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Abstract: Target detection in hyperspectral images (HSIs) aims to distinguish target pixels from the
background using knowledge gleaned from prior spectra. Most traditional methods are based on
certain assumptions and utilize handcrafted classifiers. These simple models and assumptions’ failure
restrict the detection performance under complicated background interference. Recently, based on the
convolutional networks, many supervised deep learning detectors have outperformed the traditional
methods. However, these methods suffer from unstable detection, heavy computation burden, and
optimization difficulty. This paper proposes a Siamese fully connected based target detector (SFCTD)
that comprises nonlinear feature extraction modules (NFEMs) and cosine distance classifiers. Two
NFEMs, which extract discriminative spectral features of input spectra-pairs, are based on fully
connected layers for efficient computing and share the parameters to ease the optimization. To
solve the few samples problem, we propose a pseudo data generation method based on the linear
mixed model and the assumption that background pixels are dominant in HSIs. For mitigating the
impact of stochastic suboptimal initialization, we parallelly optimize several Siamese detectors with
small computation burdens and aggregate them as ensembles in the inference time. The network
ensembles outperform every detector in terms of stability and achieve an outstanding balance
between background suppression and detection rate. Experiments on multiple data sets demonstrate
that the proposed detector is superior to the state-of-the-art detectors.

Keywords: Siamese network; target detection; hyperspectral image; linear mixed model; ensemble
method

1. Introduction

Hyperspectral imaging is a developing area in remote sensing in which a hyperspec-
tral spectrometer collects hundreds of narrow contiguous bands over a wide range of the
electromagnetic spectrum [1]. Different from target detection in natural images [2], hyper-
spectral target detection aims to distinguish specific target pixels from the background in
given HSIs with few prior spectral information of the target, which has been the focus of
the remote sensing interpretation research [3].

In the past few decades, several classic hyperspectral target detectors have been pro-
posed [3]. The spectral angular mapper (SAM) [4] and spectral information divergence
(SID) [5] perform detections based on distance measurements. According to the back-
ground modeling, Zhang et al. [6] divided the traditional detection model into structured
background models and unstructured background models. Structured background models
include the constrained energy minimization (CEM) [7], the orthogonal subspace projection
(OSP) [8], target-constrained interference minimize filter (TCIMF) [9], etc. Unstructured
background models regard the background as samples from a multivariate Gaussian distri-
bution, such as the generalized likelihood ratio test (GLRT) [10], adaptive coherence/cosine
estimator (ACE) [11], and adaptive matched filter (MF) [12]. Most traditional detectors are
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based on certain assumptions, which may fail in practice [13]. For instance, the background
and target may not share the same spectral covariance matrix.

In the past few years, machine learning-based and sparse representation-based meth-
ods have improved detection performance. Hierarchical CEM detector (HCEM) [14], and
ensemble-based constrained energy minimization (ECEM) [15], introduce hierarchical and
ensemble structures to the CEM detectors, which improves the detection nonlinearity
and generalization ability. The key idea of sparse representation-based methods is that
each spectrum can be linearly combined with very few atoms of an over-complete dictio-
nary. Typical methods include original sparse representation based target detector (STD)
and its variants: sparse representation-based binary hypothesis detector (SRBBH) [16],
coordinated-representation-based object detection (CR-TD) [17], and sparse and dense
hybrid representation-based target detector (SDRD) [18]. Many scholars combined sparse
representation and other techniques to develop many novel methods. Li et al. [17]
proposed a combined sparse and collaborative representation (CSCR) for target detec-
tion, and Du et al. [19] proposed a hybrid sparsity and statistics-based method (HSSD).
Zhao et al. [20] propose adaptive iterated shrinkage thresholding method (AISTM) for
lp-norm sparse representation and improve the detection performance.

Although traditional methods have achieved promising target detection results, there
are still a few problems. For instance, the low spatial resolution of HSIs, atmospheric ab-
sorption, and scattering make the target spectra different from the prior spectra, introducing
difficulties to the detection task [21]. Furthermore, the handcrafted spectral feature extrac-
tion filters restrict any further improvement of performance under complicated background
interference [6]. Meanwhile, deep-learning-based methods have made great success in the
remote sensing field, such as anomaly detection [22–25], classifications [26–28], image un-
mixing [29–32], etc. Many deep learning-based hyperspectral detectors [33–35] outperform
the traditional methods relying on the feature extraction capability of neural networks.
However, learning-based methods require numerous reliable training samples, but such
samples are not directly obtainable from a single prior spectrum.

To overcome the few label samples problem, some unsupervised methods [35–38]
exploit the neural networks as a feature extraction module and detect the target based on
discriminative features with other detectors like CEM. Specifically, Shi et al. [36] introduce
distance constraint stacked sparse autoencoders (SSAEs) to maximize the distinction be-
tween the target pixels and other background pixels and detect the target with a simple
detector. Xie et al. [38] impose autoencoder and variational autoencoder for discrim-
inative feature selection. Similarly, the authors of [37] select a subset of all bands for
detection with a deep latent spectral representation learning-based autoencoder. In [35], a
background-learning method is proposed and obtain the coarse detection map according
to the reconstruction error. Although unsupervised-based methods improve the detection
performance with discriminative features, these method requires other detectors for the
final results in a two-stage way.

Many supervised methods have been proposed and integrate feature processing
and detection. However, the unbalance between target and background samples is the
critical problem of the supervised method. For generating numerous training samples,
Zhang et al. [34] utilize generative adversarial networks to generate target and background
spectra for pixels pairs. Gao et al. [21] generates simulated data with an auxiliary generative
adversarial network. Zhu et al. [39] generate enough typical background pixels via a hybrid
sparse representation and classification-based pixel selection strategy. Several convolu-
tional network-based detectors have achieved great performance with numerous target and
background spectra. Du et al. [40] propose a convolutional neural network-based target de-
tector (CNNTD) and Zhang et al. [34] propose a novel target detection framework HTD-Net.
HTD-Net and CNNTD feed the subtraction of pixels pairs to the multi-layers convolutional
networks. Instead of feeding spectral subtraction to the networks. Zhu et al. [39] feeds the
prior spectrum and the generated spectrum to a two-stream convolutional network (TSC-
NTD) and detects the target with the subtraction of spectral features. Optimized with the
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generated target and background spectra, supervised target detection methods [21,34,39,40]
realized novel performance. However, convolutional-based feature extraction modules
are designed with many convolutional layers, introducing much computation burden.
In addition, the suboptimal initialization of these supervised methods will impact the
performance of networks, and initializing networks with random parameters will lead to
fluctuations in performance [41].

Siamese networks are capable of recognition with little available data with multiple
networks sharing the parameters, proved by the scholars of [42], which is propitious
to target detection with the single prior spectrum. This paper proposes a supervised
Siamese fully connected target detector (SFCTD) composed of nonlinear feature extraction
modules (NFEMs) and cosine angle distance-based classifiers. Two NFEMs, which extract
discriminative spectral features of input spectra-pairs, are based on fully connected layers
for efficient computing and share the parameters to ease the optimization. We utilize
the cosine angle value of SAM measurement as the differential criterion to optimize the
parameters of NFEMs. The cosine angle distances of spectral feature pairs represent the
similarities of the input spectral pairs, serving as the target confidences of the test spectra. To
solve the few samples problem, we propose a pseudo data generation method based on the
linear mixed model and the assumption that background pixels are dominant in HSIs. For
avoiding the impact of suboptimal initialization and achieve stable detection, we optimize
several Siamese detectors independently and detect targets with the network ensembles.

The contributions of our work are summarized as follows.

(1) A Siamese fully connected hyperspectral target detector (SFCTD) is proposed, consist-
ing of nonlinear feature extraction modules and cosine angle distance based classifiers.

(1) A pseudo data generation method is proposed to create numerous positive and
negative spectral pairs with discrete similarity labels, i.e., 0 or 1. The SFCTD is
effectively optimized with the generated spectral pairs.

(3) A detection ensemble method is proposed for improving detection performance and
stability. The Siamese detector ensembles outperform other state-of-the-art algorithms
regarding the accuracy, recall, and background suppression, validated on multiple
complex HSI data sets.

The remainder of this paper is organized as follows: Sections 2.2–2.4 introduce the
methods of the proposed hyperspectral detector. Section 2.4 and 2.6 introduce the in-
formation of experimental data sets and implementation details. Section 3 presents the
experimental results and ablation studies of the proposed method. The discussion and
conclusion are drawn in Sections 4 and 5.

2. Materials and Methods
2.1. Abbreviations Define

For the convenience of the subsequent description, let xi ∈ Rl denote the i-th spectral
vector of the HSI X ∈ Rn×l with prior target spectrum xprior ∈ Rl , where n is the number
of pixels in the HSI and l is the number of spectral bands. The generated training data set
D consists of positive spectral pairs, Y+ = {(y+i , y

′+
i )|i = 1, 2, . . . n} and negative spectral

pairs Y− = {(y−i , y
′−
i )|i = 1, 2, . . . n}, where yi, y

′
i represent spectral pairs associated with

test spectrum xi. The batch size of the training data set is denoted b and number of mini
batches of an HSI with n pixels equals n/b. The NFEM is denoted f , and the test data pairs
are denoted Dtest.

2.2. Siamese Hyperspectral Target Detector

As shown in Figure 1, the proposed Siamese detector consists of two NFEMs with
shared structure and parameters. Each input spectral pair consists of a prior spectrum and
a test spectrum. We separately feed the spectral pairs into each NFEM and compute the
cosine angle distance of the transformed output features. The cosine angle values of SAM
measurement represent the probabilities of the test spectra belonging to the target category.
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To extract the features of the spectra effectively, i.e., 1-D vectors, the proposed NFEMs utilize
fully connected networks instead of 1-D convolutional networks. Although convolutional
networks have fewer parameters than fully connected networks because of the weight
sharing of convolution operation, they have much more computation and random access
memory burden. Specifically, each NFEM comprises a single batch norm layer and two
fully connected blocks (FC blocks). Each FC block consists of a fully connected layer, a
batch norm layer, and a nonlinear activation layer. We will illustrate each component
successively in the following paragraph.

Figure 1. The training stage pipeline of the Siamese detector consisting of training data generation,
spectral feature extraction, cosine distances and losses computation. xprior, y+i , and y−i represent
the prior, target, and background spectrum, respectively. ci, represents c−i or c+i , is the similarity
label of the input spectral pair, (xprior, y−i ) or (xprior, y+i ). Data generation provides spectral pairs
with similarity labels. Each spectral pair is separately fed to weight-shared feature extraction mod-
ules. We optimize the network parameters with the cross-entropy loss between angle distance and
similarity labels.

The amplitudes and waveforms of spectra in an HSI vary in positions because of
different imaging and surface conditions, as shown in Figure 2a. Assuming that all the
spectra belonging to one category are independently sampled from the same multidimen-
sional random distribution, the distributions of target and background spectra are different
because of their different physical property. However, the significant variance and mean
shift of the test spectral distribution may impact the effectiveness of the feature extraction
module. Hence, we preprocess the input spectral distribution at the beginning of feature
extraction with a batch norm layer to reduce the shift and optimization difficulty. Instead
of normalizing the spectral distribution with zero mean and unit variance, which may
be unideal for optimizing loss functions, we use batch normalization (BN) to transform
the original spectral distributions to distributions with learnable statistical parameters.
Specifically, for the spectra mini batch Bm = {(Y+

i , Y−i )|i = b(m− 1), b(m− 1) + 1, . . . bm},
m ∈ {1, 2 . . . , n/b}, BN normalizes the distribution of the spectra batch, Bm, and transforms
it to a distribution with a learnable mean β and variance γ2. The target spectra after BN is
shown in Figure 2b. The equation of the BN process is:

µm = 1
4b ∑bm

k=b(m−1) ∑y∈Y+
k ∪Y−k

y

σ2
m = 1

4b ∑bm
k=b(m−1) ∑y∈Y+

k ∪Y−k
(y− µm)2

BN(y) = (y−µm)×γ
σm

+ β, y ∈ Y+
i ∪ Y−i ∈ Bm

(1)
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where µm, σ2
m are the mean and variance of input spectra and Y+

i , Y−i are the positive and
negative spectral pairs for supervised learning optimization. The detailed method and
purpose of generating these spectral pairs are illustrated in Section 2.3. In the training stage,
µm and σ2

m change with the forward propagation of each mini-batch while β and γ2 are
optimized by the loss function in the backward times. In the testing stage, all the parameters
are fixed for every process of each spectral pair. Experiments in Table 1 validate that BN
enlarge the distribution difference between target and background spectra. We note that
the learned parameters of the batch norm layers change with the HSIs and prior spectra.

(a) Spectra before batchnorm layrers. (b) Spectra after batchnorm layers.

Figure 2. Visualization of the spectral distribution normalization. The batch norm layer mitigates the
mean and variance shift of the input spectra-pairs. Each spectrum before and after the batch norm
layers are painted with the same colors in (a,b). Different colors represent different spectral samples.

Table 1. Ablation studies of the batch norm layers and labeled data pairs creation method. The best
results are reported in bold.

Data Sets w/o BN w/o Sigmod w/o pos Pairs All
San Diego Airport 0.8568 0.8678 0.9931 0.9941

Cuprite 0.4901 0.5917 0.8819 0.9656

After the BN operation, spectral pairs are separately fed to two FC blocks to generate
discriminative spectral features. In each FC block, spectra are fed to the fully connected
layer, batch norm layer, and nonlinear activation layer successively. A fully connected layer
with weight W = [w1, w2, . . . , wl′ ], w ∈ Rl transforms a spectrum with l band to a low-level
feature space with l

′
dimension. Each vector wk, k ∈ [1, l

′
] serves as a liner classifier for the

spectra detection of the test HSI, which highlights background or target spectra to improve
the spectral discriminability. Notably, the batch norm layers of the FC block play different
roles to that of the preprocessing layers. The BN of the FC block converts the spectral
features into the unsaturated interval of the activation function, which is usually operated
before the nonlinear activation layers. The Sigmoid layer helps the NFEMs extract nonlinear
spectral features for accurate detection. Finally, we obtain discriminative spectral features
for cosine angle distance computation through spectra transformation of preprocessing
and two FC blocks.

For the input spectral pair (yi, y
′
i), the transformed spectral vector pair is ( f (yi), f (y

′
i)).

Different from [34,39], both of which utilize a fully connected layer to classify the feature
subtraction of the input pairs, we derive a simple cosine angle distance classifier from
SAM measurement. Specifically, we utilize the cosine angle distances of the two output
vector pairs as the classification confidence, which equals the cosine angle values of SAM
measurement. The angle distance is simple to compute and easy for derivation. The
formula of the cosine angle distance-based classifier is as follows:

ci =
f (yi) · f (y

′
i)

‖ f (y′i)‖2 × ‖ f (yi)‖2
(2)
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where ci is the cosine distance, ‖ f (y
′
i)‖2 is the Euclidean norm of vector f (y

′
i), and | · |

represents the inner product of two vectors. Compared with subtraction of spectral pairs
in [34] and spectral features subtraction in [39], the cosine angle distance of the proposed
method is magnitude invariant.

The similarity label of the spectral pair is a discrete value, 0 or 1, which is the su-
pervised label of the cosine distance. Considering the target detection as a classification
problem, we utilized binary cross-entropy (BCE) to measure the distance between the
similarity labels and cosine similarities. The optimization function Lm of mini batch Bm is:

Lm =
1
2b

bm

∑
i=b(m−1)

BCE(c+i , 1) + BCE(c−i , 0)

=
1
2b

bm

∑
i=b(m−1)

−log(c+i )− log(1− c−i )

(3)

where c+i denotes similarity of positive spectral pair, and c−i indicates the similarity of a
negative spectral pair, and b represents the batch size. It is worth noting that the mini-batch
Bm includes b positive spectral pairs and b negative spectral pairs generated by the identical
spectra of the HSI. A detailed description is illustrated in Algorithm 1.

Algorithm 1 Training stage of the SFCTD.
Input:
The detected HSI, {xi|i = 1, 2, . . . n};
Stochastic initialized Siamese detector Ds, s ∈ {1, 2, . . . , N};
Nonlinear feature extraction module of Ds, fs;
The prior spectrum of the target, xprior;
Batch size, b.
Generate labeled data pairs:
1: Generate negative spectral pair Y− = {Y−i |i = 1, 2 . . . , n} following Equation (4), where

Y−i = (y−i , y−
′

i );
2: Augment the target spectra following Equation (5) and generate positive spectral pairs

Y+ = {Y+
i |i = 1, 2 . . . , n} following Equation (7), where Y+

i = (y+i , y+
′

i );
3: Concatenate Y+ and Y− to obtain the training data set D = {(Y+

i , Y−i )|i = 1, 2 . . . , n}.
Forward and backward propagation of the Siamese detectors:
1: Shuffle the order of the spectral pairs of data set D;
2: Feed each mini-batch Bm = {(Y+

i , Y−i )|i = b(m − 1), b(m − 1) + 1, . . . , bm}, m ∈
{1, 2 . . . , n/b} to the Siamese network, obtaining transformed feature fs(Bm);

3: Compute the cosine angle distances of each transformed feature pairs following
Equation (2), obtaining Cm = {(c+i , c−i )|i = b(m− 1), b(m− 1) + 1, . . . , bm};

4: Compute the cross entropy distance between the detection results and labels with BCE
follow Equation (3);

5: Optimize the parameters of Ds with the BCE loss.

2.3. Pseudo Data Generation Method

We generate numerous pseudo data with positive and negative spectra-pairs to opti-
mize the Siamese detectors. The negative spectral pairs comprise prior and background
spectra, which are utilized to optimize the detector to filter the background pixels. In addi-
tion, the positive spectral pairs comprise prior and target spectra, which help to optimize
the detector to distinguish target pixels with spectral variations. However, the known target
and background spectra are not directly obtainable from the HSI. To solve this lack of data
problem, we generate numerous background and target spectra based on the dominant
background pixels and an LMM, as illustrated in Figure 3.
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Figure 3. Training data generation method pipeline. y−i , y+i are the background and simulated target
spectrum, respectively. λ is the ratio of background spectra and equals 0.1.

To obtain background spectra from the test HSI, which contains both target and
background spectra, we assume that background pixels are dominant in the HSIs. Based
on this assumption, we consider each spectrum of the test HSI as a background spectrum
and is different from the prior spectrum. The combination of background spectra and prior
spectra make up negative spectral pairs Y−i , the specific formula of which is:

Y−i = (y−i , y
′−
i )

y−i = xi

y
′−
i = xprior

, i = 1, 2, . . . n (4)

Although a few target spectra may be labeled as background spectra mistakenly, this
does not reduce the detection performance because the target pixels are far fewer than
the correctly labeled background spectra. The effectiveness of the background spectra
generation method is demonstrated by experiments conducted on several real data sets, as
shown in Figure 4.

Figure 4. ROC curves of each ablation study for the San Diego Airport and Cuprite data sets.

To create multiple target spectra in addition to single prior spectra, we generate
simulated target spectra by mixing up prior spectra and background spectra based on
the LMM. The LMM assumes that the mixed spectrum x is a linear combination of target
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spectrum et and background spectrum eb with abundance coefficients at and ab, respectively.
The formula is as follows:

x = at × et + ab × eb (5)

Since test spectra are different in amplitude, which may be much larger or smaller than
the prior spectrum, we uniform the test spectra and adjust their amplitudes to those of the
prior spectrum. The adjusted test spectra with small random weights multiplied are linearly
mixed with the prior spectra, generating simulated target spectra, xmixed

i . The visualization
of background spectra and its associated simulated target spectra are exhibited in Figure 5,
and the formula of the simulated target spectra generation is:

xmixed
i = (1− λ)× xprior + λ× xi ×

‖xprior‖2

‖xi‖2
(6)

where λ is the ratio of background spectrum, and we set it as 0.1 for all the data sets. The
abundance value of the target and background endmembers are 0.9 and 0.1, which means
the resulting spectra is dominated by the target spectrum and can be seen as target spectra.
It is worth noting that our target spectra generation method does not need to estimate the
specific categories of the background spectra. Each spectrum eb is regarded as the spectral
noise added to the single prior spectrum. After obtaining the simulated target spectra,
we combine the prior spectrum and target spectrum generating positive data pairs Y+

i ,
as follows: 

Y+
i = (y+i , y

′+
i )

y+i = xmixed
i

y
′+
i = xprior

, i = 1, 2, . . . n (7)

The training data set, composed of positive and negative data pairs, is divided into
m = n/b mini-batches with batch size b. In each mini-batch, we use the identical spectra
from the HSI to generate an equal number of positive and negative samples. Although
the prior spectra in each mini-batch are the same, all the prior spectra are fed to the
feature extraction module in the training stage for proper parameter updating of the batch
norm layers.

(a) Background spectra. (b) Simulated spectra.

Figure 5. Visualization of simulated target spectra generation. Normalized background spectra are
linearly mixed with prior spectra, generating augmented spectra. Each background spectra and
associated simulated target spectra are painted with same colors in (a,b). Different colors represent
different spectral samples.

2.4. Detection Ensemble Method

The performance of deep-learning-based detectors varies with model initialization,
and suboptimal parameter initialization will impact the optimization and performance
of the proposed detector. Specifically, detectors with stochastic initialization and data set
shuffling will perform better than the average level. Although the probability of obtaining
ideal parameter initialization is moderate, it is not easy to find the specific distribution of the
ideal initialization. To achieve stable detection, we propose a simple but effective ensemble
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method, as shown in Figure 6. Relying on the moderate probability of ideal stochastic
initialization, we optimize and aggregate multiply Siamese detectors, D1, . . . , DN , to obtain
a high-performance detector with a higher probability. Specifically, the final detection map
C is generated by averaging the detection map of each single Siamese detection following
Equation (8). Experiments validate that the Siamese detector ensembles outperform every
single detector, which means the multiple independently optimized detectors complement
each other. As shown in Table 2, the ensemble result also shows better stability than each
single detection result.

C =
1
N

N

∑
s

Cs (8)

In the training stage, each Siamese detector is initialized with different stochastic
parameters and trained with varying shuffles of the data sets, making sure multiple Siamese
detectors are independent. Compared with other convolutional-based detectors [34,39,40],
our proposed detector is based on the fully connected neural networks and the computing
burden of which is much lower than that of convolutional-based detectors. Hence, we
could parallelly optimize multiple detectors to improve detection stability using the parallel
computing capability of GPU. In the testing stage, we follow the pipeline illustrated in
Algorithm 2. Before the detection of N siamese detectors, we generate test spectra pairs
by combining the prior spectrum xprior and each test spectrum xi. Then, spectral pairs of
test data set Ytest are fed to N Siamese detectors and generate detection maps, C1, . . . , CN .
We ensemble all the results through the bagging approach to obtain the high-performance
detection results without ground truth labels and manual intervention.

Figure 6. Pipeline of the detection ensemble method. xi is the test spectrum to be detected, fN

represents the nonlinear feature extraction module (NFEM) of the N-th detector, and cN,i is the
detection score of xi outputted by the N-th detector.

Table 2. Ablation study results of the ensemble method. Four Siamese detectors (N = 4) are
independently optimized and aggregated in the inference time. The best results are reported in bold.

Data
D-1 D-2 D-3 D-4 Ensembles

Mean Std
(×10−2) Mean Std

(×10−2) Mean Std
(×10−2) Mean Std

(×10−2) Mean Std
(×10−2)

San Diego Airport 0.9915 0.261 0.9917 0.301 0.9936 0.202 0.9912 0.565 0.9941 0.183
San Diego Beach 0.9795 2.163 0.9874 0.827 0.9788 2.329 0.9889 0.802 0.9922 0.306

Texas Coast1 0.9909 0.713 0.9905 0.361 0.9923 0.272 0.9837 1.371 0.9938 0.239
Texas Coast2 0.9934 1.134 0.9965 0.252 0.9971 0.117 0.9973 0.205 0.9978 0.084

Synthetic (15 dB) 0.9948 0.261 0.9951 0.287 0.9952 0.235 0.9948 0.207 0.9966 0.179
Cuprite 0.9613 2.057 0.9566 2.148 0.9463 2.379 0.9516 1.978 0.9656 1.077
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Algorithm 2 Test stage of the SFCTD.
Input: input parameters
The detected HSI, X ∈ Rn×l ;
The prior spectrum, xprior;
Optimized N detectors, D1, . . . , DN .
Generate test data pairs:
1: Duplicate the prior spectrum generating a prior spectra matrix, Xprior ∈ Rn×l ;
2: Generate test data pairs, Ytest = {Ytest

i |i = 1, 2 . . . , n}, where Ytest
i = (xi, xprior).

Detection of N Siamese detectors.
1: Feed test spectral pairs Ytest to the nonlinear feature extraction modules of each Siamese

detector, obtaining transformed feature fs(Ytest
i ), where s ∈ {1, 2, . . . , N};

2: Compute the cosine similarity of the transformed features, obtaining each cosine
similarity Cs, following Equation (2);

3: Average the similarity predictions of the N detectors to obtain the final results, C,
following Equation (8).

2.5. Information of Experimental Data Sets

We used six real data sets and one synthetic data set to validate the proposed method,
and the pseudo-color images are shown in the first row of Figure 7. All the real HSIs were
captured by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). All the data
sets we selected are used as the experimental data by other published hyperspectral target
detection data sets.

Figure 7. Six test data sets and ground truth maps. The first row shows the pseudo-color images of
the test data sets. The second and third rows are the ground truth maps and prior spectra candidate
maps. A 3× 3 morphological erosion operation is conducted to the ground truth maps to obtain the
prior spectra candidate maps. The Cuprite and Synthetic data sets have pure endmember spectra
as priors.

All the data sets provide the target ground truth maps, but only two data sets (Cuprite
and Synthetic) provide the prior spectra according to the USGS Digital Spectral Library [43].
For the data sets without prior spectra, scholars usually follow Manolakis et al. [3] to
average the target spectra according to the ground truth maps as the prior simulated
spectra. It is worth noting that the spectra of target boundary pixels reflect the interference
of the target and background, which are different from the pure target spectra and are
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impractical to obtain in actual application scenarios. Therefore, we did not average all the
pixels of the ground truth map to generate the prior spectra.

Except for the Cuprite and Synthetic data sets, which provide pure endmember spectra
as prior spectra, we conducted a morphological erosion operation to the ground truth maps
to obtain the prior spectra candidate maps, and their average spectra represent the prior
spectra. The Erosion operation is one of two basic operators in mathematical morphology.
The erosion operation using B on binary ground truth map G is defined as:

G	 B = {z ∈ E|Bz ⊆ G} (9)

where E is defined as Euclidean space and Bz is B shifted by z. This paper uses a positive
3 × 3 kernel as B. The morphological erosion is operated on the ground truth maps to
discard the edge pixels. The ground truth annotation maps G, and the annotation maps
after corrosion G	 B operations are shown in the last two rows of Figure 7, respectively.
The captured places and images details are listed below:
• San Diego Airport: The San Diego Airport data set was captured at San Diego with

a 200 × 200 pixel size, which contains six airplanes and several backgrounds such
as buildings and the parking apron. We selected three planes with the same size as
targets, and target pixels annotation is the same as previous for a fair comparison, and
the number of the target pixels is 134. Due to water-vapor absorption and atmospheric
effects, we selected 189 bands from a total of 224 bands for the experiments.

• San Diego Beach: This hyperspectral data set was captured in San Diego with a atial
size 100 × 100 pixels. The scene of the data set is the beach, and the target pixels
number is 202. The target annotation map refers to the data set from [21,38,44].

• Texas Coast 1, Texas Coast 2: These two hyperspectral data sets were captured along
the Texan coast with a spatial size of 100 × 100 pixels. Several storage tanks were
selected as targets from the urban scene, consisting of 67 and 155 pixels. The target
annotation maps refer to the data set from [21,38,44]. The band number of the two
data sets are 204 and 205.

• Synthetic: The spectra of the synthetic data set were generated from the USGS Digital
Spectral Library, and there are 15 endmember spectra. For the comparison, we used
the Labradorite HS17.3B endmember as the detection target, which is the same as [15].
Since all the methods used for comparison achieved 1 AUC in the clean data set,
Gaussian white noise signal-to-noise ratios (SNRs) of 15 dB and 20dB were added to
the original images.

• Cuprite: The Cuprite data set was captured in the Cuprite mining district of Nevada
in 1997, where a subset of the images have a spatial size of 250 × 191 pixels. We
selected buddingtonite from 14 kinds of minerals as the target for a fair comparison.
The band number utilized is 188, and the spectra of buddingtonite in the United
States Geological Survey (USGS) Digital Spectral Library was selected as a single
prior spectrum.

2.6. Implementation Details

The experiments in the paper are run through Pytorch in Python on a computer with
an Intel(R) Core(TM) i9-9900X CPU 3.50 GHz, GTX Titan Xp and 32G memory. We utilized
the Adam optimizer for all the experiments and set the learning rate to 0.0005 and weight
decay to 0.0005. Before training, the fully connected layers are initialized with a mean of 0
and a standard deviation of 0.001. We initialized the batch norm layers with β of 0 and γ
of 1.

3. Results

In this section, we introduce the results of the experiments. First, we conduct the hyper-
parameters sensitive experiments and select the proper parameters. Then, we conduct
detection performance comparisons with seven state-of-the-art (SOTA) methods in terms
of two-dimension receiver operating characteristic (2-D ROC) curves, area under the curve
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(AUC) values. Since the 2-D ROC curve could not reflect the background suppression
capabilities of the detectors, we supplement the box plots of detection confidences of all
the comparison detectors for quantitative comparison and detection map visualizations for
qualitative comparison. We use four Siamese detector ensembles for all the comparison
experiments for consistency. The compared methods include four traditional methods
(SAM, MF, ACE, and CEM), two advanced CEM-based methods (HCEM, ECEM), and one
deep learning detector (TSCNTD) similar to our methods. Finally, we conduct an ablation
experiment to study each component of the proposed method.

3.1. Hyper-Parameters Sensitive Experiments

Hyper-parameters are the parameters that are set before the training of networks.
Ideal hyper-parameters could improve the performance of trained networks. Before com-
paring our method with other detectors, we first apply sensitive experiments of the hyper-
parameters of the proposed method and select the proper hyper-parameters.

We set a different batch size, training epoch number, background spectra abundance λ,
learning rate, and ensemble number and evaluate the detector performance under different
hyper-parameters with AUC values in five test data sets except for the Cuprite data. For
the setting of each parameter, we repeat ten times and compute the means and standard
deviations of AUC values. The hyper-parameters candidates and experiment results are
illustrated in Figure 8.

Figure 8. Parameters sensitivity experiments of the proposed Siamese detectors. The dark and
light color plots represent the area under the curve (AUC) value means and standard deviation,
respectively. The results of five data sets are painted with different colors. The default parameters,
ensemble number = 4, batch size = 32, epoch number = 10, lambda = 0.1 and learning rate = 0.0005.

The experimental results can prove that background spectra abundance λ is not sensi-
tive, and we select λ = 0.1 for all the data sets. The experimental results of epoch number
and ensemble number reveal that the detection performance of the proposed Siamese
detector is better and more stable with more training time and ensemble numbers. To make
a trade-off between performance and efficiency, we optimize four Siamese detectors for
ten epochs using the parallel computing capability of GPU. As for the learning rate, the



Remote Sens. 2022, 14, 1260 13 of 19

detector’s performance with a learning rate larger than 5× 10−3 is much more fluctuant.
Therefore, we set the learning rate as 5× 10−4 on all the data sets. Since the proposed
detector is trained with fixed epoch numbers on all the data sets, the network may not be
trained well with a large batch size because the iteration numbers are small. We set the
batch size as 128 for the Cuprite data set because of its large image size and batch size 32
for all the other data sets.

3.2. Experiment Comparisons
3.2.1. Background SuppressionComparision

In Figure 9, six detection maps are visualized for the background suppression qualita-
tive comparison. A higher visualization contrast-detection maps mean better background
suppression capabilities. Among all the detectors, the ACE, HCEM, ECEM, TSCNTD,
and proposed detector show higher visualization contrast than the SAM, MF, and CEM.
However, the targets’ integrity of our detection results is better than that of ACE, HCEM,
and ECEM. Take, for example, the experiment on the San Diego Airport data set, the left
and top planes of the ACE detection map are a bit blurred. The detection results of HCEM
and ECEM fail to detect the margins of the target. Furthermore, the false alarm detection
rate of the Siamese detector with NFEMs is better than that of TSCNTD; the latter detects
many background pixels as the target.

Figure 9. The visualization comparison of different algorithms. Exhibit detection maps of the (a) San
Diego Airport, (b) San Diego Beach, (c) Texas Coast1, (d) Texas Coast2, (e) Synthetic (15 dB) and
(f) Cuprite data sets.

Figure 10 shows a antitative comparison of background suppression. The red and
green boxes reveal the confidence distributions of target and background pixels. Specifically,
the wider a green box is, the larger the standard deviation of the background confidence
distribution, which means background pixels’ confidence is in an extensive range. The
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lower a green box is, the smaller the mean of background confidence distribution is.
Generally, the methods with good background suppression have flat and low green boxes
and the red boxes whose lower quartiles are far away from the green boxes, which means
most target pixels have higher confidence than background pixels. The box plot results
prove the point consistent with that detection maps visualization results prove. CEM, SAM,
and MF have wider and higher green boxes than the other methods. For the methods with
low detection rates, such as HCEM, ECEM, and TSCNTD, the lower quartiles of their target
boxes are close to zero in the data sets except for Synthetic, because many target pixels fail
detect and their confidences are low. Although their green boxes are flat and low, the lower
quartiles are close to the green boxes. For our method, the background boxes are flat and
close to zero. Meanwhile, the lower quartiles of our target boxes are far away from the
upper limits of the background boxes.

To sum up, our method achieves an outstanding balance between background sup-
pression and target detection recall and outperforms the other comparison methods.

Figure 10. Boxplots of all the test algorithms on the six data sets. Each algorithm has two boxes on
each data set. The red and green boxes represent the confidence distributions of target pixels and
background pixels, respectively. The top of the boxes are the upper quartiles. The upper black lines
and middle orange lines are the upper bounds and means of the distributions, respectively.

3.2.2. Roc Curves Comparision

ROC curves results are shown in Figure 11. ROC curve reflects the detection results
in terms of detection rate and precision. The black line of each ROC curve represents
the ensembled detection results of our method. The proposed Siamese detector shows a
competitive detection rate in most false-positive rate thresholds for all the data sets. For the
San Diego Airport data set, our method achieves a competitive detection rate under a low
false-positive rate (0–10−3) and the best detection rate as the growth of the false positive
rate. Except for the San Diego Airport data set, our method surpasses all the comparison
methods under almost all the false-positive rate thresholds. Especially for two data sets
captured at Texas Coast, our method’s curves are more than 20% higher than the other
curves under 10−5 false-positive rate. For the San Diego Beach and Cuprite data sets, our
curves outperform other methods almost 25% under the low false-positive rate between
10−3–10−1.
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Figure 11. Receiver operating characteristic (ROC) curves of all the test algorithms on the six data
sets. The black lines represent the proposed Siamese detector ensembles (N = 4).

3.2.3. AUC Values Comparision

Table 3 exhibits the AUC value results for all the test hyperspectral data sets except
the Synthetic data set. The proposed Siamese network achieves the best AUC values in
all the data sets except the Texas Coast 1 data set and surpasses the other methods by
large margins, especially for the San Diego Beach, Cuprite, and Texas Coast 2 data sets.
Specifically, our method outperforms the second-best methods by 0.008, 0.162, and 0.061
on the San Diego Beach, Cuprite, and Texas Coast 2 data sets. Since the Synthetic data
set has random white noise, we repeated the test 10 times and calculated the mean and
standard deviation of the AUC values, illustrated in Table 4. The proposed Siamese detector
surpasses all the comparison methods under two noise conditions. The Siamese detector’s
lowest standard deviation of AUC values reflects its excellent detection stability under
noise interference.

Table 3. The AUC values of different algorithms on five real data sets. The best results are reported
in bold.

Method San Diego Airport San Diego
Beach Texas Coast 1 Texas Coast 2 Cuprite

SAM 0.9858 0.9276 0.9947 0.9368 0.5917
MF 0.9754 0.8449 0.8287 0.6219 0.7714

CEM 0.9719 0.8501 0.9628 0.9286 0.7480
HCEM 0.7637 0.7229 0.7123 0.7465 0.1737

ACE 0.9478 0.8641 0.9288 0.8851 0.7876
ECEM 0.9255 0.7912 0.8815 0.8288 0.8034

TSCNTD 0.9782 0.7217 0.8528 0.9156 0.7679
Ours 0.9941 0.9656 0.9938 0.9978 0.9922



Remote Sens. 2022, 14, 1260 16 of 19

Table 4. AUC values of the different algorithms applied to the Synthetic data set under the interference
of white noise with two SNR conditions. The best results are reported in bold.

Method
Nosie of 15 dB SNR Nosie of 20 dB SNR

Mean Std Mean Std

SAM 0.9519 1.299×10−2 0.9945 2.464×10−3

MF 0.9630 1.824×10−2 0.9891 5.383×10−3

CEM 0.9488 1.222×10−2 0.9815 4.805×10−3

HCEM 0.9612 3.112×10−2 0.9962 1.024×10−2

ACE 0.9910 2.331×10−3 0.9957 1.182×10−3

ECEM 0.9336 6.142×10−2 0.9718 3.749×10−2

TSCNTD 0.8555 10.27×10−2 0.8693 6.111×10−2

Ours 0.9966 1.931×10−3 0.9995 0.360×10−3

3.3. Comparison with TSCNTD

To validate the superiority of our proposed Siamese detector to TSCNTD, we optimize
the TSCNTD and Siamese detector with the same training data and compare the perfor-
mance in terms of AUC values, test time, and stability. We repeat the training and testing
ten times and compute the two methods’ AUC value means and standard deviations. The
experiment results are exhibited in Table 5.

According to the experimental results in Section 3.2 and AUC means of Table 5. The
proposed Siamese detector outperforms the TSCNTD in detection recall and precision.
As shown in the standard deviation results in Table 5, the Siamese detector ensembles
outperform the TSCNTD in terms of stability with the help of the detection ensemble
method. Moreover, by using a few fully connected layers rather than many convolutional
layers, our method’s test speed is six times faster than TSCNTD. Since the batch size and
training epoch numbers are different, we only compare the test times for fair. In conclusion,
the proposed Siamese detector ensembles are superior to the TSCNTD in performance,
stability, and efficiency detection.

Table 5. Detection performance and efficiency comparison of the two-stream convolutional network-
based target detector (TSCNTD) and our method. The best results are reported in bold.

Dataset
TSCNTD Ours

AUC Mean AUC Std Test Time (ms) AUC Mean AUC Std Test Time (ms)

San Diego Airport 0.9782 0.886×10−2 43.88 0.9941 0.183×10−2 8.975
San Diego Beach 0.7217 2.072×10−2 7.978 0.9922 0.306×10−2 0.9975

Texas Coast1 0.8528 9.639×10−2 5.984 0.9938 0.239×10−2 0.9973
Texas Coast2 0.9156 2.681×10−2 5.984 0.9978 0.084×10−2 0.9968

Synthetic (15 dB) 0.8568 4.599×10−2 5.983 0.9966 0.233×10−2 0.9971
Cuprite 0.7679 2×10−5 400.8 0.9656 1.077×10−2 4.985

3.4. Ablation Study

In this section, we study the effectiveness of batch norm layers, Sigmoid layers, gener-
ated positive spectra pairs, and detection ensemble methods. We don’t present the detection
performance optimized without negative spectral pairs because the positive data failed to
optimize the network alone.

Figure 4 shows the 2-D ROC curves of the single Siamese detector without batch norm
layers, Sigmoid layers, and positive spectra pairs compared with the normal one in two
selected data sets. The ROC curves of the norm single Siamese detector are much better
than that of the detector without Sigmoid layers and batch norm layers. Table 1 shows the
AUC values of the curves in Figure 4. The Siamese detector with all the contributions has
the largest AUC values.

To demonstrate the effectiveness of the proposed detection ensemble method. We
optimize four randomly initialized Siamese detectors independently and compare their
AUC values with ensembles. We repeat the experiment 10 times and exhibit the results
in Table 2. The ensemble result surpasses all the other detectors in terms of standard
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deviations and means of AUC values, which validates the stability improvement of the
proposed detection ensemble method.

4. Discussion

There have a few supervised learning-based detectors similar to our method,
CNNTD [40], HTD-Net [34] and TSCNTD [39]. These three methods adopt convolu-
tional networks for spectral extraction and employ no nonlinear activation layers for the
network structures. CNNTD and HTD-Net input the network with spectral differences,
reducing feature discriminability. The TSCNTD cleverly designed two-stream networks
that separately apply to the prior and other spectra and solve the problem in CNNTD
and HTD-Net, which makes TSCNTD superior to CNNTD and HTD-Net [39]. However,
TSCNTD uses two convolutional networks with nine layers to process the spectra pairs,
making it slower than our method. Our proposed detector derives from the Siamese net-
work, which is capable of recognition with little available data [42]. Similar to the network
structures in [21,35,38], we design the Siamese detector with fully connected layers and
nonlinear activation layers. Since Zhu et al. [39] has proved the superiority of TSCNTD to
CNNTD and HTD-Net in terms of performance and speed, we only compare the proposed
detector with TSCNTD.

Although TSCNTD has achieved great performance, the computation burden of con-
volutional networks is heavy. Moreover, the parameters are redundant and introduce
optimization difficulty. Specifically, the upper stream is only responsible for the feature
extraction of the prior spectrum, a constant vector, which makes up almost half the pa-
rameters. Hence, Zhu et al. [39] proposed a regularized cost to optimize these numerous
parameters. Our method solves these problems with a Siamese detector that comprises two
fully connected network sharing parameters. Parameters sharing reduces the number of
parameters and reduces the difficulty of optimization. We also introduce nonlinear layers to
improve the feature extraction capability. Experiments in Table 5 validate that the proposed
detector is more effective than TSCNTD.

Shi et al. [41] propose a semisupervised domain adaptive few-shot learning (SDAFL)
model and exhibit the standard deviation results to prove the detection stability of SDAFL.
Other deep learning-based methods [34,39,40] do not give the standard deviation results. To
study the detection stability of TSCNTD, we repeat the experiments of TSCNTD ten times
and find the stability is unsatisfactory, as shown in Table 5. This paper pays attention to
the detection stability and improves it with a classical machine learning method, ensemble
learning. The detection ensemble method improves both the stability and performance but
introduces computation.

For a Given HSI and prior spectrum, non-learning methods will give specific detection
results, such as SAM, CEM, MF, ACE, HCEM, and ECEM. Our proposed Siamese detector
outperforms in performance with the help of neural networks’ excellent feature extraction
capability. However, the parameters initialization of the neural networks introduces fluctu-
ation in performance. Therefore, the repeatability of non-learning methods is better than
TSCNTD and SFCTD.

5. Conclusions

This paper proposes a Siamese fully connected network-based hyperspectral target de-
tector, denoted as SFCTD, consisting of two nonlinear feature extraction modules (NFEMs)
and a cosine angle distance-based classifier. Two Siamese structured NFEMs share the
parameters and extract the discriminative features of prior and test spectra, respectively.
The cosine angle distances of spectral feature pairs measure the confidence of test spec-
tra regarded as the target. The SFCTD is effectively optimized by the generated pseudo
positive and negative spectral pairs. To mitigate the performance fluctuation caused by
the random initialization of parameters, we parallelly optimize several SFCTD, and the
network ensembles are more stable than single SFCTD. Experiment results validate that the
proposed SFCTD outperforms non-learning detectors in performance, such as SAM, MF,
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CEM. In speed and performance, the SFCTD is superior to the similar supervised learn-
ing method, TSCNTD. The SFCTD has a lightweight structure and achieves an excellent
trade-off between detection accuracy and computational cost, suitable for conditions with
insufficient preliminary data. In the future, we will investigate the SFCTD’s capability to
detect the same targets in similar HSIs with different imaging conditions.
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