √ √

98.18 94.50 94.29 84.24 94.01 81.01

In addition, we conducted experiments to analyze the attention mechanisms. As
shown in Table 5, we found that the performance of our method becomes worse after
directly adding the dual attention block (DA block). For cyclists in the moderate level, the
mAP| 40 of baseline with the DA block is decreased by 0.27% compared to the baseline.
However, when we used the residual module to connect the dual attention block (RDA
block), the baseline with RDA block has 1.77% mAP| 40 gains for the moderate level of
cyclists. Compared to adding the DA block directly, the performance of adding the RDA
block can be significantly improved, which can prove the residual connection is effective
for the attention module.

From the results in Tables 2–4, we observe that the performance for cyclists has a
significant improvement. As these objects are small and may have fewer sampling points,
the limited number of points makes it hard to provide sufficient semantic information. We
fully excavated the relevance and contextual semantic information among the key points to
make the feature information in the cyclist class more representative. However, there is
little improvement for the performance of the easy difficulty level, which means that our
method has a limited effect with enough object points.
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Table 5. Comparison results for the attention blocks. The evaluation results for the car and cyclist on
the KITTI validation set. The results of PV-RCNN were obtained based on official pre-trained models.

Method

3D Detection (mAP|40)

Easy Moderate Hard

Car Cyclist Car Cyclist Car Cyclist

PV-RCNN
Baseline 92.10 89.10 84.36 70.38 82.48 66.17

+DA block 91.17 88.34 82.98 70.21 82.55 65.13

+RDA block 92.18 90.59 84.82 72.15 82.60 67.69

4.4. Evaluation on the KITTI Validation Set

For most related papers that have conducted experiments on the KITTI validation
set, they only provide the mAP| 11 (calculated with 11 recall positions) of 3D detection for
cars. We followed this metric [45] and compare our AFE-RCNN with the state-of-the-art
methods in Table 6.

Table 6. 3D detection results on the KITTI validation set. The mAP| 11 is calculated with 11 recall
positions. Note that the red, green, and blue represent the results of ranking first, second, and
third, respectively.

IOU Thresh
Car = 0.7

3D Detection (mAP|11)

Car

Easy Moderate Hard

PointRCNN [7] (CVPR 2019) 88.88 78.63 77.38
3DSSD [9] (CVPR 2020 Oral) 89.71 79.45 78.67

SA-SSD [43] (CVPR 2020) 90.15 79.91 78.78
Part-A2 [11] (TPAMI 2020) 89.47 79.47 78.54
CIA-SSD [14] (AAAI 2021) 90.04 79.81 78.80

TANet [42] (AAAI 2020) 87.52 76.64 73.86
DVFENet [45] (Neurocomputing 2021) 89.81 79.52 78.35

Hˆ23D R-CNN [38] (TCSVT2021) 89.63 85.20 79.08
SE-SSD [46] (CVPR 2021) 90.21 86.25 79.22

PV-RCNN [17] (CVPR 2020) 89.34 83.69 78.70
AFE-RCNN(Ours) 89.61 83.99 79.18

Our AFE-RCNN has 2 evaluation indicators (total 3 indicators) ranked Top 3 for all
comparison algorithms. Considering the number of indicators ranked Top 3, our method
has a certain advantage. Our method does not outperform in all indicators, which may be
related to the different divisions of the training and validation sets. When compared with
the baseline method, our AFE-RCNN outperforms the PV-RCNN at all difficulty levels.
The 3D detection mAP| 11 has improved by 0.27%, 0.30%, and 0.48%, respectively.

4.5. Qualitative Analysis on the KITTI Dataset

We compared the visualization results of AFE-RCNN with PV-RCNN. To further
demonstrate the advantages of our method, we compared PointRCNN [7] as well. As
shown in Figure 6, the red boxes represent the prediction boxes, while the green and
yellow represent the ground truth boxes for car and cyclist, respectively. It can be seen that
PointRCNN has missing detection in the cyclist class, whereas the PV-RCNN and our AFE-
RCNN have more comprehensive detection. This is because the method of PointRCNN
obtains less feature information and lacks correlation as it simply processes the raw point
clouds only. Our AFE-RCNN uses the feature enhancement method to extract the features
of the raw point clouds and BEV. These two features are then fused with voxel features for
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key point features. The rich feature information leads to a better detection performance.
Furthermore, the prediction boxes of AFE-RCNN are closer to the ground truth than
PV-RCNN and PointRCNN.
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Figure 6. Visualization results of 3D object detection. (a–d) are 4 difference scenes. The first block
shows the results of PointRCNN, the second block shows the results of PV-RCNN, and the third
block shows the results of our AFE-RCNN. The ground truth box is green, the predicted box of the
car is red, and the predicted box of the cyclist is yellow. The circled part is the region to focus on
for comparison.
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4.6. Validation on the Waymo Open Dataset

We used our AFE-RCNN on the Waymo dataset to illustrate the effectiveness of AFE-
RCNN, and the results are shown in Table 7. We validated two classes of objects, i.e., vehicle
and cyclist, and compared the results of two official evaluation indicators, i.e., mAP and
mAPH [2]. According to Table 7, we can make the following conclusions.

Table 7. Experimental results for Waymo validation set. The mean average precision (mAP) and the
mean average precision weighted by heading (mAPH) [2] are two official evaluation indicators.

Method
Vehicle (LEVEL 1) Vehicle (LEVEL 2) Cyclist (LEVEL 1) Cyclist (LEVEL 2)

mAP mAPH mAP mAPH mAP mAPH mAP mAPH

Centerpoint [47] (CVPR 2021) 65.98 65.40 57.98 57.47 63.05 61.68 60.72 59.39
PointPillars [15] (CVPR 2019) 65.06 64.29 57.11 56.41 49.95 43.47 48.05 41.82
SECOND [10] (Sensors 2018) 65.83 65.12 57.80 57.17 47.44 38.68 45.65 37.21
PV-RCNN [17] (CVPR 2020) 71.23 70.53 62.58 61.96 58.87 40.29 56.36 39.11

AFE-RCNN (Ours) 71.23 70.54 62.62 61.99 59.69 43.14 57.44 41.51

Comparison with the state-of-the-art methods. For the vehicle, our AFE-RCNN has a
relatively outstanding performance. The AFE-RCNN outperforms the compared algorithms
with at least 5.14% and 4.52% mAPH gains on two 3D object detection difficulty levels. For
the cyclist, the performance of our AFE-RCNN is worse than Centerpoint [47]. However,
the performance of AFE-RCNN is obviously better than the other compared methods. Since
our AFE-RCNN uses the anchor-based method to generate the detection boxes, when the
object is tilted to a certain angle, the anchor-based method cannot coordinate this angle
well, which results in a large error. The Centerpoint [47] uses a center-based method that
takes advantage of the rotational invariance of the point clouds to solve this problem.

Compared with PV-RCNN. For the vehicle, the performance of our AFE-RCNN
has small improvements over the PV-RCNN. However, for the cyclist, our AFE-RCNN
outperforms the compared algorithms with 2.85% and 2.40% mAPH gains on two 3D object
detection difficulty levels. This proves that our proposed method for the improvement of
PV-RCNN is effective.

4.7. Efficiency and Robustness Analysis of the Proposed Algorithm

To verify the efficiency of the proposed algorithm, the running times of our algo-
rithm on the validation sets of the KITTI and Waymo open datasets are shown in Table 8.
Compared to the baseline, the running time of our algorithm has a millisecond increase.
However, according to the Tables 2, 7 and 8, the proposed AFE-RCNN can obtain better
detection accuracy with a small increase in time, which can achieve promising performance
in both accuracy and efficiency for the 3D object detection task.

Table 8. The running times of the algorithms on the validation sets of KITTI and Waymo open datasets.

Method
Running Time (s)

KITTI Waymo Open Dataset

PV-RCNN Baseline 0.0286 0.1033
AFE-RCNN (Ours) 0.0345 ↑ 0.1102 ↑

To analyze the class number of the objects’ impact on the efficiency and precision
of our algorithm, we conducted experiments for multiple objects on the validation set of
KITTI. The results are shown in Table 9. Taking the car category as an example, the mAP| 40
values in three groups of experiments are 85.33%, 85.29%, and 85.31%. The class number
of the objects has a very small impact on the performance (mAP| 40) of our AFE-RCNN.
Meanwhile, the running time of our AFE-RCNN for different class numbers of object
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detection has only a slight effect (<0.001 s). The results demonstrate that our algorithm
maintains a good efficiency and robustness when performing multiple object detection.

Table 9. Experimental results of multiple object detection on the validation set of KITTI.

Class Number of the Objects Moderate mAP|40 Running Time (s)

1 class
Car

0.027985.33

2 classes
Car Cyclist

0.028685.29 75.39

3 classes
Car Cyclist Pedestrian

0.028985.31 75.39 59.67

In addition, to further verify the robustness of the proposed algorithm, we conducted
the experiments for pedestrian detection on the validation set of KITTI. As shown in
Table 10, our AFE-RCNN outperforms the baseline on all the difficulty levels. Taking the
performance on the moderate difficulty level as an example, our AFE-RCNN outperforms
the baseline with 5.18% mAP| 40 gains and 4.11% AOS| 40 gains. The results prove that our
AFE-RCNN is robust and can achieve good performance in small object detection.

Table 10. Experimental results of pedestrian object detection on the validation set of KITTI.

Method

Pedestrian

Easy Moderate Hard

mAP|40 AOS|40 mAP|40 AOS|40 mAP|40 AOS|40

PV-RCNN Baseline 62.71 67.82 54.49 62.17 49.88 58.07

AFE-RCNN 66.19 71.94 59.67 66.28 54.97 63.02

5. Conclusions

We have proposed a 3D object detection method known as AFE-RCNN. Firstly, to
generate high-quality proposal frames, we focused on the relationship between features
in both channel dimension and spatial dimension through the RDA module. Secondly,
we used multi-scale sampling and adaptive methods to robustly obtain fine local informa-
tion on key points. Finally, based on the rich feature information on the key points, we
completed the proposal refinement through the VA module, which guarantees correlation
among the vertices of the box proposals. When compared with the state-of-the-art methods,
AFE-RCNN can achieve a comparable performance; especially the cyclist class with a
relatively small size has a significant improvement. However, to satisfy the requirements of
time-sensitivity in object detection tasks, we need to study a lightweight method that can
improve the detection precision while also ensuring computational efficiency. In the future,
we will try to combine point clouds with 2D image information and replace the excessive
detail processing of point clouds by a lightweight image feature extraction method. The
gain from lightweight image processing to replace the much-detailed processing of point
clouds only is a potential research direction.
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