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Abstract: The generation of digital surface models (DSMs) from multi-view high-resolution (VHR)
satellite imagery has recently received a great attention due to the increasing availability of such
space-based datasets. Existing production-level pipelines primarily adopt a multi-view stereo (MVS)
paradigm, which exploit the statistical depth fusion of multiple DSMs generated from individual
stereo pairs. To make this process scalable, these depth fusion methods often adopt simple ap-
proaches such as the median filter or its variants, which are efficient in computation but lack the
flexibility to adapt to heterogenous information of individual pixels. These simple fusion approaches
generally discard ancillary information produced by MVS algorithms (such as measurement con-
fidence/uncertainty) that is otherwise extremely useful to enable adaptive fusion. To make use
of such information, this paper proposes an efficient and scalable approach that incorporates the
matching uncertainty to adaptively guide the fusion process. This seemingly straightforward idea
has a higher-level advantage: first, the uncertainty information is obtained from global/semiglobal
matching methods, which inherently populate global information of the scene, making the fusion
process nonlocal. Secondly, these globally determined uncertainties are operated locally to achieve
efficiency for processing large-sized images, making the method extremely practical to implement.
The proposed method can exploit results from stereo pairs with small intersection angles to recover
details for areas where dense buildings and narrow streets exist, but also to benefit from highly
accurate 3D points generated in flat regions under large intersection angles. The proposed method
was applied to DSMs generated from Worldview, GeoEye, and Pleiades stereo pairs covering a
large area (400 km2). Experiments showed that we achieved an RMSE (root-mean-squared error)
improvement of approximately 0.1–0.2 m over a typical Median Filter approach for fusion (equivalent
to 5–10% of relative accuracy improvement).

Keywords: satellite photogrammetry; multi-view stereo; depth fusion; digital surface models; dense
image matching; uncertainty

1. Introduction

The number of very high-resolution (VHR) optical satellite sensors has increased
drastically over the last two decades. These sensors, such as WorldView I-IV, Pleiades
A/B, PleiadesNeo, SkySat, GaoFen, KompSat, etc. [1], are capable of collecting images at a
resolution of one meter or less with large swaths, adding petabytes of data to the archives
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every day. As a result, the available VHR images have reached a point where every single
site on the Earth can be covered by multiple such images from different perspectives [1,2].
Therefore, using VHR satellite imagery to reconstruct high-quality digital surface models
(DSM) has attracted increasing attention, as with more images, it is possible to exploit
redundant observations by fusing these multi-view images, including in-track, cross-track,
and cross-sensor datasets [3,4].

Existing solutions can be categorized into two paradigms:

(1) A full multi-image matching (MIM) solution simultaneously exploits the collinearity
relations of multiple images to triangulate 3D points in the object space [5,6];

(2) A multi-view stereo (MVS) approach first constructs multiple stereo pairs and then
performs bi-stereo matching to generate individual DSMs, followed by a DSM fusion
(or depth fusion) over these DSMs [2,7].

MIM solutions often require a process called bundle adjustment [8] to be applied to
all the images prior to triangulating the 3D points; this process simultaneously adjusts the
position of each satellite image. To perform a bundle adjustment (BA), tie points across
multiple images are needed to build observational equations. The extraction of reliable
and multi-image tie points can be particularly challenging for satellite images; indeed,
most of these images are from different dates with severe differences in illumination,
posing many difficulties in the extraction of consistent tie points among multiple images.
Furthermore, BA alone may not be sufficient to achieve good geometric accuracy for
the position estimation when the convergence angles (or base-to-height ratio) among the
satellite images are relatively small and this can lead to large vertical errors, especially due
to the fact that a BA relies only on sparse tie points.

In contrast, a MVS solution directly performs the fusion on the DSM generated by
individual stereo pairs, which are previously relatively orientated (instead of a full bundle
adjustment for all the images). This has three advantages over the MIM solutions: first,
the relative orientation only requires tie points between a selected pair of images instead
of all images, which is much less demanding. Second, since the single DSM registration
and fusion are performed utilizing every single 3D point, the vertical errors can be better
accommodated than in a BA process that uses only sparse tie points. Third, the MVS
solution is more flexible and easier to implement; since single DSMs are generated inde-
pendently, one can implement different methods and different sensor models for DSM
generation of data from different sources. Therefore, the MVS approach is generally more
favored when processing multi-view satellite images. For example, as noted in [5], MIM
approaches implemented in practical systems, due to their high computation needs, often
seek efficiency-driven solvers that tend to avoid global optimizations, and thus may suffer
more from noise and incompleteness in textureless regions. Similarly, Bhushan et al. [9]
performed an experiment on Skysat imagery (frame-camera-based), and hypothesized that
a MVS solution generally outperformed alternatives as it could better exploit redundant
measurements generated by single stereo pairs.

In the “IARPA Multi-view stereo 3D mapping challenge” workshop [10], it was
concluded that selecting the right stereo pairs can be decisive to the finally fused DSM.
Therefore, existing solutions focus on the selection of stereo pairs for fusion [4,11], whereas
the fusion algorithms have been less investigated. Among the fusion algorithms used
in existing MVS frameworks, most adopt a simple median filter or its variants along
the depth direction. A basic median filter assumes that the measurements at each pixel
location of the DSM grid follow a Gaussian distribution, and thus that the median value
of multiple DSMs can be a good estimate of the expected measurement. A few fusion
approaches have proposed minor modifications to extend the assumption of a single
Gaussian kernel to multiple ones [2], or to adopt postprocessing techniques that utilize the
associated orthophotos [12] to enforce image segmentation constraints. However, these
fusion methods often assume that the contributions of each measurement are identical, and
rarely consider the use of a priori knowledge inherited from the photogrammetric stereo
processing that is already existing in the MVS pipeline.
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The dense image matching (DIM) algorithms, as a necessary step of the pipeline,
compute dense correspondences between two images to support the 3D point triangulation.
During this process, the DIM algorithm measures the potential of pixel-level matches, for
which it produces an algorithm-specific matching confidence (or uncertainty) score. We
hypothesize that this matching uncertainty can be readily used to guide the depth fusion
process and advance the results of the state-of-the-art approaches.

The Proposed Work

In this paper, we propose a new fusion algorithm that incorporates uncertainty mea-
sures of DIM into the merging process. In a typical MVS pipeline, a per-pixel matching
uncertainty is computed and associated with every pixel of the generated DSM. The pro-
posed DSM fusion algorithm adapts these pixel-level uncertainties so that the contribution
of each pixel can be adaptively determined in order to advance the final fusion results. The
main contributions of the work are threefold:

1. A scalable procedure that uses the uncertainty information of the dense matching to
better fuse depth maps;

2. An evaluation of the proposed procedure performances using three different satellite
datasets (WorldView-2, GeoEye, and Pleiades) acquired over a complex urban landscape;

3. An RMSE improvement of 0.1–0.2 m (5–10% of relative accuracy improvement con-
sidering the achieved 2–4 m of the final RMSE on different evaluation cases) against
LiDAR reference data over a typical median filter.

2. State of the Art

Most existing solutions for depth fusion fall under the contexts of robotics and 3D
scene modeling using depth sensors, where per-view depth maps are fused following prob-
abilistic models [13] with focuses on frame-level depth registration and noise removal [14].
Recent developments include learning-based methods such as the application of 2D/3D
CNN (Convolutional Neural Networks) to regress from multiple depth maps to a final
depth map, exploiting latent space for Gaussian-process based fusion as well as for depth
refinement through synthetic datasets [15]. However, these approaches mostly assume
continuous or near-continuous video collections from sensors such as RGB-D (depth) sen-
sors or full-motion video sensors. Under these scenarios, it is easy to assume the same
probabilistic distributions, as the depth maps are often of the same or similar quality. In
contrast, the individual depth maps (or DSMs) from the satellite images are drastically
different due to factors such as temporal changes, resolution differences, and geometric
configurations of individual stereo pairs. These differences further complicate the fusion
problem, preventing approaches from making strong assumptions about the consistencies
of individual measurements. For example, a single mean and variance for a pixel in the
DSM may not be the best assumption, since there may exist multiple correct values due
to temporal changes of the location (e.g., building demolition, vegetation variations, etc.).
Relevant attempts have considered the fusion of multiresolution 3D data in the object
space; however, they mostly focused on the use of more efficient data structures to fuse
accurate 3D measurements such as those from high-resolution image-based or LiDAR point
clouds [16,17].

A line of research in MVS satellite reconstruction focuses on selecting “good” stereo
pairs to produce high-quality individual DSMs and prepare for a better fusion [2–4]. It
has been concluded that the intersection angles and sun angle differences are important
factors of concern [4,11]. Generally, the intersection angle is positively correlated to the
achievable accuracy of point measurement, while larger angles introduce larger parallax,
which will lead to occlusions, gaps for urban objects, and, ultimately, reduction of overall
DSM accuracy. On the other hand, a smaller intersection angle creates smaller parallaxes
in stereo matching and will generally lead to a better completeness, while due to the
low base-to-height ratio, potentially producing 3D points with higher uncertainties. The
importance of the sun angle difference was only recently noted by existing works [4,11].
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Two images collected under different sun incidence angles were noted to have larger
radiometric inconsistency, which could lead to errors in stereo matching. Thus, the sun
angle differences negatively impact the resulting accuracy of the DSM.

Few works have aimed at the development of efficient methods for depth fusion of
satellite-based DSMs. Facciolo et al. [2] hypothesized a bimodal state of a point in space to
represent leaf on/off; the authors first applied a clustering algorithm on the height values to
differentiate terrain and nonterrain points, and then retained only the centroid value of the
lowest cluster. Qin [7] incorporated orthophotos to provide object boundary information
through kernel-based filtering to derive image-edge-aware DSMs, leading to improvements
of object boundaries in the resulting DSM. A similar approach adopted semantic infor-
mation derived from the orthophotos and adaptively used class-specific parameters for
kernel-based filtering [12]. Rumpler et al. [18] proposed a probabilistic filtering scheme for
range image integration that avoided volumetric voxel representation and selected a final
depth from continuous values in object space. Unger et al. [19] projected a number of pair-
wise disparity maps onto a reference view pair and fused maps by estimating a probability
density function using the reprojection uncertainties and their photo-consistencies; they
then selected the most probable one from the probability distribution.

The remainder of this paper is organized as follows: Section 3 describes our proposed
depth fusion method in detail, Section 4 presents some experiments and describes the accu-
racy analysis, Section 5 discusses the results and observations found from experiments, and
Section 6 concludes this paper by discussing the pros and cons of the proposed methods.

3. Methodology

A general workflow of the proposed approach is shown in Figure 1. The process starts
with several satellite images taken from different perspectives (multi-view images) and then
constructs a few stereo pairs, followed by a pairwise reconstruction to generate individual
DSMs. During the individual DSM generation, our approach also derives uncertainty
maps (details in Section 3.1) and generates the fused DSM using both the individual DSMs
and uncertainty maps through our proposed uncertainty-guided fusion method (details in
Section 3.2).

Figure 1. Workflow of the proposed depth fusion method.

3.1. The Uncertainty Metric through Dense Image Matching

Dense image matching (DIM) algorithms for depth/disparity generation can de-
liver per-pixel a posteriori confidence metrics. For example, a simple normalized cross-
correlation (NCC) matching in photogrammetry [20] offers the NCC coefficient, which
indicates how similar two candidate correspondences with their surrounding textures are
and represents a level of confidence/uncertainty for the matches. Our framework derives
the uncertainty from an SGM algorithm [21,22]; thus, we can obtain for each pixel p in its
disparity (i.e., in the epipolar image) its corresponding uncertainty up. Since SGM performs
the matching following a cost function that evaluates both the similarity of pixels and the
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spatial smoothness of the disparity values, we use its a posteriori cost metric U to represent
the matching uncertainty, described as follows:

U(D) = ∑ pS
(

p, Dp
)
+ ∑ q∈Np P1T

[∣∣Dp − Dq
∣∣= 1

]
+ ∑ q∈Np P2T

[∣∣Dp − Dq
∣∣> 1

]
, (1)

where U(D) refers to the a posteriori cost metric, minimized with respect to the disparity
values D. The first term ∑p S

(
p, Dp

)
denotes the sum of similarity cost given the disparity

D, and the similarity is calculated using the Census cost [23]. The second and third terms
impose smoothness constraints onto the disparity map, and Np denotes the neighboring
pixels (4- or 8-connected neighborhood) of a pixel p. T[·] is a logical function that returns 1
if the argument is true, and 0 otherwise. P1 and P2 respectively penalize small and large
disparity jumps to enforce the smoothness of the geometric surface. In practice, these
two parameters are often set as constant, where P2 generally is larger than P1 to penalize
large disparity changes (i.e., noise). Here, the Census cost is computed using a fixed 7× 9
window to maximize the use of memory of a “double” floating-point type for Census
cost [24]; thus, the range of values of this metric is fixed as [0–63].

The solution of D minimizing Equation (1) is obtained through multipath dynamic
programming [21], where for each pixel p with a given disparity value Dp, the algorithm
computes an aggregated cost considering the smoothness constraints to determine the best
disparity value for each pixel. The smallest aggregated cost for each pixel p, denoted as Up,
is taken as the uncertainty of the matching. The value of Up depends on the Census cost
and the parameters of P1 and P2, which are fixed in their value and ranges; thus, Up also
stays within a fixed range of values. Therefore, Up is image agnostic and can be compared
among DSMs generated from different stereo pairs.

Two examples of the derived uncertainty are shown in Figure 2; it can be observed
that, in general, a high level of uncertainty is present in pixels located at large depth
discontinuities, e.g., due to occlusions (see example in the red-circle region of Figure 2), as
well as in vegetated areas (light blue region).
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(a) Orthophoto (b) DSM (c) Derived uncertainty 

Figure 2. Two examples of the uncertainty map associated with dense image matching: (a) orthopho-
tos; (b) DSMs grey-scaled by height; (c) uncertainty maps, black to white: low to high uncertainty
(scaled from 0 to 10,000, unitless). Red and blue circled regions show examples of high uncertainties.

The uncertainty metric Up was initially associated with each pixel in the epipolar
image and then projected onto the generated DSM during the stereo triangulation. We
hypothesize that the uncertainty metric generally represents the quality of matching for
each pixel. Therefore, a DSM point with a lower matching uncertainty would generally
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indicate a higher possibility for a correct match and the point should be “weighted” more
heavily when computing the fused DSM values. It should be noted that the uncertainty
values may favor pairs with smaller intersection angles, since these pairs generally yield
smaller parallax, thus showing lower level of uncertainty for all pixels, especially under
good radiometric conditions (i.e., stereo images with similar sun angles). On the other
hand, “good matches” in pairs with small intersection angles may necessarily lead to
higher vertical uncertainty. Therefore, a small uncertainty metric Up may indicate that a
DSM point is the result of a good match (not an error), and its precision can be further
determined by the geometry of the stereo pair (i.e., the intersection angle). Therefore, both
factors (the uncertainty metric and intersection angle), if combined, reflect the accuracy
of a DSM point. However, both of these two factors are probabilistic to the accuracy, and
thus a simple weighted average based on any of two factors for fusion will be unlikely to
generate statistically meaningful results, and these two factors must be considered in a
single fusion scheme.

3.2. Uncertainty Guided DSM Fusion

Median as a robust measure: Median is known as a well-practiced statistical predictor
that can robustly estimate expectations over a large number of observations under varying
distributions. To understand how median values are used in fusion, we first consider
the following probabilistic framework: we denote the height value of pixel location p
in a DSM j, generated from a single stereo pair as an independent and random variable
Xj ∼ (X̃, δj), with its expectation E(Xj) = X̃ as the actual height value. Given the limited
precision in the image level matching, the theoretical geometric uncertainty in the vertical
direction can be presented as the variance of this distribution δj. Intuitively, the smaller
the intersection angle is, the bigger the variance δj is, and more samples are needed to
obtain a good estimation of the expectation. If we consider the mean of these random

variables ∑j Xj
N (j indexing over the N DSMs), its expectation E

(
∑j Xj

N

)
remains X̃, and thus a

measure such as the median can be applied to these observations to more robustly estimate
the expectation. However, to achieve an estimate with high confidence, the number of
observations is insufficient if we only consider observations for each pixel in the DSM grid.
Therefore, to increase the number of samples, pixels within a window centered at the pixel
p are also considered.

Adaptive sample aggregation: Inspired by the edge-aware approach [7], we define
the adaptive neighborhood by using the color information from the orthophoto, which
assumes neighboring pixels with similar color share similar height values; thus, a weighted
Gaussian function can be built based on the color/radiometry of the orthophoto as follows:

W(p) = e
− ||q−p||2

2δs2 −
||Cq−Cp ||2

2δc2 , (2)

where q refers to pixels in the vicinity of pixel p, defined here as a window centered at p; C
refers to the color of the pixels in the orthophoto; and δs and δc are their bandwidths and
take the values of δs = 7 and δc = 20 (for 8-bit image). Similar pixels in the window for which
W(p) > 0.5 are then aggregated into a set Nc(p). Thus, for each pixel p in a DSM j, we
can augment observations to a set Nc(p). In this paper, we use the same Nc(p) for all DSM
based on a single orthophoto (while it may vary if multiple orthophotos associated with
the DSMs are available), and these height values for consideration are defined as follows:

Hc(p) =
{

DSMj(q)
∣∣, q ∈ Nc(p), j = 1, . . . , M

}
, (3)

where M refers to the number of DSMs.
Matching confidence as a guide for median filtering: Nc(p) aggregates samples for each

individual DSM guided by the orthophoto. Intuitively, taking the median value of the
aggregated sample set of height Hc(p) over all DSMs may be a straightforward solution.
However, the presence of a large number of errors within Hc(p) is the major hurdle; for
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example, DSMs generated from pairs with large intersection angles easily produce errors for
structures with large relief differences due to occlusions, gaps, shadows, and missing points
(Figure 3).
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Figure 3. An example of DSMs produced using an in-track stereo pair: (a) DSM from a pair with
intersection angle 5.57◦; (b) DSM from a pair with intersection angle 27.85◦, black holes are failed
regions; (c) DSM from a pair with intersection angle 33.42◦; (d) reference LiDAR DSM over the same
area. The red circles show areas where narrow streets are not reconstructed in (b,c), due to occlusions
produced by the large intersection angle.

As mentioned before, we hypothesize that a DSM pixel with lower matching uncer-
tainties indicates a lower likelihood that the height value of this pixel is an error. The idea
is to utilize the matching uncertainty Up (Section 3.1) to separate these measurements into
groups based on the likelihood of their being errors. Therefore, on top of the aggregated
sample setHc(p), we made the following modification: we first rank all samples according
to their matching uncertainties Up (from low to high); based on the ranked sample, we
divide them into K groups Hk

rc(p) (with K = 2 to allow sufficient observations in each
group), and then we compute the median values Medk for each of cumulated groups:

Medk = {Median(∪j=1,..,kH
j
rc(p))}, (4)

Intuitively, these Medk values should contain increasing number of errors as K in-
creases, despite the benefit of having more observations. Med1, as the most confident
prediction, seems to be the natural choice. However, as we mentioned before, the un-
certainty alone does not accurately reflect good measurements, as the intersection angle
also plays a role. For example, if there is a good pair with very small intersection angle,
samples of the first group (that with the lowest uncertainties) may mostly come from the
DSM produced by that pair, and directly using Med1 as the fused value may not reach
statistically meaningful estimation. Alternatively, since Med1 reflects the value with the
lowest probability of being an error, we can therefore use it to verify whether the median
value of the aggregated sample setHc(p) is an error; here we denote:

Medall = Median(Hc(p)), (5)

and devise our approach following a heuristic: if Medall is similar to Med1, we take Medall
as the final fused value since the set Hc(p) contains more samples; if their difference is
larger than a predefined threshold (as a decision criteria for error), Med1 is taken as the
fused value.

We found that for complex urban objects with high and frequent relief changes, Medall
tended to overestimate the height of lower objects when these objects were occluded,
which happened very often for stereo pairs with large intersection angles. Therefore, we
re-adapted this formulation by only taking Med1 as the fused value if Medall was bigger
than Med1 over the error threshold. Hence this simple fusion algorithm can be written as
shown in the following pseudo-code (Algorithm 1).
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Algorithm 1: Pseudo code for the proposed fusion method

Initiate M registered : DSMj; Orthophoto : Imgo; the fused : DSM f
Blunder Threshold : ∂

For p in all pixels in DSM f
For j in DSMj
aggregate Nc(p) based on Imgo for DSMj (following Equation (2))
collect height samplesHc(p) (following Equation (3))
compute Med1 and Medall (following Equations (4) and (5))
if Medall − Med1 > ∂

DSM f (p) = Med1
else
DSM f (p) = Medall

The error threshold ∂ can be set as an empirical value or adaptively estimated based
on the DSMs. In the experiments presented in the following section, ∂ = 6 m was used for
the very-high-resolution image data (0.5 m resolution).

4. Experiments and Analyses

Some experiments were performed on a challenging test field located in Trento
(Italy) [25,26]. The topography of this area features various types of land morphology,
including high mountains with approximately 2000 m relief differences, flat regions with
large and sparse manmade objects, dense urban regions with street corridors (high-rise
buildings on both sides) as narrow as 5 m in width (less than 10 pixels), and a large river
(Figure 4a) in the lower valley at 200 m a.s.l. Several stereo pairs of this area were collected
from three different sensors, including WorldView-2, GeoEye, and Pleiades, covering an
overlapped area of approximately 20× 20 km2. Rich reference data were available in this
area, including a reference LiDAR DSM to serve as ground truth for accuracy validation,
and GCPs (ground control points) for image georeferencing. To better assess (both qualita-
tively and quantitatively) the reconstruction results, three representative urban subregions
(noted as the area of interest—AOI-1–3 hereafter) were selected, featuring various levels of
building size and densities (Figure 4b). Details of these datasets and regions are further
introduced in Section 4.1 and Table 1.

Table 1. Details of the used satellite datasets over the Trento test field.

Datasets Intersection
Angle (Degrees) GSD (m) Area (km2) Year

Pleiades stereo pair 1 5.57 0.72 20 × 20 2012
Pleiades stereo pair 2 27.85 0.72 20 × 20 2012
Pleiades stereo pair 3 33.42 0.72 20 × 20 2012
GeoEye-1 stereo pair 30.30 0.50 10 × 10 2011

WorldView-2 stereo pair 33.71 0.51 17 × 17 2010

4.1. Experiment Dataset and Setup

A Pleiades tri-stereo product, a WorldView-2 stereo pair, and a GeoEye-1 stereo
pair were considered (Table 1). The Pleiades tri-stereo images were divided into three
stereo pairs in order to study the 3D reconstruction accuracy on stereo pairs with different
acquisition angles. The reference LiDAR data were collected at a density of 1.3 pts/m2

in 2009 and were further converted to a DSM grid with 0.5 m GSD (ground sampling
distance). The close temporal differences of these datasets (2–3 years apart) created some
minor inconsistences especially in the vegetated areas, while the changes in the urban
regions were negligible.
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Figure 4. Data from the Trento test field. An overview of the Trento test field (a) and the three
sub-regions (AOI) chosen for evaluation, shown from the orthophoto (b) and LiDAR DSM (c). AOI-1:
Trento historic city center, a dense urban area with narrow streets and some tall buildings; AOI-2: an
area with both flat surfaces and sparse buildings; AOI-3: the large, complex building of the hospital
with small residential buildings nearby.

The stereo matching and DSM generation of the three AOIs (Figure 4b) were performed
using the RPC stereo processor (RSP) [22], which implements an SGM algorithm and
outputs the uncertainty metrics as described in Section 3.1. Further details of the stereo
reconstruction from single satellite pairs are given in the original papers [4,22].

To perform a comprehensive analysis, we conducted the fusion for two cases:

(1) Fusion of DSMs generated by all pairs;
(2) Fusion of only Pleiades pairs.

We also ablated the contribution of uncertainty, demonstrating the improvement of
the proposed approach. All DSMs were initially co-registered to minimize the impact
of systematic errors. Accuracy statistics and a comparative study with state-of-the-art
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approaches are presented and analyzed in Section 4.2. Effects on the fusion accuracy in
adjusting the contributions of individual pairs are presented in Section 4.3.

4.2. Accuracy Assessment

The proposed fusion algorithm works at the polynomial complexity (Algorithm 1).
It was implemented to allow operational-level reconstruction for the entire area of the
test field. For example, using the Pleiades triplet, the 3D reconstruction process over the
400 km2 at 0.5 m GSD using a Xeon w2275 (14 cores, 3.30 GHZ) machine with approximately
24 GB of peak memory took approximately 5.5 h for the DSM generation and approximately
1.5 h to fuse the three DSMs (Figure 5).
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Figure 5. 3D visualization of the reconstructed surface model of the entire scene (area of approxi-
mately 400 km2 at 0.5 GSD) using the proposed approach of uncertainty-guided DSM fusion. (Left
column): overview and ground view of the DSM generated from the Pleiades triplet. (Right column):
closed views of the reconstructed AOIs considered in the evaluation. It can be observed that the
3D reconstruction quality reached a level of detail that showed individual residential buildings and
tree plots.

To quantitatively assess the accuracy of the generated DSMs, we co-registered the
photogrammetric results to the reference LiDAR DSM and computed the mean, standard
deviation (STD) of the height residuals, and the root-mean-squared errors (RMSE) against
the LiDAR DSM. The co-registration was performed through a simplified least-squares
surface matching [27] using an affine transformation between the two DSMs. Table 2 lists
the accuracy statistics of the comparisons of the various pair and fusion configurations.
We noted that “Pleiades pair 1” with a very small convergence angle (5.57◦) achieved the
best result among the results from single pairs. This is in line with conclusions noted by
a few existing works [4,11,23] that stereo pairs with smaller intersection angles tend to
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produce DSMs with small RMSE, primarily due to their ability to reconstruct detailed
urban structures. In addition, our fusion results achieved the best RMSE for all the AOIs.
For AOI-2 and 3, using the Pleiades DSMs alone, we achieved slightly lower RMSE than
when using all DSMs. For AOI-2, using all DSMs, we achieved slightly lower RMSE. In
a recent publication [28], the authors evaluated the entire region (including flat and hilly
regions) using the very same Pleiades triplet, and they only achieved a 5 m RMSE using the
Pleiades stereo pair 1, while they achieved RMSE values of 3.2 and 3.4 m for the other two
pairs. It should be noted that the entire test region has more flat areas and building-free
regions where the accuracy can benefit from stereo pairs with large intersection angles (e.g.,
Pleiades stereo pairs 2 and 3).

Table 2. Accuracy statistics (in meters) of individual and fused DSMs with respect to LiDAR DSM.
The best results of each column for each AOI region are in bold.

Generated DSMs
AOI-1 AOI-2 AOI-3

Mean STD RMSE Mean STD RMSE Mean STD RMSE

Pleiades stereo pair 1 (int. ang. 5.57◦) 0.92 4.04 4.14 0.89 3.02 3.15 1.67 3.56 3.93
Pleiades stereo pair 2 (int. ang. 27.85◦) 1.75 4.00 4.36 1.03 3.08 3.25 1.42 3.74 4.00
Pleiades stereo pair 3 (int. ang. 33.42◦) 1.61 4.22 4.52 0.84 3.26 3.37 1.55 3.80 4.11
GeoEye-1 stereo pair (int. ang. 30.30◦) 1.26 4.15 4.34 0.48 3.03 3.07 1.32 3.71 3.93
WorldView-2 stereo pair (int. ang. 33.71◦) 2.01 4.40 4.84 1.47 3.39 3.70 2.22 4.26 4.80
Fused Pleiades pairs w/uncertainty (ours) 1.48 3.80 4.08 0.89 2.92 3.05 1.46 3.46 3.75
Fused Pleiades pairs w/o uncertainty 1.62 4.01 4.32 0.86 2.93 3.06 1.14 3.61 3.79
Fused all pairs w/uncertainty (ours) 1.49 3.90 4.17 0.87 2.86 3.00 1.54 3.49 3.82
Fused all pairs w/o uncertainty 1.49 3.98 4.25 0.82 2.90 3.01 1.23 3.60 3.81

Among all the RMSE values of different pair and fusion configurations, the best RMSEs
were achieved by the proposed uncertainty-guided fusion method (whether on the Pleiades
DSMs or all DSMs). Note that in AOI-1 and AOI-3, the RMSEs of uncertainty-guided fusion
on the Pleiades pairs alone were slightly lower than those using all the five pairs. Since
both AOI-1 and 3 contain dense buildings and narrow streets, this might have been due to
the fact that DSMs generated by the other two pairs (GeoEye1 and WorldView2) may have
failed to reconstruct the topography of the narrow streets; thus, it might negatively impact
the final fused DSM if they were considered. However, for fusion without uncertainty
metrics, the RMSE followed the intuitive expectation that the more DSMs are used, the
lower the achieved RMSE will be. This indicates that our proposed uncertainty-guided
fusion approach can explore information with fewer DSMs to achieve higher accuracy.

In addition, the accuracies of different DSMs were evaluated using just building objects
(Figure 6), as an important application of these VHR DSMs is to perform LoD1 or LoD2
building/object modeling [29]. Table 3 lists the accuracy statistics of this assessment. The
result showed similar conclusions to the overall assessment (Table 2), with the proposed
method reaching overall better results, in particular through the fusion of all DSMs. By
comparing the accuracy statistics for DSMs produced by fusion with and without uncer-
tainty metrics in Table 3, we found that our proposed method achieved only a marginal
improvement. In AOI-1, fusions with and without uncertainty over all the DSMs achieved
very similar results, which shows that the dense matching in these building objects yielded
fewer errors and the fusion results improved as the number of DSMs increased.
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Figure 6. Manually collected building masks for accuracy evaluation on building objects. Statistics
are shown in Table 3.

Table 3. Accuracy statistics (meter) of individual DSMs and the fused DSMs over rooftops. The best
results of each column for each AOI region are in bold.

Generated DSMs
AOI-1 AOI-2 AOI-3

Mean STD RMSE Mean STD RMSE Mean STD RMSE

Pleiades stereo pair 1 (int. ang. 5.57◦) −0.17 2.27 2.28 −0.35 1.94 1.97 −0.46 2.52 2.56
Pleiades stereo pair 2 (int. ang. 27.85◦) 0.69 2.10 2.21 0.50 1.74 1.81 −0.12 2.70 2.71
Pleiades stereo pair 3 (int. ang. 33.42◦) 0.51 2.28 2.33 0.23 2.01 2.02 −0.02 2.62 2.62
GeoEye-1 stereo pair (int. ang. 30.30◦) 0.11 2.23 2.23 −0.08 1.64 1.64 −0.28 2.27 2.28
WorldView-2 stereo pair (int. ang. 33.71◦) 0.64 2.44 2.52 0.66 1.92 2.03 0.23 2.95 2.96
Fusion Pleiades pairs w/uncertainty (ours) 0.44 2.04 2.09 0.26 1.61 1.64 −0.12 2.33 2.33
Fusion Pleiades pairs w/o uncertainty 0.50 2.09 2.15 0.31 1.69 1.72 −0.60 3.06 3.12
Fusion all pairs w/uncertainty (ours) 0.28 2.06 2.08 0.16 1.58 1.59 −0.17 2.20 2.21
Fusion all pairs w/o uncertainty 0.29 2.05 2.07 0.17 1.59 1.60 −0.57 2.87 2.92

Figure 7 shows three enlarged views of the DSMs generated under different configu-
rations for fusion (with and without uncertainty guidance). It shows that “Pleiades pair
1” achieved the best results among the single-pair DSMs, while visually it yielded much
noisier results than any of the fused DSMs (the readers may focus on the circled regions).
Furthermore, for the flat region shown in the central row of Figure 7 (from AOI-2), the
fusion results of all pairs generally outperformed the fusion results of the Pleiades tri-stereo
data alone. Among these, the proposed fusion method using the Pleiades DSMs alone
produced smoother surfaces than the other methods (i.e., those without uncertainty). In
the case of large complex buildings (from AOI-3—third row of Figure 7), we observed clear
quality differences, shown in the red circle, with the proposed method outperforming the
others. Profile analyses against the LiDAR reference data confirmed these achievements.

The proposed uncertainty-guided fusion approach was also compared with a few
typical approaches for satellite DSM fusion, namely median filter, adaptive median filter [7],
and a clustering-based filtering [2]. It should be noted that the comparative study was
based only on scalable approaches that have already been applied on large-format images
(i.e., hundreds and thousands of megapixels), while other approaches (including deep-
learning-based fusion approaches) that have been developed to process RGB-D fusion were
not considered here.
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circled regions show visible differences among the DSMs.

To ensure a fair comparison, images were relatively oriented using RSP software [22]
and the experiments performed were all based on the same position parameters. The
accuracy statistics of this comparative experiment are listed in Table 4. It should be noted
that the employed set of ASP parameters (see Appendix A) might not have been the optimal
one, given our limited knowledge about the software. Results show that over the three
AOIs, the proposed fusion approach achieved the best results in all AOIs. Note that the
method presented in [2] was designed for fusing over fifty DSMs. We also observed that in
AOI-1, the DSM from the single pair “Pleiades pair 1” achieved a better RMSE than most
of the fusion results, and only the proposed fusion method achieved an improved RMSE.
This implies that the uncertainty metrics can adaptively reconstruct individually “good”
matches that contribute towards a better DSM, even where there are limited numbers
of observations.
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Table 4. Comparative study of different fusion methods based on the Pleiades tri-stereo imagery (m).

Areas/Software Pleiades Pair 1
(a Single Pair) Median Filter Adapt. Median [7] Facciolo et al. [2] Proposed

AOI-1/RSP 4.14 4.27 4.32 4.76 4.08
AOI-2/RSP 3.15 3.17 3.06 3.64 3.05
AOI-3/RSP 3.93 3.87 3.79 5.30 3.75

AOI-1/ASP 5.79 5.89 5.88 6.18 N.A.
AOI-2/ASP 4.27 4.41 4.38 4.73 N.A.
AOI-3/ASP 5.46 6.28 6.22 5.95 N.A.

Additionally, results from the NASA ASP (Ames Stereo Pipeline) software [30] were
considered and reported. Since that ASP did not have the function to generate per-pixel
uncertainty metrics, the uncertainty-guided fusion method was not applied for ASP results.
The ASP program has many parameters and the computations followed an empirical
parameter set as described in Appendix A. The fused results from the NASA ASP had
worse performance, arguably due to its unsatisfactory performance on single stereo pairs
(Table 4 and Figure 8). The fusion of the DSMs generated by ASP did not improve over
the individual DSM from Pleiades pair 1 compared to the other approaches. With the
proposed fusion method, which includes uncertainty metrics, we achieved approximately
0.06–0.18 m improvement in RMSE over the three AOIs even with only three DSMs, while
especially for AOI-1, other fusion methods failed to improve the accuracy over individual
DSMs. As compared to the best individual and fused DSMs from ASP, the proposed fusion
method achieved significantly more accurate results (1.2–1.8 m less RMSE).

4.3. Weight and Contributions of Individual DSMs in Fusion

Since individual DSMs present different quality (accuracy), we are interested in eval-
uating how an increased contribution of these “good” DSM may impact fusion results,
and whether the increased contribution may further improve the fused result. A simple
approach was to repeat these “good” DSMs before fusion. Here, we repeated the DSM
generated by “Pleiades stereo pair 1” N times during the fusion, and the results are shown
in Figure 9. We observed that different weighting of individual DSMs did show an impact
on the final fusion results. The best results were achieved with a certain “N”, respec-
tively N = 2 for fusion with uncertainty, and N = 3 without uncertainty. Additionally,
the fusion with uncertainty metrics achieved the lowest RMSE compared to the fusion
without uncertainty.
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5. Discussions

The proposed depth-fusion method and the comparative evaluation using various ex-
perimental configurations and state-of-the-art fusion algorithms showed that the proposed
algorithm achieved favorable RMSE in all tested regions and scenarios. The test regions
were selected mostly in the center of Trento, with very complex urban morphology consist-
ing of tall buildings and narrow streets (e.g., as narrow as 5 m in width). We demonstrated
that our proposed algorithm achieved an RMSE of 3–4 m in test regions with a Pleiades
tri-stereo product, while a previous study using a pair from this dataset achieved a less
favorable RMSE of 6.1 m [25]. Our additional evaluation of the accuracy of the building
objects showed that the proposed method achieved an RMSE of 1.6–2.1 m.

The experiments and accuracy assessment described in the present paper included
DSMs generated through different configurations: (1) individual stereo pairs, (2) fused
DSMs using the Pleiades products with and without uncertainty guidance, and (3) fused
DSMs using all five DSMs (three Pleiades DSMs, one GeoEye DSM, and one WorldView
DSM). This led to the following observations and discussions:

1. Sometimes the RMSE of a single pair (e.g., Pleiades pair 1, in AOI-1, Table 4) tended
to be better (lower) than that of a fused DSM (using a median filter) in the test regions,
primarily due to it being a pair with a very small intersection angle that could pick up
narrow streets while others could not. Our proposed algorithm can optimally and
adaptively incorporate information of these individual DSMs, and produced a fused
DSM better than that of “Pleiades pair 1”;

2. Deep and high-frequency relief differences, as shown in the city center areas, remain
to be challenging for satellite-based (high-altitude) mapping. Our accuracy analysis
showed that the overall RMSE did not necessarily become better as the number of
DSMs increased (Table 2), primarily due to the large error rate occurring on the borders
of objects and narrow streets; there was only one DSM that reconstructed these deep
relief variations correctly (with a very small intersection angle). For building objects
that appeared to be nearer objects than the deep and narrow streets, the accuracy
followed the intuitive expectation that the RMSE became lower as the number of
DSMs increased;

3. We considered weighting the contributions of the individual DSMs (Section 4.3),
showing that the results of the fusion could be further enhanced by appropriately
weighting DSMs of better quality in the fusion procedure. There may be an optimal
weight available, although we did not explore further how such a weight might be
determined as this exceeded the scope of the current study.

6. Conclusions

This paper proposed a novel depth fusion algorithm for very-high-resolution (VHR)
satellite MVS DSMs, which takes into consideration the uncertainty generated during the



Remote Sens. 2022, 14, 1309 17 of 19

stereo matching process. The proposed algorithm adopts a simple extension of an adaptive
median filter [7]. It includes the per-pixel MVS uncertainties as cues to rank measurements
and cluster such measurements into different sets to determine the fused results. The
algorithm applies fusion at the individual pixel level and it can be scaled to process large
volumes of data. Experiments were carried out using multiple VHR images over the entire
town of Trento, Italy, covering an area of approximately 400 km2. The accuracy analysis
of three test regions showed that the proposed method outperformed all the compared
methods. In addition, the proposed algorithm is quite simple and effective at adopting
the uncertainties of stereo matching into the fusion framework, being readily available to
enable processing of large volumes of data. Furthermore, the optimal weighting schemes
of individual DSMs may be determined through further investigation; therefore, future
works will include focused investigations and novel uses of these uncertainty metrics, in
order to determine the optimal weightings of individual DSMs.

A supplemental video demonstrating DSM results achieved with the proposed method
is available at https://youtu.be/NfyrAj4ARys (accessed on 2 March 2022).

Supplementary Materials: A supplemental video demonstrating DSM results achieved with the
proposed method is available at https://youtu.be/NfyrAj4ARys.
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Appendix A

The NASA Ames Stereo Pipeline (ASP) is a suite of free and open-source automated
geodesy and stereogrammetry tools designed for processing stereo images captured from
satellites (around Earth and other planets), robotic rovers, aerial cameras, and historical
images, with and without accurate camera position information. https://github.com/
NeoGeographyToolkit/StereoPipeline (accessed on 2 March 2022).

Manual: https://stereopipeline.readthedocs.io/en/latest/ (accessed on 2 March 2022).
Inputs for ASP are the image pairs after relative orientation.
Parameters for stereo dense matching in this work for comparative study (all other

parameters remained as default as instructed in the manual):

1. Algorithm = SGM.
2. Cost mode = The census transform mode.
3. corr-kernel = 3 × 3. The default parameter is 25 × 25. This parameter was used as it

showed a better performance in our experiment.
4. subpixel-mode= 2. Notes from manual: when set to 2, it produces very accurate

results, but it is about an order of magnitude slower.
5. alignment-method = AffineEpipolar. Notes from manual: stereo will attempt to pre-

align the images by detecting tie-points using feature matching, and using those to
transform the images such that pairs of conjugate epipolar lines become collinear and
parallel to one of the image axes. The effect of this is equivalent to rotating the original
cameras which took the pictures.

https://youtu.be/NfyrAj4ARys
https://youtu.be/NfyrAj4ARys
https://github.com/NeoGeographyToolkit/StereoPipeline
https://github.com/NeoGeographyToolkit/StereoPipeline
https://stereopipeline.readthedocs.io/en/latest/
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6. individually-normalize. Notes from manual: this option forces each image to be
normalized to its own maximum and minimum valid pixel value. This is useful in the
event that images have different and non-overlapping dynamic ranges.
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