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Abstract: In hyperspectral remote sensing, the clustering technique is an important issue of concern.
Affinity propagation is a widely used clustering algorithm. However, the complex structure of the
hyperspectral image (HSI) dataset presents challenge for the application of affinity propagation.
In this paper, an improved version of affinity propagation based on complex wavelet structural
similarity index and local outlier factor is proposed specifically for the HSI dataset. In the proposed
algorithm, the complex wavelet structural similarity index is used to calculate the spatial similarity
of HSI pixels. Meanwhile, the calculation strategy of the spatial similarity is simplified to reduce the
computational complexity. The spatial similarity and the traditional spectral similarity of the HSI
pixels jointly constitute the similarity matrix of affinity propagation. Furthermore, the local outlier
factors are applied as weights to revise the original exemplar preferences of the affinity propagation.
Finally, the modified similarity matrix and exemplar preferences are applied, and the clustering index
is obtained by the traditional affinity propagation. Extensive experiments were conducted on three
HSI datasets, and the results demonstrate that the proposed method can improve the performance of
the traditional affinity propagation and provide competitive clustering results among the competitors.

Keywords: hyperspectral image; clustering; affinity propagation; structural similarity index; local
outlier factor

1. Introduction

Hyperspectral image (HSI) has gradually become a powerful tool with its rich spectral
and spatial information, which is widely used in environmental monitoring, fine agriculture,
mineral exploration, military targets, and many other fields [1-3]. Though the potentialities
of hyperspectral technology appear to be relatively wide, the analysis and treatment of
these data remain insufficient [4]. Classification is an important manner in which to exploit
HSI, which can be divided into supervised classification and unsupervised classification.
Compared with the supervised classification, the unsupervised classification, also known
as clustering, can automatically detect the distinct classes in an objective way without
training samples. In fact, training samples are very difficult to access for some applications.
As a result, it is meaningful to study the clustering technology.

Thus, in this paper, we mainly focused on the clustering approach for HSI par-
titioning. Generally speaking, clustering techniques can be mainly categorized into
nine main types [5]: centroid-based clustering [6-8], density-based clustering [9-11],
probability-based clustering [12-15], bionics-based clustering [16,17], intelligent computing-
based clustering [18,19], graph-based clustering [20,21], subspace clustering [22-25], deep
learning-based clustering [26-28], and hybrid mechanism-based clustering [29,30]. Affinity
propagation (AP) [31] is a centroid-based clustering method that identifies a set of data
points that best represent the dataset and assigns each data point to a single exemplar.
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Compared with classical centroid-based clustering, AP is insensitive to the initial centers
and outliers. Therefore, it is widely used in face recognition [32], HSI classification [33],
fault detection [34], and many other fields [35-37]. At the same time, many scholars have
carried out in-depth studies of AP and put forward improved versions. The measuring
of the similarity is a topic that has received a lot of attention. Wan, X. J. et al. [38] used
dynamic time warping to measure the similarity between the original time series data
and obtained the similarity between the corresponding components, which was applied
to cluster the multivariate time series data with AP. Wang, L. M. et al. [39] proposed a
novel structural similarity to solve the unsatisfactory clustering impact of AP when dealing
with complex structural datasets. Zhang, W. et al. [40] applied soft scale invariant feature
transform to adopt the similarity between any pair of images to clustering the images
by AP. Qin, Y. et al. [41] integrated the spatial-spectral information of HSI samples into
non-negative matrix factorization for affinity matrix learning of HSI clustering. Fan, L.
et al. [42] proposed a local density adaptive affinity matrix, which embeds both spectral
and spatial information and uses it for HSI clustering. We can see that these algorithms
use tailored similarity for datasets to increase the performance of the clustering methods.
Meanwhile, many studies have aimed at optimizing the exemplar preference of AP. Chen,
D. W. et al. [43] defined a novel stability measure for AP to automatically select the appro-
priate exemplar preferences. Gan, G. J. and M. K. P. Ng [44] proposed a subspace clustering
algorithm by introducing attribute weights in the AP. The new step could iteratively update
the exemplar preferences to identify the subspaces in which clusters are embedded. Li, P.
et al. [45] proposed a modified AP named as adjustable preference affinity propagation,
which initials the value of preferences according to the data distribution. In addition, the
convergence speed [46] and the calculation scale [4] are also mentioned in the literature.

However, the application of AP for HSI analysis is still insufficient. The reasons are
mainly twofold: (1) the complex spectral structure of the HSI dataset; and (2) the usage of
the spatial information of the HSI dataset. As a result, it is meaningful to apply a spatial-
spectral strategy to extract information from the HSI dataset, which can better express the
similarity between samples. Moreover, it is also an interesting question to modify the value
of the exemplar preference based on the characteristics of the HSI dataset.

The structural similarity (SSIM) index [47] was proposed as a promising metric of
image, which accounts for spatial correlations. Aside from the mean intensity and contrast,
the structural information of an image is described as those attributes that represent the
structures of the objects in the visual scene. The complex wavelet SSIM index [48], also
called CW-SSIM, is a type of SSIM in the spatial and complex wavelet domains. The
structure information is represented by the spatial distribution of grayscale values as well
as the magnitude and phase responses of the multidirectional Gabor filters. The CW-
SSIM has been shown to be a useful measure in image quality assessment [49,50], feature
extraction [51], and anomaly detection [52]. On the other hand, the local outlier factor
(LOF) [53] was first used in the noisy detection in HSI analysis [54]. The calculation of LOF
is related to a restricted local region around an object [55]. Yu, S. Q. et al. [56] proposed a
low-rank representation in the field of hyperspectral anomaly detection, which facilitates
the discrimination between the anomalous targets and background by utilizing a novel
dictionary and an adaptive filter based on the local outlier factor. Few studies can be found
that have applied CW-SSIM and LOF to express the similarity of samples in HSI datasets
and generate the similarity matrix of AP. We applied the strategy of the CW-SSIM as well as
the LOF to act on the traditional pixel-based similarity metric and the exemplar preference,
respectively, and used them in AP for HSI clustering.

In this paper, an improved AP with CW-SSIM and LOF (CLAP) is presented based
on the properties of hyperspectral data. The metrics of the similarity and the exemplar
preference are both of concern in the proposed CLAP. Unlike the traditional approach that
only calculates the pixel-based spectral similarity [57] to generate the similarity matrix of AP,
the CLAP claims to combine the structure-based spatial similarity with pixel-based spectral
similarity. In the proposed algorithm, the CW-SSIM is used to extract the structure-based
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spatial similarity of the HSI samples. To reduce the computational effort, we used principal
component analysis (PCA) to reduce the sample size, and defined a novel strategy to reduce
the computational complexity. Specifically, PCA was used to pre-process the hyperspectral
data, and the n dimensions of the highest explained principal components were reserved to
extract the spatial information. We extracted the spatial neighborhood blocks of the samples
on each principal component (PC) and recomposed new sample sets separately. After that,
to reduce the computational complexity, the average of the samples for each principal
component sample set was calculated, which was named Average, and the CW-S5IM
was applied to calculate the similarity between samples and the corresponding Average.
Then, the results were used to generate the spatial similarity matrix (Scw). Finally, the
final similarity matrix (Sg(;r)) was obtained by the pixel-based spectral similarity matrix
(Spix(i-k)) and the structure-based spatial similarity matrix (Scw). Meanwhile, unlike the
traditional definition of the consistent exemplar preferences that are directly based on the
minimum (mean) value of the similarity, the CLAP uses the LOF to generate the weights
to revise these consistent exemplar preferences. The key idea behind this is that the local
neighborhood density of the cluster center should be uniform and smooth, according to
the manifold assumption. Specifically, we first calculated the LOFs for all samples. Then,
these LOFs were used to obtain the smoothness coefficients (Lsm) by a self-defined formula,
which represent the degree of the uniformity and smoothness of the local neighbourhood
density of the samples on the spectral space. The LOF coefficients (L) were obtained using
the smooth coefficients (Lsm) and applied as weights to weight the original consistent
preferences (Spi(ik)) to obtain the final exemplar preferences (S¢(;—y)). Finally, —S¢ was
used as the similarity matrix of AP and the clustering index of the samples were obtained
by AP clustering. The flow chart of the proposed CLAP is shown in Figure 1. The novel
contributions in the proposed method are as follows:
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Figure 1. The flow chart of the affinity propagation based on the structural similarity and local
outlier factor.

1.  New spatial-spectral similarity metrics for the hyperspectral dataset were defined and
applied to AP clustering.

2. The CW-SSIM was used to measure the similarity of the HSI samples and a new
computational strategy was defined to reduce the computational effort.
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3. The LOF was used to define the degree of the uniformity and smoothness of the local
neighborhood density of a sample and applied to revise the exemplar preference
of AP.

In this study, we used three hyperspectral datasets as benchmarks to compare the
proposed method to traditional clustering methods. Experiments showed that the proposed
method outperformed the competition.

The rest of this paper is organized as follows. Section 2 presents the related work
and the proposed method. The experimental results and the discussions are presented in
Sections 3 and 4. Finally, Section 5 presents some conclusions and our future work.

2. Method
2.1. Affinity Propagation

The AP is a clustering algorithm based on the exemplar method. It finds a set of data
points to exemplify the data, and associates each data point with one exemplar. Specifically,
given the samples x;, x; € RYik=1,2,---,N,dis the dimension, N is the number of data
points, the AP first computes a similarity matrix s of all samples, which is defined as:

s(xi,xp) = —||xi, — x> i#£k (1)

s(x;,x;) = min(s) i€ (1,N) (2)

where s(x;, x¢) is the element of the similarity matrix and is defined by the opposite of
the squared Euclidean distance. s(x;, x;) is the diagonal element of the similarity matrix
and is called the exemplar preference, which is set to the minimum value of the similarity
matrix. It represents the prior suitability of a data point to be the exemplar, and controls
the number of the clusters of AP. Then, the AP exchanges messages between data points,
which are named responsibility ¥ and availability a.

r(i, k) = s(x;, x¢) — maxj,j#k{a(i,j) + s(xi,xj)} (3)

a(i k) = min{O,r(k,k) + ) max{O,r(j,k)}} 4)
Ji#Aik}
a(k,k) =Y max{0,r(j, k)} ©)
Ji#k
where r(i, k) and a(i, k) are the elements of r and a, and are initialized to 0. To avoid the
oscillations, r and a are damped as:

rp1 = A1+ (1-A) (6)

a1 = /\at,1 + (1 — /\)at (7)

where A is the factor of damping, which satisfies 0.5 < A < 1, and ¢ is the number of the
iteration. Finally, the exemplar vector (c) can be obtained as:

c(i) = maxy(a(i, k) 4+ r(i, k)) 8)

The AP is converged if the iterative number exceeds the predetermined value or the
exemplar vector remains unchanged for some constant iterations.

2.2. Complex Wavelet Structural Similarity

The CW-SSIM is a type of structural similarity index based on local phase measure-
ments in the spatial and complex wavelet domain, which is designed to coincide with the
human perceptual system and could provide a good approximation of perceptual image
quality [48,51,58]. The CW-SSIM index is designed to separate the phase from luminance
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distortion measurements and simultaneously insensitive to luminance and contrast changes.
Specifically, a complex version [59] of the steerable pyramid transform is first applied to
decompose the compared two images [60]. The complex wavelet coefficients are expressed
ascy = {cy;li=1,---,I}and ¢; = {cy/i|i =1,---,I}. The CW-SSIM index is defined as:

2[5l cxic | + K

2
Y |Cx,i|2 +X ’Cy,i‘ +K

©)

Dew (cy,iscy,i) =

where ¢* is the complex conjugate of ¢, and K is a small positive stabilizing constant. The
value of the index ranges from 0 to 1, where 1 implies no structural distortion.

2.3. Local Outlier Factor

The LOF is an outlier index that indicates the degree of the outlier-ness of a sample [53,55].
The LOF exploits the density information from the local neighborhood of each sample in
the feature space. Specifically, given a dataset D, for any positive integer k., the k-distance
of sample x, denoted as disyo¢(x), is defined as the distance d(x, 0) between x and o € D
so that:

1. For atleast k samples o’ € D\{x}, it holds that d(x,0") < d(x,0), and
2. For at most k — 1 objects o’ € D\{x}, it holds that d(x, 0’) < d(x, 0).

Next, given the k-distance of x, the k-distance neighborhood of x contains every object
whose distance from x is not greater than the k-distance, in other words

Nklof(x> = {q € D\{x} | d(x/ q) < diS_klof(x>} (10

where the sample g is called the k-nearest neighbor of x and is designated as Ny (x). Next,
the reachability distance of sample x with respect to sample o is defined as:

reach_diskjo¢(x, 0) = max{dis_kj,¢(0),d(x,0)} (11)
Then, the local reachability density of x is defined as:

1
Irdy, (x) =
klof( ) ( ToeNy, (%) reach_diskiq(x,0) )
lof

Ny (%) ‘

(12)

where Ny _(x)| is the number of the k-nearest neighbors of x. Finally, the local outlier

factor of x is defined as:
lrdklof (0)
ZoeNklof () Trdy (%)

‘N Ko (%) |
The value of the LOF index ranges from 1/(1 + ¢) to (1 + €), where ¢ is a positive real

number. For most x that are deeply inside the cluster, the LOF of x is approximately equal
tol.

LOF,(x) = (13)

2.4. Affinity Propagation Based on Structural Similarity Index and Local Outlier Factor

From the description of the AP, we can see that the similarity matrix s has a great
influence on the algorithm. The element s(x;,x;), i # k demonstrates the similarity of a
pair of samples, and directly participates in the message being exchanged between samples.
Both experience and experiments show that it can effectively affect the performance of AP
by changing the measurement of the similarity matrix. The s(x;, xx),i = k is referred to as
“preference”, which can influence the number of identified exemplars. Additionally, the
sample with a larger value of preference is more likely to be chosen as the exemplar. In
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fact, the number of identified exemplars is not only influenced by the values of the input
preferences, but also emerges from the message-passing procedure.

Based on the above analysis, we proposed a modified AP with CW-SSIM and LOF.
Unlike the classical AP, the proposed CLAP introduces CW-SSIM to help generate the
similarity matrix, and applies the LOF to revise the original preferences. In fact, the CW-
SSIM index is used to extract the spatial similarity, and the LOF is preformed to calculate
the possibility of a sample to be the exemplar. To be specific, we first discuss the usage of the
CW-SSIM index in the proposed algorithm. Given the samples x;, x; € RYik=1,2---,N,
where d is the total number of the spectral dimensions and N is the number of data
points, we obtain the spatial neighbourhood blocks of the samples in principal component
space by PCA, which are named I* and I}, m = 1,2,--- ,n, where m is the current
spectral dimension and 7 is the total number of spectral dimensions after PCA. The I}"
and I} are ky, X ky pixel images centered by x;, x;, respectively, and are extracted in the
n dimensions of the highest explained principal components, and ky, is the side length
of the window. The CW-SSIM index of the I/* and I}" is calculate by Equation (9), and is
expressed as S/, (I/", I''). Assuming py, is the explained percentage of the m dimension,
Spix(¥i,xk), i # k is the pixel distance of the samples, and the fusion distance can be
expressed as:

n
Sé(xi/ xXg) = Spix(xi/ xe) ta Z Pm X (1 - Sé@(lzm' Ikm)> (14)
m=1
where « is the weight coefficient to control the influence of the total CW-SSIM index, which
is in the range [0,1]; and p,, indicates that the higher explained percentage will give a
greater proportion among the CW-SSIM indices.

Suppose that the computational complexity of the CW-SSIM index is expressed as
O(Scw), the computational complexity of a N scale date set can be expressed as
O(N? x 1 x O(Scw)), which is an enormous amount of computation. To alleviate the
computational complexity, we propose a novel scheme to solve this problem. To be specific,
the average of the neighborhood blocks of the samples can be calculated as:

z

1

"= _
Ni

I (15)
1

We defined the modified CW-SSIM index of x;, x; as:
Sew (L 1) = |Sew (I, 1) — Sé (T, 1) (16)

From Equation (16), we can see that the value of the S, (I, I}") tends to be 0 when I}
and I} have the same spatial structures. The I'"" acts as a constant term in the formula, and
is obtained adaptively. The modified fusion distance can be expressed as:

n
Sf(xl-,xk) = Spix(xi,xk) + Z Pm X Scmw(ll'n, 121) (17)

m=1

where the term (1 — S/ (I, I/") ) in Equation (14) is replaced by S, (I, I}"). In practice,
the Spix(x;, x¢) and the ST, (I, 1}") are both normalized to [0,1] to avoid the dimension
problem. Suppose the computational complexity of the subtraction is O(1), the computa-
tional complexity of the modified CW-SSIM index in an N scale dataset can be estimated
as O(N x 1 x O(Sew) + N? x n x O(1)). We can see that the computational complexity is
effectively reduced in the modified CW-5SIM index.

The usage of the LOF is discussed as follows. Given the sample x; € R i=1,2,---,N,
d is the dimension, N is the number of data points, and the LOF is obtained by the Equation
(13), which is expressed as LOF(x;). It can express the smoothness of the local density
of the sample in the spectral space. The local density of the sample x; is smooth when
the LOF(x;) is close to 1. According to the manifold principle, the exemplars are deeply



Remote Sens. 2022, 14, 1195

7 of 19

inside the clusters and their local densities are smooth. We can define the smoothness
coefficient as:
Lsm(xi) — e\LOF(xi)—l\ (18)

where the Lgm (x;) is in the range of 1 to positive infinity, which denotes the smoothness
of the sample x;. If Lsm (x;) = 1, the local density of x; is completely smooth. Because the
similarity matrix of the AP takes negative values of the similarity, a smaller smoothing
coefficient here indicates a higher degree of smoothness. We can define the LOF coefficient
of x; as:

L(x;) = 1+ BLsm(x;) (19)

where B is in the range [0, 1] and is the weight coefficient to control the influence of Lsm (x;).
Suppose the exemplar preference of x; is expressed as Spix (x;, x;). The modified preference
of x; can be defined as:

Se(xi,x;) = L(x;) X Spix (%, %;) (20)

From Equation (19), we can see that if the Lgm (x;) = 1, the L(x;) is L(x;) = 1+ B. If
the Lgm (x;) > 1, the L(x;) is L(x;) = 1+ BLsm(x;) > 1+ B, which denotes that the sample
x; has less probability to be the exemplar (the real value of the similarity is the negative
value of the similarity matrix). If the B is 0, the L(x;) degenerates to 1, which indicates that
the LOF coefficient provides no influence on the original exemplar preference.

Finally, by combining Equations (17) and (20), —S¢(x;,x) is used as the similarity
matrix of AP, and the clustering indices are obtained by the original affinity propagation.

3. Experiments
3.1. Hyperspectral Dataset

In our experiment, three HSI were used to test the performance of the proposed
algorithm. The descriptions of the datasets are introduced as follows.

The Indian Pines (IP) dataset was gathered in 1992 by the AVIRIS sensor over the Indian
Pines test site in northwest Indiana, United States. The size of the image is 145 x 145 pixels
and 220 spectral reflectance bands in the wavelength ranges from 0.40 to 2.50 um. The
spatial resolution is about 20 m. The available ground truth is designated into sixteen
classes. The gray image and the reference land-cover map of the Indian Pines are shown in
Figure 2. The land cover types with the number of samples are shown in Table 1.

background
classi
class2
class3
class4
class5
classé
class?
class8
class®
class10
classi1
class12
class13
class14

class15

class16

(a) (b)

Figure 2. The Indian Pines dataset. (a) RGB image (band 10, 20, 30). (b) Reference land-cove map
(16 classes).
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Table 1. Land cover type with the number of samples for the Indian Pines dataset.

Classes Land Cover Type Number of Samples
Class 1 Alfalfa 46
Class 2 Corn-Notill 1428
Class 3 Corn-Mintill 830
Class 4 Corn 237
Class 5 Grass-Pasture 483
Class 6 Grass-Trees 730
Class 7 Grass-Pasture-Mowed 28
Class 8 Hay-Windrowed 478
Class 9 Oats 20
Class 10 Soybean-Notill 972
Class 11 Soybean-Mintill 2455
Class 12 Soybean-Clean 593
Class 13 Wheat 205
Class 14 Woods 1265
Class 15 Buildings-Grass-Trees-Drives 386
Class 16 Stone-Steel-Towers 93

The Pavia University (PU) dataset was collected by the Reflective Optics System
Imaging Spectrometer sensor during a flight campaign over the University of Pavia in
Pavia, northern Italy. The size of the image was 610 x 340 pixels. The spectral reflectance
bands were 103 in the wavelength range from 0.43 to 0.86 um. The geometric resolution
was about 1.3 m. A part of the image with a size of 300 x 200 pixels was selected in our
experiment. The gray image and the reference land-cover map of the Pavia University are
shown in Figure 3. The land cover types with the number of samples are shown in Table 2.

e - lass6
- -
- -~ class7
%
\ - I st
(b)
Figure 3. The Pavia University dataset. (a) RGB image (band 1,20,40). (b) Reference land-cover map

(nine classes).

Table 2. Land cover classes with the number of samples for the Pavia University dataset.

Classes Land Cover Type Number of Samples
Class 1 Asphalt 2578

Class 2 Meadows 5216

Class 3 Gravel 47

Class 4 Trees 1054

Class 5 Painted metal sheets 1345

Class 6 Bare Soil 868

Class 7 Bitumen 21

Class 8 Self-Blocking Bricks 1693

Class 9 Shadows 215
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The WHU-Hi-HongHu (HH) dataset [61] was acquired in 2017 in Honghu City,
Hubei Province, China, with a 17-mm focal length Headwall Nano-Hyperspec imag-
ing sensor equipped on a DJI Matrice 600 Pro UAV platform. The size of the image was
940 x 475 pixels. There were 270 bands from 0.40 to 1.00 um. The spatial resolution was
about 0.043 m. A part of the image with a size of 150 x 200 pixels was selected in our
experiment. The gray image and reference land-cover of the WHU-Hi-HongHu dataset are
shown in Figure 4. The land cover types with the number of samples are shown in Table 3.

background

< class1
. -
< classa
‘ |E :

o

o

Iass:
ass!
Jass
fass?
Jass
jass!

s A

Figure 4. The WHU-Hi-HongHu dataset. (a) RGB image (band 1,30,60). (b) Reference land-cover
map (nine classes).

(a)

Table 3. Land cover classes with the number of samples for Pavia University dataset.

Classes Land Cover Type Number of Samples
Class 1 Red roof 1981

Class 2 Road 1633

Class 3 Chinese cabbage 4902

Class 4 Cabbage 446

Class 5 Brassica parachinensis 6

Class 6 Brassica chinensis 367

Class 7 White radish 632

Class 8 Broad bean 1322

Class 9 Tree 4040

3.2. Experimental Setup

In order to evaluate the performance of the proposed method, three different types of
HSIs (including two nature crops scenarios and one urban scenario) were conducted as part
of the experiment. Consistent comparisons between CLAP based on the Euclidean distance
(ED), the center-based unsupervised algorithms such as the K-means, K-mediods, Spectral
clustering (SC) [62], AP as well as Gaussian mixture models (GMM) [63], DBSCAN [64],
density peaks clustering (DPC) [65], self-organizing maps (Self-org) [66], competitive layers
(CL) [67], HESSC [25], and GR-RSCNet [28] have been carried out. The estimations of the
clustering performance provided by these algorithms are given by normalized mutual
information (NMI) [68,69], F-measure [39], accuracy (ACC), and adjusted rand index (ARI),
which are described as follows.

The mutual information was used to measure the information shared by two clusters
and assess their similarity. Given dataset D with N samples and two clusterings of D,
namely U = {Uj, Uy, - - - ,Ug} with R clusters, and V = {V3, V,, - - - , V- } with C clusters,
the entropy of a cluster U can be defined as

H(U) = — f P(i)logP(i) (1)
i=1
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where P(i) is the probability of an object falls into cluster U; and can be defined as P(i) =
MN"'. Similarly, the entropy of the clustering V can be calculated as
C
H(V) = =} P(j)logP(j) (22)
j=1

The mutual information between U and V can be described as

(U, V) = f i P(i, j)log—Ltr)_ (23)
’ Pt B (D)P()
where P(i, ) = % denotes the probability that a point belongs to cluster U; in U and
cluster V; in V. The normalized version of the mutual information can be defined as
NMI(U,V) = (U2 (24)
H(U)H(V)

The F-measure is an agglomerative method to compare the overall set of clusters.
Given cluster U; and Vj, the F-measure of these clusters is defined as
2% Re(U;, V;) * Pr(U;, V;)

Re(U;, V;) + Pr(U;, V)

F(U;,V;) = (25)

where Re(U;, V;) = ’u|’;‘|/’| is the recall value, and Pr(U;, Vj) = |u‘1£1‘/]|
l 1

value. The F-measure of the entire clustering solution is defined as the sum of the maximum
F-measure of the individual cluster weighted by the cluster size, which can be expressed as

is the precision

R
_ vy U] v
M = ; g}gy(ul, 1) (26)

1=

The cluster accuracy and adjusted Rand index are measurements used to evaluate
clustering results. The cluster accuracy can be expressed as

where map(-) indicates the best class of labels to reassign, and J(-) is the indicator function

and can be expressed as
_J1if x=y

S(xy) = { 0 otherwise @8

To obtain the adjusted Rand index, we first defined TP, TN, FP, FN. TP denotes the

number of pairs of samples that are in the same cluster in U and are also in the same cluster

in V; TN denotes the number of pairs of samples that are not in the same cluster in U and

are not in the same cluster in V; FP denotes the number of pairs of samples that are not

in the same cluster in U, but are in the same cluster in V; FN denotes the number of pairs

of samples that are in the same cluster in U, but are not in the same cluster in V. We can
define the Rand index as

(29)
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where C%; denotes the total number of pairs of samples that can be composed in the dataset.
The ARI can be expressed as

RI— E(RI)

ARI(U, V) = max(RI) — E(RI)

(30)

where E(RI) is the expected index of the Rand index.

3.3. Experimental Results in Different HSIs

In this experiment, the proposed method and the competitors were conducted on three
HSI datasets. For the proposed CLAP, we carried out the experiment with A = 0.9, n = 3,
« = 0.5, and B = 0.9. The size of the neighborhood block was 25 x 25 pixels (ki = 25).
We decomposed the images using a complex version of a 1-scale, 16-orientation steerable
pyramid decomposition, and 7 x 7 window. The k-distance of LOF was set to 10. The
exemplar preference of CLAP and traditional AP is in the range of [—200, —mean (S p,-x)] ,
where mean (S ,;y) is the mean value of the pixel distance of the samples. In practice, the
pixel distance is obtained by the ED and is normalized to [0, 1]. As a result, the value of
mean (Spix) is in the range [0, 1], which was less than 200. For the GR-RSCNet, the learning
rate was set to 0.002, and the maximum training epoch was set to 20. The other parameters
were set according to [28]. The parameters of other competitors were set according to the
corresponding references.

From the comparison between the proposed CLAP and the other clustering methods,
we observed that the proposed method was able to achieve the competitive performance in
all considered datasets in Figures 5-7. The number of mistaken clustering was obviously
reduced in Figure 51, Figure 61, and Figure 71. In Figure 5, the proposed method had a better
clustering effect on Class 8, Class 13, and Class 14 in the clustering maps of the IP dataset
than the competitive method, except for DPC and GR-RSCNet. However, we noticed that
the DPC grouped the pixels from different land-covers into the same cluster. The clustering
results were obviously unreasonable. Similar phenomena of the clustering results of DPC
can be seen in Figures 6f and 7f. Regarding GR-RSCNet, it is the state-of-the-art deep
learning-based clustering method, which obtains significantly better clustering results than
the traditional clustering algorithms. The same advantage of the proposed method can be
seen in Class 2 in the clustering maps of the PU dataset in Figure 6, and on Class 1 and
Class 7 in the clustering maps of the HH dataset in Figure 7. The experimental results
demonstrate that our proposed method better serves the clustering task and can distinguish
different types of land information well. Furthermore, as can be seen from the clustering
maps, the proposed CLAP can effectively alleviate the salt-and-pepper phenomenon of
the clustering result of the ground objects. Particularly for the HH dataset, the pepper
phenomenon of Class 2 and Class 9 was obviously reduced in Figure 71 compared with the
clustering results of the competitors except for GR-RSCNet. The main reason is that CLAP
invites the spatial information to construct the similarity matrix of the pixels, while the
competitors only use the spectral features to achieve the similarity.

In order to quantitatively compare the clustering performance, the NMI, F-measure,
ACC, and ARI were used to evaluate the algorithms. We collected the average value of the
10 times clustering results of all the algorithms in the three HSI datasets. The results are
shown in Table 4.
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Figure 5. The clustering maps of the Indian Pines dataset. (a) K-means. (b) K-methods. (¢) GMM.
(d) DBSCAN. (e) SC. (f) DPC. (g) Self-org. (h) CL. (i) AP. (j) HESSC. (k) GR-RSCNet. (1) CLAP.
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Figure 6. The unsupervised clustering maps of the Pavia University dataset. (a) K-means. (b) K-
methods. (c) GMM. (d) DBSCAN. (e) SC. (f) DPC. (g) Self-org. (h) CL. (i) AP. (j) HESSC. (k) GR-
RSCNet. (1) CLAP.

Table 4. Comparison results of the NMI, F-measure, ACC, ARI, and running time of the algorithms

in three HSI datasets.

Dataset Method NMI FM ACC ARI Time(s)

K-means 0.4402 0.4083 0.3637 0.2218 2.24

K-methods 0.4369 0.4064 0.3843 0.2186 11.9

GMM 0.4338 0.4184 0.4417 0.2333 1.08

DBSCAN 0.4202 0.4587 0.5274 0.2771 21.07

SC 0.4431 0.4407 0.4410 0.2275 242.01

DPC 0.4053 0.4988 0.8808 0.1976 43.99

P Self-org 04319 03879 03606  0.2077 1261
CL 0.4023 0.3757 0.3886 0.1848 564.22

AP 0.4395 0.4418 0.4848 0.2638 356.8

HESSC 0.4004 0.3609 0.3522 0.1917 286.74
GR-RSCNet 0.5848 0.5368 0.5772 0.3378 3883.31

CLAP 0.4525 0.4674 0.5334 0.3237 661.51
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Table 4. Cont.
Dataset Method NMI FM ACC ARI Time(s)
K-means 06901 07219 07012  0.6060 0.41
K-methods 07078 07770 07463  0.6394 512
GMM 06305  0.6466 06923 0559 0.78
DBSCAN 0.6523 07034 07388 05490 163
sC 04815 06779 07519 03646 490.49
DPC 04373 06770 08131 02973 43.66
Py Self-org 0.6469 06530 06695 05081 42.68
CL 05898 05691 05146 03597 593.55
AP 07066 07600 07592  0.6639 634.7
HESSC 05228 05648 06087 03871 430.07
GR-RSCNet 08623 08183 08030 07041 2430.22
CLAP 06832 07807 07608  0.7540 936.55
K-means 05033 05533 05165 03038 2.77
K-methods 05097 05602 05308 03148 18.96
GMM 05930  0.6486 06588  0.4043 222
DBSCAN 04959 05478 06279 03003 54.36
sC 04815 06779 07519 03646 490.49
DPC 04823 05894 08980 03258 89.65
HH Self-org 05030 05532 05167 03035 12272
CL 04843 05222 04795 02743 62525
AP 04811 05698 05689 03073 623.79
HESSC 04651 04962 04940  0.2692 33421
GR-RSCNet 0.8424 07920 07693  0.6970 3759.08
CLAP 05460 05898 05715 03488 947.07
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Figure 7. The unsupervised clustering maps of the WHU-Hi-HongHu dataset. (a) K-means. (b) K-
methods. (¢) GMM. (d) DBSCAN. (e) SC. (f) DPC. (g) Self-org. (h) CL. (i) AP. (j) HESSC. (k) GR-
RSCNet. (1) CLAP.
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In Table 4, we can see that CLAP provided competitive clustering results in all HSI
datasets. For the IP dataset, the NMI of CLAP was 0.4525, which was higher than that
of the competitors, except for GR-RSCNet. Similarly, the ARI of CLAP (0.3237) was the
second highest among the competitors. We noted that the FM and ACC of the DPC was
higher than that of CLAP. However, it can be seen from Figure 5f that the clustering result
of DPC was inappropriate compared to the real land-cover. Similar conclusions can be
obtained for the PU dataset and HH dataset. GMM provided the second-best clustering
results in the HH dataset. The CLAP obtained the third-best clustering results in the HH
dataset and indicates that the HH dataset is more suitable to be clustered by GMM. The
GR-RSCNet obtained the best clustering results among the competitors and showed that
the potential of the deep learning-based clustering methods was significantly greater than
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that of the traditional clustering methods. More specifically, we focused on the comparison
of the proposed CLAP with the AP. It can be seen that CLAP provided higher clustering
results on all datasets than that of AP and shows that CLAP can effectively improve the
performance of the original AP. In addition, we could see that CLAP required more running
time than that of the AP. The additional running time was used to calculate the CW-55IM
and LOF. The GR-RSCNet provided the longest running time among the competitors.

3.4. The Optimization Strategy of «, B, and ky

In this section, the settings of parameters, «, 3, and k;, in our CLAP are discussed. To
achieve the best clustering performance, these parameters were tuned according to the
results of our proposed algorithm running on the HSI datasets. Concerning different values
of o, which varied from 0 to 1, the clustering precision of the CLAP on the three datasets
are shown in Figure 8a—c. It should be noted that « is the weight of the spatial structure
similarity of ground objects according to Equation (17). Specifically, when « is set to 0, the
proposed CLAP is simplified to the original AP with only the LOF weighted term. Figure 8a
shows that the best clustering result was obtained when the preference selection of o« was
around 0.5 on the IP dataset. In Figure 8b,c, it can be observed that on the PU dataset, it
was around 0.3, and on the HH dataset, it was 0.4, respectively. Furthermore, it should be
clearly observed that due to adding the weight term «, the clustering performance of the
proposed CLAP was better than original AP algorithm (x = 0). At the same time, through
comparative analysis, it can be found that « taking a large value (e.g., « is set to greater
than 0.8.) may result in that the modified fusion distance (in Equation (17)) depends more
on spectral similarity, which in turn reduces the clustering accuracy of the algorithm. This
may be because the over-weighted spatial similarity exceeded the threshold of the spectral
similarity, introducing too much spatial information, which affects the clustering precision.

(2) (b) (©

Figure 8. The impact of & on the proposed CLAP. (a) Indian Pines dataset. (b) Pavia University
dataset. (c) WHU-Hi-HongHu dataset.

Concerning different values of B, which varies from 0 to 1, the clustering precision of
the CLAP on the three datasets are shown in Figure 9a—c. According to Equation (19),
is the weight of Ly, in the LOF coefficient, which is related to estimate suitable exemplar
preference. Figure 9a shows that the best clustering result was obtained when the preference
selection of § was around 0.9 on the IP dataset. From Figure 9b,c it can be observed that it
was around 0.8 on both the PU dataset and HH dataset. The experimental results show
that a larger S is better for estimating suitable exemplar preference.

Concerning different values of ky,, which is the size of the spatial neighbourhood block
and varies from 13 to 31, the clustering precision of CLAP on the three datasets are shown
in Figure 10a—c. Figure 10a shows that on the IP dataset, when the k, is set to about 25
(i.e., the size of block is 25 x 25 pixels), the best clustering result was obtained. Similarly,
in Figure 10b,c, it can be observed that on the PU dataset, it was 25 x 25 and on the HH
dataset, it was 29 x 29, respectively. The experimental results show that its value of ky, is
too small (eg. 15 x 15), which can result in the poor clustering performance. It may be
because too small a block may result in missing useful structural information, which in
turn will reduce the clustering performance.
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Figure 9. The impact of B on the proposed CLAP. (a) Indian Pines dataset. (b) Pavia University
dataset. (c) WHU-Hi-HongHu dataset.

Figure 10. The influence of k. (a) Indian Pines dataset. (b) Pavia University dataset. (¢) WHU-Hi-
HongHu dataset.

4. Discussion

In this paper, the structural similarity index and local outlier factor were introduced to
improve the original AP clustering. Comparisons were conducted on three HSI datasets.
The visual and statistical results are shown in Figures 5-7 and Table 4. The influence of the
parameters is discussed in Section 3.4.

From the clustering results of CLAP and AP, we can see that CLAP provided better
results than AP on all three HSI datasets. It is understandable that we collected more infor-
mation from the HSI dataset in CLAP. The CW-SSIM can be denoted as spatial information.
The LOF can be denoted as spectral information and indicates that the extraction of the
spatial-spectral information of the HSI dataset can effectively improve the performance of
the clustering algorithms. This practice gives us an idea of how to improve the algorithms
for processing the HSI dataset. Although CLAP requires a longer running time than that
of AP, the improved strategy for calculating the CW-SSIM distance is still in effect, where
the running time was significantly reduced compared to the direct usage of CW-55IM
between a pair of spatial neighborhood blocks. For example, the running time of the
original CW-SSIM distance strategy was more than five hours on the IP dataset, and that of
the improved version was about 290 s.

Furthermore, broader comparisons were conducted in the experiment. From the
comparison results, we can see that the proposed CLAP provided competitive clustering
performance, which was in the top three in all indicators on three HSI datasets. The
deep learning-based clustering method provided the best clustering result among the
competitors, which showed great potential to address the issue of the HSI clustering.
However, the deep learning-based clustering method provided the highest running time
(the running time was obtained on the GPU platform of Tesla V100 16G) than that of the
traditional clustering methods (the running time was obtained on the CPU platform of
Intel Core i5-6200U). There is still interesting work to improve the efficiency of the deep
learning-based clustering method.



Remote Sens. 2022, 14, 1195

16 of 19

Meanwhile, there are still some drawbacks to the proposed CLAP. First, the proposed
CLAP has many parameters to be modulated such as «, 8, k;,. The optimal values of these
parameters vary according to the dataset. To simplify the optimization, we provided a set
of initial parameters (« = 0.5, 8 = 0.9, ki, = 25) designed to help optimize the parameters.
Experiments showed that satisfactory results can be obtained by selecting parameters
around the initial parameters. Second, CW-SSIM was used to extract the structure-based
spatial similarity of the HSI dataset. Experiments showed that it had poor performance of
spatial similarity, which needs to precisely control the weighting of the spatial similarity.
Finally, CLAP requires a global similarity matrix to transfer information between samples.
The global similarity matrix needs large storage space to store a large scale HSI dataset.

5. Conclusions

In this paper, a modified AP based on CW-SSIM and LOF was proposed. The CW-
SSIM was used to extract the structure-based spatial similarity of the HSI dataset, which
was combined with the pixel-based spectral similarity to generate the final similarity matrix
of AP. The LOF was applied to measure the smoothness of an object and used to revise
the exemplar preference of AP. Meanwhile, we simplified the calculation of the spatial
similarity to reduce the computational complexity. The modified similarity matrix was
obtained by the pixel-based spectral similarity, the structure-based spatial similarity, and
the revised exemplar preference. Finally, the modified similarity matrix was applied to AP
and the clustering index was obtained.

To evaluate the effectiveness of the proposed CLAP, comparisons were carried out
between CLAP, AP, K-means, K-methods, GMM, DBSCAN, SC, DPC, Self-org, CL, HESSC,
and GR-RSCNet on three different types of HSI datasets. The experimental results showed
that the proposed CLAP could distinguish different types of land covers well and outper-
formed its competitors. Meanwhile, the optimization strategy of the main parameters of
CLAP was also discussed. From the clustering results, we can see that the weight of spatial
similarity should be tuned carefully as too large values may reduce the clustering precision
of the algorithm. The weight of the LOF coefficient and the size of the spatial neighborhood
block also have an impact on the clustering result. The comparison and drawbacks are
discussed in the Discussion section. We can see that CLAP outperformed its competitors,
but still suffers from some issues such as difficulty in selecting parameters, unstable per-
formance of the CW-SSIM, and high storage requirements. Further work will focus on the
improvement in the scheme to efficiently extract the spatial-spectral information of the HSI
dataset in combination with deep learning-based HSI clustering algorithms.
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Abbreviations

The following abbreviations are used in this manuscript:

HIS Hyperspectral image
AP Affinity propagation
SSIM Structural similarity
CW-55IM Complex wavelet structural similarity
LOF Local outlier factor
CLAP Improved AP with CW-SSIM and LOF
PCA Principal component analysis
PC Principal component
P Indian Pines dataset
PU Pavia University dataset
HH WHU-Hi-HongHu dataset
ED Euclidean distance
SC Spectral clustering
GMM Gaussian mixture models
DPC Density peaks clustering
Self-org Self-organizing maps
CL Competitive layers
HESSC Hierarchical sparse subspace clustering
GR-RSCNet  Graph regularized residual subspace clustering network
NMI Normalized mutual information
ACC Accuracy
ARI Adjusted rand index
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