Changes in the Eruptive Style of Stromboli Volcano before the 2019 Paroxysmal Phase Discovered through SOM Clustering of Seismo-Acoustic Features Compared with Camera Images and GBInSAR Data
Abstract
:1. Introduction
2. Data and Methods
2.1. Seismic and Infrasonic Data
2.2. Seismic–Acoustic Feature Extraction Methods
2.3. SOM Method
2.4. Thermal and Visible Camera Data
2.5. GBInSAR Data
3. Results
3.1. Seismic–Acoustic Features
3.2. SOM Analysis
3.3. Classification of the Explosions Belonging to Clusters through the Analysis of Camera Images
3.4. Seismo-Acoustic Clusters and GBInSAR Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Esposito, A.M.; D’Auria, L.; Giudicepietro, F.; Caputo, T.; Martini, M. Neural analysis of seismic data: Applications to the monitoring of Mt. Vesuvius. Ann. Geophys. 2013, 56, 446. [Google Scholar] [CrossRef]
- Esposito, A.M.; Alaia, G.; Giudicepietro, F.; Pappalardo, L.; D’Antonio, M. Unsupervised geochemical analysis of the eruptive products of Ischia, Vesuvius and Campi Flegrei. In Progresses in Artificial Intelligence and Neural Systems; Esposito, A., Faundez-Zanuy, M., Morabito, F.C., Pasero, E., Eds.; Smart Innovation, Systems and Technologies; Springer: Singapore, 2020; Volume 184, pp. 175–184. [Google Scholar] [CrossRef]
- Esposito, A.M.; De Bernardo, A.; Ferrara, S.; Giudicepietro, F.; Pappalardo, L. SOM-Based analysis of volcanic rocks: An application to Somma-Vesuvius and Campi Flegrei volcanoes (Italy). In Neural Approaches to Dynamics of Signal Exchanges; Esposito, A., Faundez-Zanuy, M., Morabito, F.C., Pasero, E., Eds.; Smart Innovation, Systems and Technologies; Springer: Singapore, 2020; Chapter 6; Volume 151, pp. 55–60. [Google Scholar] [CrossRef]
- Giudicepietro, F.; López, C.; Macedonio, G.; Alparone, S.; Bianco, F.; Calvari, S.; De Cesare, W.; Delle Donne, D.; Di Lieto, B.; Esposito, A.M.; et al. Geophysical precursors of the July–August 2019 paroxysmal eruptive phase and their implications for Stromboli volcano (Italy) monitoring. Sci. Rep. 2020, 10, 10296. [Google Scholar] [CrossRef] [PubMed]
- Esposito, A.M.; D’Auria, L.; Angelillo, A.; Giudicepietro, F.; Martini, M. Predictive analysis of the seismicity level at Campi Flegrei volcano using a data-driven approach. In Recent Advances of Neural Network Models and Applications; Bassis, S., Esposito, A., Morabito, F.C., Eds.; Smart Innovation, Systems and Technologies; Springer: Cham, Switzerland, 2014; Volume 19, pp. 133–145. [Google Scholar] [CrossRef]
- Ambrosino, F.; Sabbarese, C.; Roca, V.; Giudicepietro, F.; Chiodini, G. Analysis of 7-years Radon time series at Campi Flegrei area (Naples, Italy) using artificial neural network method. Appl. Radiat. Isotopes 2020, 163, 109239. [Google Scholar] [CrossRef] [PubMed]
- Scarpetta, S.; Giudicepietro, F.; Ezin, E.C.; Petrosino, S.; Del Pezzo, E.; Martini, M.; Marinaro, M. Automatic classification of seismic signals at Mt. Vesuvius volcano, Italy, using neural networks. BSSA 2005, 95, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Esposito, A.M.; D’Auria, L.; Giudicepietro, F.; Peluso, R.; Martini, M. Automatic recognition of landslides based on neural network analysis of seismic signals: An Application to the monitoring of Stromboli Volcano (Southern Italy). Pure Appl. Geophys. 2013, 170, 1821–1832. [Google Scholar] [CrossRef]
- Giudicepietro, F.; Esposito, A.M.; Ricciolino, P. Fast discrimination of local earthquakes using a neural approach. Seismol. Res. Lett. 2017, 88, 1089–1096. [Google Scholar] [CrossRef]
- Esposito, A.M.; Giudicepietro, F.; Scarpetta, S.; D’Auria, L.; Marinaro, M.; Martini, M. Automatic discrimination among landslide, explosion-quake, and microtremor seismic signals at Stromboli Volcano using neural networks. BSSA 2006, 96, 1230–1240. [Google Scholar] [CrossRef]
- Esposito, A.M.; Giudicepietro, F.; D’Auria, L.; Scarpetta, S.; Martini, M.; Coltelli, M.; Marinaro, M. Unsupervised neural analysis of very-long-period events at Stromboli volcano using the self-organizing maps. BSSA 2008, 98, 2449–2459. [Google Scholar] [CrossRef]
- Esposito, A.M.; D’Auria, L.; Giudicepietro, F.; Martini, M. Waveform Variation of the explosion-quakes as a function of the eruptive activity at Stromboli volcano. In Neural Nets and Surroundings. Smart Innovation, Systems and Technologies; Apolloni, B., Bassis, S., Esposito, A., Martini, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 19, pp. 111–119. [Google Scholar] [CrossRef]
- Esposito, A.M.; Giudicepietro, F.; Scarpetta, S.; Khilnani, S. A neural approach for hybrid events discrimination at Stromboli volcano. In Multidisciplinary Approaches to Neural Computing; Number 69 in Smart Innovation, Systems and Technologies; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; Chapter 2; pp. 11–21. [Google Scholar] [CrossRef]
- Del Pezzo, E.; Esposito, A.; Giudicepietro, F.; Marinaro, M.; Martini, M.; Scarpetta, S. Discrimination of earthquakes and underwater explosions using neural networks. BSSA 2003, 93, 215–223. [Google Scholar] [CrossRef]
- Andronico, D.; Del Bello, E.; D’Oriano, C.; Landi, P.; Pardini, F.; Scarlato, P.; de’ Michieli Vitturi, M.; Taddeucci, J.; Cristaldi, A.; Ciancitto, F.; et al. Uncovering the eruptive patterns of the 2019 double paroxysm eruption crisis of Stromboli volcano. Nat. Commun. 2021, 12, 4213. [Google Scholar] [CrossRef]
- Giordano, G.; De Astis, G. The summer 2019 basaltic Vulcanian eruptions (paroxysms) of Stromboli. Bull. Volcanol. 2021, 83, 1–27. [Google Scholar] [CrossRef]
- Calvari, S.; Giudicepietro, F.; Di Traglia, F.; Bonaccorso, A.; Macedonio, G.; Casagli, N. Variable magnitude and intensity of Strombolian explosions: Focus on the eruptive processes for a first classification scheme for Stromboli volcano (Italy). Remote Sens. 2021, 13, 944. [Google Scholar] [CrossRef]
- Washington, H.S. Persistence of vents at Stromboli and its bearing on volcanic mechanism. Geol. Soc. Am. Bull. 1917, 28, 249–278. [Google Scholar] [CrossRef]
- Harris, A.; Ripepe, M. Temperature and dynamics of degassing at Stromboli. J. Geophys. Res. 2007, 112, B03205. [Google Scholar] [CrossRef]
- Salvatore, V.; Silleni, A.; Corneli, D.; Taddeucci, J.; Palladino, D.M.; Sottili, G.; Bernini, D.; Andronico, D.; Cristaldi, A. Parameterizing multi-vent activity at Stromboli volcano (Aeolian Islands, Italy). Bull. Volcanol. 2018, 80, 64. [Google Scholar] [CrossRef]
- Tioukov, V.; Alexandrov, A.; Bozza, C.; Consiglio, L.; D’Ambrosio, N.; De Lellis, G.; De Sio, C.; Giudicepietro, F.; Macedonio, G.; Miyamoto, S.; et al. First muography of Stromboli volcano. Sci. Rep. 2019, 9, 6695. [Google Scholar] [CrossRef]
- Tioukov, V.; Giudicepietro, F.; Macedonio, G.; Calvari, S.; Di Traglia, F.; Fornaciai, A.; Favalli, M. Structure of the Shallow Supply System at Stromboli Volcano Through Integration of Muography, Digital Elevation Models, Seismicity and Ground Deformation Data. In Muography: Exploring Earth’s Subsurface with Elementary Particles; Oláh, L., Tanaka, H.K.M., Varga, D., Eds.; AGU Books, Wiley-AGU: Hoboken, NJ, USA, 2022; Chapter 6. [Google Scholar] [CrossRef]
- Turchi, A.; Di Traglia, F.; Luti, T.; Olori, D.; Zetti, I.; Fanti, R. Environmental aftermath of the 2019 Stromboli eruption. Remote Sens. 2020, 12, 994. [Google Scholar] [CrossRef] [Green Version]
- Chouet, B.; Dawson, P.; Ohminato, T.; Martini, M.; Saccorotti, G.; Giudicepietro, F.; De Luca, G.; Milana, G.; Scarpa, R. Source mechanisms of explosions at Stromboli Volcano, Italy, determined from moment-tensor inversion of very-long period data. J. Geophys. Res. 2003, 108, 2019. [Google Scholar] [CrossRef]
- Patrick, M.R.; Harris, A.J.L.; Ripepe, M.; Dehn, J.; Rothery, D.A.; Calvari, S. Strombolian explosive styles and source conditions: Insights from thermal (FLIR) video. Bull. Volcanol. 2007, 69, 679–784. [Google Scholar] [CrossRef]
- Leduc, L.; Gurioli, L.; Harris, A.; Colò, L.; Rose-Koga, E.F. Types and mechanisms of strombolian explosions: Characterization of a gas-dominated explosion at Stromboli. Bull. Volcanol. 2015, 77, 8. [Google Scholar] [CrossRef]
- Simons, B.C.; Jolly, A.D.; Eccles, J.D.; Cronin, S.J. Spatiotemporal relationships between two closely-spaced Strombolian-style vents, Yasur, Vanuatu. Geophys. Res. Lett. 2020, 47, e2019GL085687. [Google Scholar] [CrossRef]
- Cimarelli, C.; Di Traglia, F.; Taddeucci, J. Basaltic scoria textures from a zoned conduit as precursors to violent Strombolian activity. Geology 2010, 38, 439–442. [Google Scholar] [CrossRef]
- Inguaggiato, S.; Vita, F.; Cangemi, M.; Calderone, L. Increasing summit degassing at the Stromboli volcano and relationships with volcanic activity (2016–2018). Geosciences 2019, 9, 176. [Google Scholar] [CrossRef] [Green Version]
- Calvari, S.; Di Traglia, F.; Ganci, G.; Giudicepietro, F.; Macedonio, G.; Cappello, A.; Nolesini, T.; Pecora, E.; Bilotta, G.; Centorrino, V.; et al. Overflows and hot rock avalanches in March-April 2020 at Stromboli Volcano detected by remote sensing and seismic monitoring data. Remote Sens. 2020, 12, 3010. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Calvari, S.; Garfì, G.; Lodato, L.; Patanè, D. Dynamics of the December 2002 flank failure and tsunami at Stromboli volcano inferred by volcanological and geophysical observations. Geophys. Res. Lett. 2003, 30, 1941. [Google Scholar] [CrossRef]
- Calvari, S.; Lodato, L.; Steffke, A.; Cristaldi, A.; Harris, A.J.L.; Spampinato, L.; Boschi, E. The 2007 Stromboli eruption: Event chronology and effusion rates using thermal infrared data. J. Geophys. Res. 2010, 115, B04201. [Google Scholar] [CrossRef] [Green Version]
- Casalbore, D.; Di Traglia, F.; Bosman, A.; Romagnoli, C.; Casagli, N.; Chiocci, F.L. Submarine and subaerial morphological changes associated with the 2014 eruption at Stromboli Island. Remote Sens. 2021, 13, 2043. [Google Scholar] [CrossRef]
- Martini, M.; Giudicepietro, F.; D’Auria, L.; Esposito, A.M.; Caputo, T.; Curciotti, R.; De Cesare, W.; Orazi, M.; Scarpato, G.; Caputo, A.; et al. Seismological monitoring of the February 2007 effusive eruption of the Stromboli volcano. Ann. Geophys. 2007, 50, 775–788. [Google Scholar] [CrossRef]
- Di Traglia, F.; Calvari, S.; D’Auria, L.; Nolesini, T.; Bonaccorso, A.; Fornaciai, A.; Esposito, A.; Cristaldi, A.; Favalli, M.; Casagli, N. The 2014 effusive eruption at Stromboli: New insights from in situ and remote-sensing measurements. Remote Sens. 2018, 10, 2035. [Google Scholar] [CrossRef] [Green Version]
- Calvari, S.; Büttner, R.; Cristaldi, A.; Dellino, P.; Giudicepietro, F.; Orazi, M.; Peluso, R.; Spampinato, L.; Zimanowski, B.; Boschi, E. The 7 September 2008 Vulcanian explosion at Stromboli volcano: Multiparametric characterization of the event and quantification of the ejecta. J. Geophys. Res. 2012, 117, B05201. [Google Scholar] [CrossRef]
- Giudicepietro, F.; Calvari, S.; Alparone, S.; Bianco, F.; Bonaccorso, A.; Bruno, V.; Caputo, T.; Cristaldi, A.; D’Auria, L.; De Cesare, W.; et al. Integration of ground-based remote-sensing and in situ multidisciplinary monitoring data to analyze the eruptive activity of Stromboli volcano in 2017–2018. Remote Sens. 2019, 11, 1813. [Google Scholar] [CrossRef] [Green Version]
- D’Auria, L.; Giudicepietro, F.; Martini, M.; Peluso, R. Seismological insight into the kinematics of the 5 April 2003 vulcanian explosion at Stromboli volcano (southern Italy). Geophys. Res. Lett. 2006, 33, L08308. [Google Scholar] [CrossRef]
- Bertagnini, A.; Di Roberto, A.; Pompilio, M. Paroxysmal activity at Stromboli: Lessons from the past. Bull. Volcanol. 2011, 73, 1229–1243. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Calvari, S.; Linde, A.; Sacks, S.; Boschi, E. Dynamics of the shallow plumbing system investigated from borehole strainmeters and cameras during the 15 March, 2007 Vulcanian paroxysm at Stromboli volcano. Earth Planet. Sci. Lett. 2012, 357–358, 249–256. [Google Scholar] [CrossRef]
- Di Traglia, F.; De Luca, C.; Manzo, M.; Nolesini, T.; Casagli, N.; Lanari, R.; Casu, F. Joint exploitation of space-borne and ground-based multitemporal InSAR measurements for volcano monitoring: The Stromboli volcano case study. Remote Sens. Environ. 2021, 260, 112441. [Google Scholar] [CrossRef]
- Di Traglia, F.; Fornaciai, A.; Casalbore, D.; Favalli, M.; Manzella, I.; Romagnoli, C.; Chiocci, F.L.; Cole, P.; Nolesini, T.; Casagli, N. Subaerial-submarine morphological changes at Stromboli volcano (Italy) induced by the 2019–2020 eruptive activity. Geomorfology 2022, 400, 108093. [Google Scholar] [CrossRef]
- Spina, L.; Morgavi, D.; Cannata, A.; Campeggi, C.; Perugini, D. An experimental device for characterizing degassing processes and related elastic fingerprints: Analog volcano seismo-acoustic observations. Rev. Sci. Instrum. 2018, 88, 055102. [Google Scholar] [CrossRef] [Green Version]
- Spina, L.; Cannata, A.; Morgavi, D.; Perugini, D. Degassing behaviour at basaltic volcanoes: New insights from experimental investigations of different conduit geometry and magma viscosity. Earth Sci. Rev. 2019, 192, 317–336. [Google Scholar] [CrossRef]
- Giudicepietro, F.; Esposito, A.; Spina, L.; Cannata, A.; Morgavi, D.; Layer, L.; Macedonio, G. Clustering of experimental seismo-acoustic events using Self Organizing Maps (SOM). Front. Earth Sci. 2021, 8, 58174. [Google Scholar] [CrossRef]
- Orazi, M.; Martini, M.; Peluso, R. Data acquisition for volcano monitoring. Eos Trans. Am. Geophys. Union 2006, 87, 385–392. [Google Scholar] [CrossRef]
- Orazi, M.; Peluso, R.; Caputo, A.; Capello, M.; Buonocunto, C.; Martini, M. A Multiparametric Low Power Digitizer: Project and Results; Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano: Naples, Italy, 2007.
- De Cesare, W.; Orazi, M.; Peluso, R.; Scarpato, G.; Caputo, A.; D’Auria, L.; Giudicepietro, F.; Martini, M.; Buonocunto, C.; Capello, M.; et al. The broadband seismic network of Stromboli volcano, Italy. Seismol. Res. Lett. 2009, 80, 435–439. [Google Scholar] [CrossRef]
- Salvaterra, L.; Pintore, S.; Badiali, L. Rete Sismologica Basata su Stazioni GAIA; Rapporti Tecnici 68; Istituto Nazionale di Geofisica e Vulcanologia: Rome, Italy, 2008.
- Krischer, L.; Megies, T.; Barsch, R.; Beyreuther, M.; Lecocq, T.; Caudron, C.; Wassermann, J. ObsPy: A bridge for seismology into the scientific Python ecosystem. Comput. Sci. Discov. 2015, 8, 014003. [Google Scholar] [CrossRef]
- Esposito, A.M.; Scarpetta, S.; Giudicepietro, F.; Masiello, S.; Pugliese, L.; Esposito, A. Nonlinear Exploratory Data Analysis Applied to Seismic Signals. In Neural Nets. Neural Nets Lecture Notes in Computer Science; Apolloni, B., Marinaro, M., Nicosia, G., Tagliaferri, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 3931, pp. 70–77. [Google Scholar] [CrossRef]
- Esposito, A.; Esposito, A.M.; Giudicepietro, F.; Marinaro, M.; Scarpetta, S. Models for Identifying Structures in the Data: A Performance Comparison. In Knowledge-Based Intelligent Information and Engineering Systems. KES 2007; Apolloni, B., Howlett, R.J., Jain, L., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4694. [Google Scholar] [CrossRef]
- Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Kohonen, T.; Hynninen, J.; Kangas, J.; Laaksonen, J. SOM_PAK: The Self-Organizing Map Program Package; Report A31; Helsinki University of Technology, Laboratory of Computer and Information Science: Espoo, Finland, 1996. [Google Scholar]
- Di Traglia, F.; Nolesini, T.; Intrieri, E.; Mugnai, F.; Leva, D.; Rosi, M.; Casagli, N. Review of ten years of volcano deformations recorded by the ground-based InSAR monitoring system at Stromboli volcano: A tool to mitigate volcano flank dynamics and intense volcanic activity. Earth Sci. Rev. 2014, 139, 317–335. [Google Scholar] [CrossRef] [Green Version]
- Di Traglia, F.; Battaglia, M.; Nolesini, T.; Lagomarsino, D.; Casagli, N. Shifts in the eruptive styles at Stromboli in 2010–2014 revealed by ground-based InSAR data. Sci. Rep. 2015, 5, 13569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvari, S.; Intrieri, E.; Di Traglia, F.; Bonaccorso, A.; Casagli, N.; Cristaldi, A. Monitoring crater-wall collapse at active volcanoes: A study of the 12 January 2013 event at Stromboli. Bull. Volcanol. 2016, 78, 39. [Google Scholar] [CrossRef]
- Casagli, N.; Tibaldi, A.; Merri, A.; Del Ventisette, C.; Apuani, T.; Guerri, L.; Fortuny-Guasch, J.; Tarchi, D. Deformation of Stromboli Volcano (Italy) during the 2007 crisis by radar interferometry, numerical modeling and field structural data. J. Volcanol. Geotherm. Res. 2009, 182, 182–200. [Google Scholar] [CrossRef]
- Antonello, G.; Casagli, N.; Farina, P.; Leva, D.; Nico, G.; Sieber, A.J.; Tarchi, D. Ground-based SAR interferometry for monitoring mass movements. Landslides 2004, 1, 21–28. [Google Scholar] [CrossRef]
- Braun, T.; Ripepe, M. Interaction of seismic and air waves recorded at Stromboli Volcano. Geophys. Res. Lett. 1993, 20, 65–68. [Google Scholar] [CrossRef]
- Gouhier, M.; Donnadieu, F. The geometry of Strombolian explosions: Insights from Doppler radar measurements. Geophys. J. Int. 2010, 183, 1376–1391. [Google Scholar] [CrossRef] [Green Version]
- Aiuppa, A.; Bitetto, M.; Delle Donne, D.; La Monica, F.P.; Tamburello, G.; Coppola, D.; Della Schiava, M.; Innocenti, L.; Lacanna, G.; Laiolo, M.; et al. Volcanic CO2 tracks the incubation period of basaltic paroxysms. Sci. Adv. 2021, 7, eabh0191. [Google Scholar] [CrossRef] [PubMed]
- Barberi, F.; Rosi, M.; Sodi, A. Volcanic hazard assessment at Stromboli based on review of historical data. Acta Vulcanol. 1993, 3, 173–187. [Google Scholar]
- Calvari, S.; Spampinato, L.; Bonaccorso, A.; Oppenheimer, C.; Rivalta, E.; Boschi, E. Lava effusion—A slow fuse for paroxysms at Stromboli volcano? Earth Planet. Sci. Lett. 2011, 301, 317–323. [Google Scholar] [CrossRef] [Green Version]
- Di Lieto, B.; Romano, P.; Scarpa, R.; Linde, A.T. Strain signals before and during paroxysmal activity at Stromboli volcano, Italy. Geophys. Res. Lett. 2020, 47, e2020GL088521. [Google Scholar] [CrossRef]
System | Model | Band | Revisiting Time | Averaging Interval | Look Angle | Heading Angle |
---|---|---|---|---|---|---|
GBInSAR NE400 | GBInSAR LiSAmobile k09 | Ku | 6 min | 33 min | from 63.8° to 90.0° | from 143° to 217° |
GBInSAR NE190 | GBInSAR LiSAmobile k09 | Ku | 7 min | 33 min | from 65.0° to 113.5° | from 115° to 245° |
Date | Red n.4 | Red n.7 | Blue n.9 | Blue n.10 | Green n.11 | Tot. | Detected | Prevailing Node |
---|---|---|---|---|---|---|---|---|
17 February 2019 | 43 | 0 | 2 | 2 | 0 | 47 | 42 | node 4 |
16 May 2019 | 0 | 0 | 40 | 3 | 3 | 46 | 10 | node 9 |
8 June 2019 | 0 | 0 | 2 | 40 | 1 | 43 | 31 | node 10 |
9 July 2019 | 8 | 33 | 0 | 0 | 4 | 45 | 32 | node 7 |
6 August 2019 | 4 | 9 | 0 | 6 | 26 | 45 | 20 | node 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giudicepietro, F.; Calvari, S.; D’Auria, L.; Di Traglia, F.; Layer, L.; Macedonio, G.; Caputo, T.; De Cesare, W.; Ganci, G.; Martini, M.; et al. Changes in the Eruptive Style of Stromboli Volcano before the 2019 Paroxysmal Phase Discovered through SOM Clustering of Seismo-Acoustic Features Compared with Camera Images and GBInSAR Data. Remote Sens. 2022, 14, 1287. https://doi.org/10.3390/rs14051287
Giudicepietro F, Calvari S, D’Auria L, Di Traglia F, Layer L, Macedonio G, Caputo T, De Cesare W, Ganci G, Martini M, et al. Changes in the Eruptive Style of Stromboli Volcano before the 2019 Paroxysmal Phase Discovered through SOM Clustering of Seismo-Acoustic Features Compared with Camera Images and GBInSAR Data. Remote Sensing. 2022; 14(5):1287. https://doi.org/10.3390/rs14051287
Chicago/Turabian StyleGiudicepietro, Flora, Sonia Calvari, Luca D’Auria, Federico Di Traglia, Lukas Layer, Giovanni Macedonio, Teresa Caputo, Walter De Cesare, Gaetana Ganci, Marcello Martini, and et al. 2022. "Changes in the Eruptive Style of Stromboli Volcano before the 2019 Paroxysmal Phase Discovered through SOM Clustering of Seismo-Acoustic Features Compared with Camera Images and GBInSAR Data" Remote Sensing 14, no. 5: 1287. https://doi.org/10.3390/rs14051287
APA StyleGiudicepietro, F., Calvari, S., D’Auria, L., Di Traglia, F., Layer, L., Macedonio, G., Caputo, T., De Cesare, W., Ganci, G., Martini, M., Orazi, M., Peluso, R., Scarpato, G., Spina, L., Nolesini, T., Casagli, N., Tramelli, A., & Esposito, A. M. (2022). Changes in the Eruptive Style of Stromboli Volcano before the 2019 Paroxysmal Phase Discovered through SOM Clustering of Seismo-Acoustic Features Compared with Camera Images and GBInSAR Data. Remote Sensing, 14(5), 1287. https://doi.org/10.3390/rs14051287