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Abstract: Understanding processes that affect changes in the coastal zone and the ability to predict
these processes in the future depends on the period for which detailed monitoring is carried out
and on the type of coast. This paper analyzes a southern fragment of the Baltic coast (30 km), where
there has been no anthropogenic impact (Slowinski National Park). The study was carried out
covering a time interval of 65 years. Historic and current aerial photographs (orthophotomaps)
from the following years: 1951, 1964, 1975, 1984, 1995, 2004, and 2016 were used. Changes in the
position of the foredune toe line (FTL) in each years’ images were used. For each time interval
(1951–1964, 1964–1975, 1975–1984, 1984–1995, 1995–2004, 2004–2016), the coastal area over which
morphodynamic processes (erosion and accumulation) took place was calculated. The calculated
RL (reference line)—FTL positions allowed us to determine differences in the shoreline course in
subsequent years and to determine the extent of shifts/changes of the coastline in each time period.
The study results showed an equilibrium between the processes of accumulation and erosion, proving
that the development of the studied natural coastline is balanced. There was only a change in the
trend of the characteristics of changes from erosive into accumulative ones and vice versa. Moreover,
along the studied coast section, a certain periodicity in the coastline changes can be observed.
The intervals where predominant erosion occurs alternate with those when accumulation prevails,
and then the cycle repeats. The analysis of historic/current aerial images and orthophotomaps
from 1951–2016 indicated that strong storms have a significant impact on the magnitude of change
(accumulation/erosion) and the formation of the studied coastline.

Keywords: coastal zone; shoreline changes; erosion/accretion; multi-temporal orthophotomaps;
remote sensing

1. Introduction

The coastal zone forms a specific system on the border between the terrestrial and
marine environments, which is subjected to very dynamic natural and anthropogenic pro-
cesses [1]. Studies on changes caused by those processes are extremely important for the
maintenance of the sustainable functioning of coastal zones [2]. The problem of having proper
management in the coastal zone occurs in many countries on various continents [3–13]. The
literature shows numerous examples of coasts where the lack of care about the appropriate
functioning of the coastal zone has resulted in serious social, economic, and financial
consequences [14–18]. The methods applied in studies on changes in the shoreline are
strictly connected with the characteristics of a given type of water body and the dynamics
of phenomena and processes such as tides, storms, currents, and waves [11]. The monitor-
ing of morphodynamic processes is carried out with statistical methods [12,19] based on
direct measurement [20,21], RTK-GPS measurement [22], and methods based on optical
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images obtained from unmanned aerial vehicles (UAV) [23–29], airborne images [30–34],
and satellite images [32,33,35–42]. In recent years, it has become popular to apply SAR
data and laser scanning data (terrestrial—TLS and airborne—ALS) [5,43–49]. The use of
remote sensing data makes it possible to monitor remotely with a good level of reliability
of the obtained measurements for large coastal areas [50]. Pardo-Pascual [35] and his team
presented a method for determining the shoreline with subpixel accuracy (<10 m) using
multi-temporal satellite images from Landsat 7, Landsat 8, and Sentinel-2. In the case of
multispectral, high-resolution WorldView-2 data, scientists can obtain an accuracy level
of 1–5 m [36,37]. However, monitoring based on photogrammetric methods can obtain
accuracy below 0.5 m [51]. The application of aerial image data raises the possibility of
remote monitoring with the obtained measurements having good reliability for studying
the dynamics of shoreline changes. The situations recorded in the aerial photos illustrate
the total effect of the processes taking place on the shores of the non-tidal sea. The mea-
surement carried out on this basis indirectly considers all factors influencing the changes
in the position of the front dune base line in the analyzed period, e.g., changes in sea
level, damage caused by storm surges, and others [52]. The foredune toe is one of the best
indicators interpreted in aerial photographs to determine the state and long-term dynamics
of the seashore [53]. The baseline of the foredune overlaps the vegetation line, an indicator
of the limits of regular flooding by high water, and therefore, it represents an important
indicator of shoreline movement [54]. The vegetation line is a natural line formed by the
plants on the beach. It is easily identifiable, even in historical photographs [28,53–55].

The research was carried out for the southern shore of the Baltic Sea, which is a
non-tidal sea with periodic sea level fluctuations. Climate change and the associated
rising level of the Baltic Sea are causing an increase in the frequency of storm surges.
This phenomenon may be the main natural threat to the southern coast in the coming
decades. Monitoring these changes is extremely important. The changes of the Baltic sea
coast (Figure 1) have been studied by many research teams [53,56,57] and included both
long-term and short-term [58–60] changes mainly caused by meteorologically-enforced
storm waves [21]. Understanding processes that affect changes in the coastal zone and the
ability to predict those processes in the future depends on the period for which detailed
monitoring is carried out. The fact whether the studies are carried out over short and
medium periods (days, months, years, decades) [11,61] or long periods (several decades) is
very important [6,62]. The research presented in the literature shows the results obtained for
short sections of the Baltic coast using rare time-sampled measurements (up to 30–40 years)
and measured points in small numbers (TLS, surveying every 500 or 1000 m).

A new aspect of the present study is that it explores, for the first time, changes of the
natural shoreline of the southern Baltic from 1951–2016, long enough (65 years) to allow for
capturing the trend of morphodynamic changes in the coastal zone. The analysis included
the longest remote sensing data series obtainable.

Another novel aspect of the present work is using the short transects (every 10 m),
which made it possible to obtain more precise measurement results (quasi-continuous)
compared to measurements using 100–500 m profiles as applied in the state monitoring of
the Baltic shore. The research presented herein focuses on a new quantitative approach us-
ing analysis of morphodynamic changes (erosion/accumulation) based on multi-temporal
remote sensing data to determine trends in natural dune coast development (i.e., devoid of
an anthropogenic influence). The work aimed to conduct a remote detection of changes in
the coastal zone of the southern Baltic Sea at 6–13 year intervals. Detailed goals included
the following:

• to calculate the area of coastal zone changes (erosion/accumulation) in each decade.
• to determine the spatial and temporal distribution of changes.
• to attempt to identify the main factors causing those changes.
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Figure 1. Study area: (a) Baltic Sea; (b) Location of examined part of the Polish Baltic Sea coast. The
base map—Google Satellite.

2. Materials and Methods
2.1. Study Area

The research was conducted taking into account the southern coast of the non-tidal
Baltic Sea, located within the strict protection limits of the Slowinski National Park. The ex-
amined coast section, 30 km long, constitutes a sandy sea barrier called the Gardno-Lebsko
Spit (Figure 1). The spit, 0.6 to 2 km wide, separates two nearshore lakes, Gardno and Leb-
sko, from the Baltic Sea. The lakes are linked to the sea by means of short estuary sections
of two very small rivers, the Lupawa and Leba. These rivers have an insignificant impact
on changes occurring in the coastal zone. In its western portion, the spit is overgrown with
forest and has gray dune fields. In the central and eastern parts of the spit, concerning an
area of over 500 ha, there are moving dunes. The dunes travel with a speed of 3–10 m/year
from west to east, in accordance with the direction of prevailing winds [63], and range in
height from several meters up to 56 m above sea level [63,64].

The geological composition of surface formations, which affect the development
of morphological processes, is little diversified. Four types of sedimentary rock mainly
exist, which differ both in terms of their age and origin. The most common materials are
Pleistocene sands of marine accumulation. Under the layer of sands, there are, in places,
post-glacial biogenic formations (turfs, gyttjas) [63].

Due to the high variability of wind directions and speed occurring at the Polish coast,
the wind wave is the most dynamic factor conveying the largest amounts of energy towards
the bottom, controlling the intensity of deposit movements [65]. Winds blowing from the
west to the east transport sand, from which foredunes and white linear dunes are formed,
thus contributing to land build-up [66]. When analyzed on a yearly basis, the area is
marked by a high average wind speed (4.5 m/s) and a very small number of days with
calm weather (4.9 days) [67]. Days extremely windy, including those with storms, occur
mainly in the autumn and winter. During an average storm, waves of 4–5 m high and
60–80 m long develop. The direct reason for the development of storm surges along the
Polish coast is low-pressure systems with accompanying thermal fronts, moving to the
east or south-east, from the Norwegian Sea towards Scandinavia [68]. Significant causative
factors for changes occurring within the coastal zone system are played by systems of
coastal currents, which take part in, among other things, the transport of deposits [65].
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2.2. Data

In this study, airborne photos taken in 1951, 1964, 1975, 1984, 1995, 2004, 2010, and
2016 were used. The detailed characteristics of the images and their sources are shown in
Table 1. The images were taken at various scales. The images from 1951–1984 were taken
in diapositives and scanned into digital format with a precision scanner (PHOTOSCAN
TD Intergraph-Zeiss, resolution 14 µm). Digital images for 1995, 2004 and an orthopho-
tomap for 2010 were obtained from the Polish Centre of Surveying and Cartographic
Documentation. Data from 1995 were recorded under the EU program PHARE. Moreover,
an orthophotomap of 2016, published as WMS (Web Map Service) by the Polish Main Office
of Surveying and Cartography, was used.

Table 1. The characteristics of source aerial images (1951–2004) and source orthophotomaps
(2010, 2016).

Year 1951 1964 1975 1984 1995 2004 2010 2016

Camera type RC-5 RC-8 RC-5/8 RC-10 RC-20 RC-20 - -
Format (cm) 18 × 18 23 × 23 23 × 23 23 × 23 23 × 23 23 × 23 - -

Scale 1:25,000 1:23,000 1:29,500 1:25,000 1:26,000 1:26,000 - -
Pixel size (µm) 14 14 14 14 21 14 - -

Source diapositive diapositive diapositive diapositive digital digital digital WMS

2.3. Processing of Aerial Data

The data from 1951–2004 were subjected to geometric rectification. The aerial images
were blocks of four strips (years: 1951, 1964, 1975, 1984) and eight strips (years: 1995, 2004).
The photographs from 1951 and 1964 were characterized by slightly lower quality and a
poorer photo interpretation potential due to scratches and damages of the emulsion on the
diapositives. It was necessary to improve their quality by using, among others, smoothing
and noise removal filters. In the aerotriangulation process, the number of used Ground
Control Points (GCPs) depended on the photointerpretation potential of the images in the
given year, related to land cover changes. The GCPs were obtained from GPS measurements
and based on topographic maps. Totally 45–69 GCP points, depending on the image, were
used. The number of GCPs and the results of the aerotriangulation are presented in the
table (Table 2). The RMS error for individual coordinates did not exceed the value of 0.5 m.

Table 2. Results of the aerotriangulation process for images for subsequent years.

Year 1951 1964 1975 1984 1995 2004

Number of photos in block 52 36 24 39 46 36
Number of used GCPs 45 59 61 69 61 59

RMS X (m) 0.36 0.45 0.36 0.41 0.11 0.37
RMS Y (m) 0.46 0.44 0.31 0.42 0.10 0.37
RMS Z (m) 0.46 0.45 0.43 0.36 0.22 0.28

The photogrammetric materials in the form of aligned blocks of aerial photographs
with a stereoscopic coverage from six years: 1951, 1964, 1975, 1984, 1995, 2004 were used
to create different Digital Elevation Model (DEM) for each period. For this purpose,
measurement of points and vectors representing the terrain surface was performed using
a Dephos digital photogrammetric station. For each stereo model, a grid of points with
dimensions of 15 m × 15 m (points with a set of coordinates—x, y, z) was measured. Data
were supplemented with characteristic details of the terrain (hills, slopes, watercourses,
water bodies, depressions, areas excluded from development, and others).

As a result of the orthorectification process, orthophotomaps with a 0.5 m ground
pixel resolution in the EPSG 2173 coordinate system were obtained. The orthophotomaps
fulfilled the accuracy standards for cartographic materials.
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2.4. Analysis of Changes in the Baltic Coastal Zone

Analyses of changes in the coastal zone of the Baltic Sea were carried out on the
188–218 km section of the coast related to seven time intervals (Table 2) covering the years
from 1951–2016 (Figure 2).

Figure 2. Foredune toe lines in following years on the orthophotomap from 2010. The position of the
foredune toe line reflects the course of the shoreline in the given years.

The foredune toe line (FTL) overlaps with the natural line formed by vegetation on the
beach is an important indicator of shoreline movement [46–49]. For each data set, vegetation
lines were identified and mapped based on the visual interpretation of the orthophotomaps
(Figures 2–4). That allowed the course of the line along the base of the front dunes to
be vectorized. Additionally, for the 1951–2004 years, stereoscopic observations of aerial
photographs were used to enhance the accuracy of foredune toe line vectorization. This
allowed for avoiding errors in cases where the vegetation line was difficult to interpret. In
sections of coast lacking a foredune, the lines of the base of the main dune were vectorized.

A reference line (RL) was determined along the coast according to the Polish Maritime
Office’s Kilometer line (MOK) (Figure 3). According to the methodology adopted in studies
of shoreline changes in the Baltic Sea [43], the analysis of the magnitude of coastline changes
was carried out based on transects set at short intervals—every 10 m. The transects were
perpendicular to the reference line (Figure 4). It made it possible to obtain more precise
measurement results (quasi-continuous) compared with measurements utilizing 100–500 m
profiles as applied in the state monitoring of the Baltic shore [69]. The distance from the
reference line to the coastline was calculated for each year. As examples, 1975 and 2010
are presented in Figure 4. The obtained RL-FTL distances made it possible to determine
differences in the shoreline course in the following years and the extent of shifts/changes
of the coastline in each period.

The vectors of intersecting lines create polygons, i.e., closed areas on which accumu-
lation and erosion occur. Based on the geometry (coordinates) of the obtained polygons
(Figure 5), their surface areas were calculated. The transformation of linear objects into
2D and calculation of the size of accumulated areas and eroded areas for respective time
intervals were carried out with GIS software (GeoMedia, QGIS)).
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Figure 3. The route of the reference line (RL)—Polish Maritime Office’s Kilometer line (MOK),
(a) along the examined coast section of the Baltic Sea, the base map—OpenStreetMap, (b) The routes
of the selected part of RL and FTL line in year 2010 (red color)—the base map—orthophotomap
dated 2010.

Figure 4. Transects perpendicular to the reference line (MOK) determined at intervals of 10 m. The
distance was defined as the reference line—foredune toe lines in a given year: RL-FTL 2010; RL-FTL
1975. The base map—orthophotomap dated 2010.
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Figure 5. The vectors of intersecting foredune toe lines from 1951 and 2016 create polygons (closed
areas), which were used to calculate the size of the accumulated and eroded areas. The base
map/orthophotomap dated 2010.

It should be noted that the last two periods were shorter (6 years) than the previous
ones (from 9–13 years). To carry out analysis, they should be combined into a 12 year
period, i.e., 2004–2016. For each time interval, the coast area at which the morphodynamic
processes took place was calculated. Then, we calculated the total area of changes in
individual periods (1) and the average value of the change in area in a given period (2).

AT = Σai, (1)

ATY = AT/n, (2)

where:

- ATY—average area for a period of time
- AT—total area in the time period
- a—partial area in the time period
- T—period of time
- n—number of years

3. Results

Based on the obtained results, an analysis and determination of changes in the coastal
zone of the southern Baltic over 65 years (1951–2016) were carried out. Graphs and tables
(Figures 6–10, Table 3) provide an overview of the surface area of erosion/accumulation
changes over the decades and their spatial-temporal distribution of those changes.

Figure 6. Graph of the changes in accumulated and eroded areas [ha] from 1951–2016 and the average
area [ha] per year (188–218 km).
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Graphs of the total area of change in subsequent intervals and the average value for
each year were prepared for all periods (Figure 6). The results are also presented as a graph
and map of the total change that took place over 65 years (Figure 10).

Figure 7. Graphs of the changes in the accumulated and eroded areas in subsequent time intervals
(periods close to a decade) on the studied part of the coast (188–218 km according to MOK).
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Figure 8. Graphs of the changes in the accumulated and eroded areas in two 6 year time intervals
(2004–2010 and 2010–2016) on the studied part of the coast (188–218 km according to MOK).

Figure 9. Total area of coastal change in subsequent time intervals.

Figure 10. Map of total change in the shoreline from 1951 to 2016. The base map—OpenStreetMap.
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Table 3. Area of coastal changes in subsequent time series: value of accumulated and eroded area,
total area of changes, and the balance of the impact of morphodynamic processes on the studied part
of the coast.

Nature of Changes
Area of Coastal Changes in Subsequent Time Series

1951–1964 1964–1975 1975–1984 1984–1995 1995–2004 2004–2016 2004–2010 2010–2016

Accumulation
(ha) 30.83 39.97 27.31 23.26 39.17 14.20 11.96 7.66
(%) 53 61 47 40 75 27 31 31

Erosion
(ha) −27.33 −26.05 −30.89 −35.47 −12.85 −38.17 −26.94 −17.41
(%) 47 39 53 60 25 73 69 69

Total area (ha) 58.16 66.01 58.20 58.73 52.01 52.37 38.90 25.07

Budget (m) 3.5 13.92 −3.59 −12.21 26.32 −23.97 −14.98 −9.75

3.1. Analysis of the Areas Eroded and Accumulated in the Examined Period

The analysis of the changes in accumulated and eroded areas showed that in the
examined section of the coast in 1951–1964, the accumulation process slightly dominated,
covering 30.83 ha, which represented a change amounting to 53% of the total area. The
time interval 1964–1975 was characterized by clear intensification of the accumulation
processes (Figures 6 and 7, Table 3). The accumulated area increased by more than 9 ha.
That means 61% of the total surface changed, representing accretion, which prevailed
during this interval. At the same time, there was a slight decrease in eroded areas from
27 to 26 ha (Figure 6 and Table 3), which, in the studied period, represented only 39% of
the total area. A comparison with the previous period led to an observation that along the
western part of the studied coast (i.e., 214.3 to 205.5 km, according to MOK), eroded sections
were shortened, the trend of erosive fragments was reversed for accumulative areas (i.e.,
215.2–214.3 km and 211.3–210.3 km MOK), and vice versa (Figure 7). Along the entire
examined coast, an extension of the shoreline sections with accumulation characteristics
was observed.

In the subsequent two intervals, 1975–1984 and 1984–1995, the accumulation area
decreased accordingly from 40 to 27.3 ha, and down to 23.3 ha. The eroded area increased
from 26 to 30.89 ha in the 1975–1984 interval, while during the next, the growth was up to
35.47 ha. It was the biggest area subjected to shore erosion during the studied period of
65 years. A visible elongation of eroded sections was also noticed (Figure 7).

The interval of 1995–2004 was characterized by the most extended accretionary pro-
cesses, which determined the reduction of the coastlines/areas affected by erosion to only
25% of the total (Figure 6 and Table 3). The elongation of accumulation sections was ob-
served. On the coast sections where shore reconstruction processes took place, significant
shifts in the shoreline were observed in the range of 20–40 m, sometimes exceeding 50 m
(Figure 7). The significant predominance of long sections of accumulation and shorter
fragments of shore erosion indicate an essential intensification of accumulation trends and
a decrease in erosion trends.

The analysis for 2004–2016 showed a clear increasing trend of coastal destruction
processes. Compared to the previous period, the eroded area increased three times from
12.85 ha to 38.17 ha (Figures 7 and 8, Table 3). The 2004–2016 period was the most erosive
interval. These results align with those obtained by analyzing data from the shorter 6 year
periods. It can be seen that the time interval of 2004–2010 was characterized by a significant
lowering of the intensity of the accumulation processes from an area of 39.17 ha to 11.96 ha
(24.97 ha). At the same time, there was an intensification of shore erosion processes. The
eroded area increased by more than double; from 12.85 to 26.94 ha. In the most recent period
(2010–2016), there was a permanent trend for the area of coastal fragments to decrease
where beach build-up was taking place (from 11.96 to 7.66 ha). At the same time, there was
a significant decrease in the size of the eroded area (from 26.94 to 17.41 ha).
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Balance of the Impact of Morphodynamic Processes on the Studied Part of the Coast

The balance between the sums of accumulated and eroded areas in subsequent time
intervals was analyzed (Figures 6–8 and Table 3). Comparable amounts of accumulated
and eroded areas were observed in the first time interval, and their participation was 53%
and 47%, respectively (Table 3). In subsequent years (1964–1975), clear intensification
of accumulation changes was observed, which manifested itself in a positive balance
(+13.92 ha) of the area of accumulation; the proportion of the eroded area stayed on a
similar level, i.e., 26.05 ha, as compared to the previous period. A negative balance occurred
in two subsequent decades, equalling 3.59 ha in 1975–84 and 12.21 ha in the following
decade (1984–1995). This demonstrates an intensification of erosion and dominance of the
shore destruction processes. The following time interval (1995–2004) was characterized by
a definite weakening of erosion compared to previous decades. The eroded area decreased
by almost three times (35.47 to 12.85 ha). The retreat of the shore occurred on almost
one-quarter of the length of the examined coast. The positive balance of +26.32 ha of
accumulation area provides evidence of the reversal of the erosion trend and the decisive
predominance of the shore accumulation processes over the interval.

In the period from 2004–2016, a negative balance of the area of change was observed
(−23.97 ha) along with a significant dominance of erosion processes (Figures 6–8 and
Table 3). It should be noted that compared to the previous period, the area on which coastal
destruction processes occurred increased by 48%. In contrast, the size of the area of the
accumulative nature decreased three times. The detailed analysis of the shorter six-year
intervals indicated a negative balance in both periods, i.e., 14.98 and 9.75 ha. The coast
erosion occurred in 69% of the examined area.

Based on the analysis of changes in coastal areas over the whole examined period
(1951–2016), a slight predominance of the accumulated area over the eroded area, +78.19
(51%) and 74.22 (49%), respectively, was identified (Figure 6, Table 3). Moreover, in a
comparison of the areas subjected to changes, in subsequent periods, the area of shore accu-
mulation was +174.74 ha (51%), while the area of shore subjected to erosion was 170.76 ha
(49%). The obtained results of the study showed an equilibrium between the processes of
accumulation and erosion, proving that the development of the studied coastline has been
balanced. There were only changes in the trend from erosive to accumulative processes
and vice versa.

The total area of shore change in subsequent years ranged from 52.01 to 66,01 ha
(Figure 9 and Table 3). A detailed analysis of the total areas of accumulation and erosion in
subsequent time intervals indicated the intensification of coastal processes in 1964–1975,
and the increase in the area of changes in the coastal area by 7.85 ha was observed, as
compared to the previous interval (Table 3). The years 1975–1984 were marked by a
decrease in the area of change down to 58.2 ha, which corresponds to the change value in
the 1951–1964 period. In the following time interval (1984–1995), the change area reached
a comparable value, i.e., 58.73 ha. In 1995–2004 and 2004–2016, there was a noticeable
decrease in the area subjected to changes, about 52 ha, thus indicating a weakening of
dynamic coastal processes within the examined part of the coastline.

4. Discussion

Sea level fluctuations exert a great impact on the functioning of the coastal zone system
and the course of processes occurring therein. Changes in water level occurring in the
coastal zone may have the nature of periodic oscillations (tides) or non-periodic changes,
such as storm surges [65]. Sandy beaches act naturally as shoreline buffers, absorbing the
energy of waves and adjusting dynamically to the seasonal or long-term wave climate.
During extreme wave phenomena, major changes in the coast morphology may occur,
which may significantly affect the coast stability [70]. The frequency of storm surges on
the Polish coast has intensified over the last fifty years. Also, the maximum levels and
duration of surges have increased. The increase in the number of low-pressure fronts
moving above the Baltic area resulted in the growth of the number of storm days [71]. The
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clear increasing tendency results from an increased number of extreme weather phenomena
due to climate changes. That process also impacts distinct changes in sea levels over the
last hundred years [72].

Following the increase in sea levels and frequency of high storm surges, the Polish coast
is threatened with erosion [73–75]. Visible on the larger part of the dune coast is the shore
withdrawal inland [73,76–78]. The rate of the Polish coast retraction in the 20th century has
been estimated at 0.8–1.0 m per year [76,79]. However, after each storm surge, the dune
toe or its top (ridge) is recorded to have moved as much as by 3–4 m per year [80,81]. This
is confirmed by the analysis of eroded/accumulated areas for the examined Baltic coast
section as presented herein (Figures 6–8 and, Table 3) and previous research [82].

Analyses of the Baltic coast changes based on 1951–2016 aerial photos take into account
the accumulative effect of the impact of processes occurring in the coastal zone, including,
among other things, changes in sea levels, coastal jet systems, damages resulting from
storm surges, etc., [52]. Due to the strict protection of the examined part of the coast, located
within the National Park limits, one can exclude negative effects of anthropogenic activity,
and the same about the insignificant impact of the Lupawa River estuary. Research [83] has
analyzed the variability of wave motion parameters for 1950–2010. There was no significant
diversity in wave parameters, which could justify the variability of the coastal zone.

Based on the analysis of accumulated and eroded areas, the fragment of the examined
Baltic coast in 1951–1964 is marked by a balanced inventory of coastal areas, on which
processes of shore building up/damaging take place (Table 3). The analysis of the frequency
of storm surge occurrences [84] and research results [75,85] denote a moderate influence of
extreme weather phenomena in the period from 1947–1970 on changes within the coastal
zone. In the subsequent years of 1964–1975, intensification of coast building processes
(aggregation of the coast) and an increase in surfaces of accumulated areas were noted
(Figures 6 and 7, Table 3). This is reflected in the results of the analysis of storm surge
occurrence frequency at the southern Baltic Sea [75,84,85]. According to the analysis
performed by [68], the period of 1960–1969 was marked by the smallest number of storms
on the Polish part of the Baltic Sea coast. This is confirmed by studies undertaken by [86]
and conducted in 1963–1964, which proved that 60% of the Lebsko Spit area was subject to
the process of accumulation.

The prevalence of coast destruction activity, and larger eroded areas, was recorded
in multiannual periods, during which severe and frequent storm surges occurred. The
negative balance of the size of accumulated and of eroded areas was recorded in 1975–1984
and again in 1984–1995. Those periods overlap with dates of increased storm activity
on the southern Baltic coast [84,87]. Research [88,89] conducted on other sections of the
Polish coast confirms that. The strongest effects of the activity of the coast destruction
processes were noticed in 1984–1995 (Figures 6 and 7, Table 3). The increased surface area
of erosion zones in the period under discussion may result from an increased storm activity
on the southern Baltic (207 storms recorded) [71,84]. The length of the coast sections under
destruction was extended (Figure 7) compared to the previous periods [82,88].

After 1995, the number of stormy days sharply decreased [71,84], reflected in results
obtained for the multi-annual period of 1995–2004. The noticeable prevalence of areas that
are accumulative in nature (75% of the surface area of the examined coast section) denotes
a decrease in the impact of destructive factors) (Figures 6 and 7, Table 3).

The years 2004–2016 were dominated by destructive shore processes regarding over
70% of the examined coast surface area (Figures 7 and 8, Table 3). This confirms the
occurrence of intensive morphodynamic processes resulting from heavy storm surges in
2004, 2009, and 2012 [21,77,80,90]. During the 6-year periods of 2004–2010 and 2010–2016,
a demonstrable retraction of land towards the south was recorded. An intensification
and domination of shore destruction processes was observed (Figures 7 and 8, Table 3).
Considerable land losses along the whole coast were recorded after heavy storms in 2004,
2006, and 2009 [77,80,90]. Following the heavy storm in November 2006, the dunes retracted
2 to 5 m [73]. The highest number of storm surges over all analyzed mareographic stations
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was recorded in the last period of 2010–2016 [68]. Two storm surges following each other
in January 2012, with high seawater levels, caused massive losses along the entire Polish
coast, even on the hitherto accumulative part of the coast. Regarding the examined section
(the Lebsko Spit), the dune toe retracted up to 3 m [21].

5. Conclusions

The use of historic/current aerial images and orthophotomaps for the analysis of
changes in the coastline of the southern coast of the Baltic Sea made it possible to determine
the size and intensity of morphodynamic changes (erosion and accumulation) in the time
interval of 1951–2016, i.e., over 65 years. The total area subjected to coastal morphodynamic
processes in subsequent time intervals revealed an intensification of coastal processes in the
1960s and an increase in the area subjected to changes compared to the first studied period
(1951–1964). In the time interval 1975–1984 there was a decrease in the area subjected to
changes, slightly below the level of change observed in the first period. In the following
decade, the area subjected to transformations corresponded with the size of the area of
change from the 1950s. In 1995–2004, accumulation processes dominated. At the same time,
there was a further decrease in the area subjected to deformation, which indicates a slight
weakening of dynamic coastal processes in the studied area of the coast as studied by the
paper authors. Compared to all previously studied periods, the last interval (2004–2016)
was the most erosive. A threefold increase in the eroded surface area was due to the growth
of the shore destruction processes in this period, mainly due to strong storms in 2004, 2006,
2009, and 2012. The results obtained for the 65-year period indicate a balance between the
processes of accumulation and erosion, proving the development of the examined coastline
was balanced.

In summary, results obtained from the analysis of orthophotos from 1951–2016 indi-
cate that severe storms have a significant impact on the magnitude of changes (accumula-
tion/erosion) and the formation of the studied coastline. Due to the strict protection of the
examined part of the coast (it is located within the borders of the National Park), negative
anthropogenic impact can be excluded.
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study from the Jastrzębia Góra region. Geologos 2014, 20, 259–268. [CrossRef]
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PTGleb.: Poznan, Poland, 1975; pp. 7–25.

http://doi.org/10.1016/j.oceaneng.2013.01.025
http://doi.org/10.1080/04353676.1980.11880001
http://doi.org/10.1016/j.margeo.2016.10.011
http://doi.org/10.12657/landfana.022.004
http://doi.org/10.2478/logos-2014-0018
http://doi.org/10.3354/cr00927
http://doi.org/10.5194/isprs-archives-XLI-B2-49-2016
http://doi.org/10.1016/j.coastaleng.2015.03.005


Remote Sens. 2022, 14, 1212 17 of 17
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