Exploring Ecosystem Functioning in Spain with Gross and Net Primary Production Time Series
Abstract
:1. Introduction
2. Material
2.1. SPI and T
2.2. Vegetation and Forest Type Maps
2.3. GPP
2.4. NPP
3. Study Area
4. Methods
4.1. Interannual Component from MRA-WT
4.2. Trend Analysis
5. Results
5.1. Spatial Patterns of Vegetation
5.2. Change Detection Analysis
6. Discussion
6.1. Spatial Patterns of Vegetation
6.2. Change Detection Analysis
7. Conclusions
- i.
- Daily GPP and NPP time series demonstrated to be a high quality input for the temporal analysis, specifically for water stress characterization in sparse vegetation areas (obtained the same precision, 10%, as in dense vegetation areas).
- ii.
- A higher temporal resolution offered an opportunity to improve the accuracy in the trend estimates since more significant pixels (72%) were obtained as compared to annual resolution studies (17%).
- iii.
- A negative clear agreement between GPP and precipitation was observed, particularly in southeastern Spain, eastern Mediterranean coastland, and central Spain. An increase in temperature was shown to favor the carbon assimilation of deciduous broadleaved forest in the north of Spain.
- iv.
- Evidence of forest vulnerability was confirmed, particularly in Mediterranean conifer species located at low elevations.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xiao, J.; Chevallier, F.; Gomez, C.; Guanter, L.; Hicke, J.A.; Huete, A.R.; Ichii, K.; Ni, W.; Pang, Y.; Rahman, A.F.; et al. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 2019, 233, 111383. [Google Scholar] [CrossRef]
- Waring, H.R.; Running, S.W. Forest Ecosystems, 3rd ed.; Academic Press: San Diego, CA, USA, 2007. [Google Scholar]
- Heinsch, F.A.; Zhao, M.; Running, S.W.; Kimball, J.S.; Nemani, R.R.; Davis, K.J.; Bolstad, P.V.; Cook, B.D.; Desai, A.R.; Ricciuto, D.M.; et al. Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1908–1923. [Google Scholar] [CrossRef] [Green Version]
- Running, S.; Zhao, M. User’s Guide Daily GPP and Annual NPP (MOD17A2H/A3H) and Year-end GapFilled (MOD17A2HGF/A3HGF) Products NASA Earth Observing System MODIS Land Algorithm (For Collection 6.1); University of Montana: Missoula, MT, USA, 2021; pp. 1–33. [Google Scholar]
- Jones, L.A.; Kimball, J.S.; Reichle, R.H.; Madani, N.; Glassy, J.; Ardizzone, J.V.; Colliander, A.; Cleverly, J.; Desai, A.R.; Eamus, D.; et al. The SMAP Level 4 Carbon Product for Monitoring Ecosystem Land-Atmosphere CO2 Exchange. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6517–6532. [Google Scholar] [CrossRef]
- Cglops-1 Product User Manual Dry Matter Productivity (Dmp) Gross Dry Matter Productivity (Gdmp) Collection 1 km Version 2; Copernicus Global Land Operations: Brussels, Belgium, 2019.
- Monteith, J.L. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Martín-Hernández, N.; Reig, F.; Azorin-Molina, C.; Zabalza, J.; Beguería, S.; Domínguez-Castro, F.; El Kenawy, A.; Peña-Gallardo, M.; Noguera, I.; et al. Vegetation greening in Spain detected from long term data (1981–2015). Int. J. Remote Sens. 2020, 41, 1709–1740. [Google Scholar] [CrossRef]
- Tucker, C.J.; Slayback, D.A.; Pinzon, J.E.; Los, S.O.; Myneni, R.B.; Taylor, M.G. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int. J. Biometeorol. 2001, 45, 184–190. [Google Scholar] [CrossRef]
- Saleska, S.R.; Wu, J.; Guan, K.; Araujo, A.C.; Huete, A.; Nobre, A.D.; Restrepo-Coupe, N. Dry-season greening of Amazon forests. Nature 2016, 531, E4–E5. [Google Scholar] [CrossRef]
- Garbulsky, M.F.; Peñuelas, J.; Papale, D.; Ardö, J.; Goulden, M.L.; Kiely, G.; Richardson, A.D.; Rotenberg, E.; Veenendaal, E.M.; Filella, I. Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems. Glob. Ecol. Biogeogr. 2010, 19, 253–267. [Google Scholar] [CrossRef]
- Gilabert, M.A.; Moreno, A.; Maselli, F.; Martínez, B.; Chiesi, M.; Sánchez-Ruiz, S.; García-Haro, F.J.; Pérez-Hoyos, A.; Campos-Taberner, M.; Pérez-Priego, O.; et al. Daily GPP estimates in Mediterranean ecosystems by combining remote sensing and meteorological data. ISPRS J. Photogramm. Remote Sens. 2015, 102, 184–197. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Martínez, B.; Gilabert, M.A. Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sens. Environ. 2009, 113, 1823–1842. [Google Scholar] [CrossRef]
- Kong, Y.L.; Meng, Y.; Li, W.; Yue, A.Z.; Yuan, Y. Satellite image time series decomposition based on EEMD. Remote Sens. 2015, 7, 15583–15604. [Google Scholar] [CrossRef] [Green Version]
- Jamali, S.; Jönsson, P.; Eklundh, L.; Ardö, J.; Seaquist, J. Detecting changes in vegetation trends using time series segmentation. Remote Sens. Environ. 2015, 156, 182–195. [Google Scholar] [CrossRef]
- Rhif, M.; Abbes, A.B.; Farah, I.R.; Martínez, B.; Sang, Y. Wavelet transform application for/in non-stationary time-series analysis: A review. Appl. Sci. 2019, 9, 1345. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Piao, S.; Sun, Y.; Ciais, P.; Cheng, L.; Mao, J.; Poulter, B.; Shi, X.; Zeng, Z.; Wang, Y. Change in terrestrial ecosystem water-use efficiency over the last three decades. Glob. Chang. Biol. 2015, 21, 2366–2378. [Google Scholar] [CrossRef] [PubMed]
- Martínez, B.; Gilabert, M.A.; García-Haro, F.J.; Faye, A.; Meliá, J. Characterizing land condition variability in Ferlo, Senegal (2001-2009) using multi-temporal 1-km Apparent Green Cover (AGC) SPOT Vegetation data. Glob. Planet. Chang. 2011, 76, 152–165. [Google Scholar] [CrossRef]
- Le Quéré, C.; Raupach, M.R.; Canadell, J.G.; Marland, G.; Bopp, L.; Ciais, P.; Conway, T.J.; Doney, S.C.; Feely, R.A.; Foster, P.; et al. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2009, 2, 831–836. [Google Scholar] [CrossRef]
- Baldocchi, D.; Chu, H.; Reichstein, M. Inter-annual variability of net and gross ecosystem carbon fluxes: A review. Agric. For. Meteorol. 2018, 249, 520–533. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ren, X.; Wang, J.; He, H.; Wang, S.; Wang, M.; Piao, S.; Yan, H.; Ju, W.; Gu, F.; et al. Interannual variability of terrestrial net ecosystem productivity over China: Regional contributions and climate attribution. Environ. Res. Lett. 2019, 14, 014003. [Google Scholar] [CrossRef]
- Moreno, A.; Gilabert, M.A.; Martínez, B. Mapping daily global solar irradiation over Spain: A comparative study of selected approaches. Sol. Energy 2011, 85, 2072–2084. [Google Scholar] [CrossRef]
- WMO. Standardized Precipitation Index User Guide; WMO: Geneva, Switzerland, 2012. [Google Scholar]
- Pérez-Hoyos, A.; García-Haro, F.J.; San-Miguel-Ayanz, J. A methodology to generate a synergetic land-cover map by fusion of different: Land-cover products. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 72–87. [Google Scholar] [CrossRef]
- Farr, T.; Rosen, P.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, 1–33. [Google Scholar] [CrossRef] [Green Version]
- IGN Documento Técnico SIOSE 2011; Ministerio de Fomento, Dirección general del Instituto Geográfico Nacional (IGN): Madrid, Spain, 2011.
- Sánchez-Ruiz, S.; Chiesi, M.; Fibbi, L.; Carrara, A.; Maselli, F.; Gilabert, M.A.M.A. Optimized Application of Biome-BGC for Modeling the Daily GPP of Natural Vegetation Over Peninsular Spain. J. Geophys. Res. Biogeosci. 2018, 123, 531–546. [Google Scholar] [CrossRef]
- Product User Manual Down-welling Surface Shortwave Flux (DSSF); LSA-SAF: Lisbon, Portugal, 2011.
- Martínez, B.; Gilabert, M.A.; Sánchez-Ruiz, S.; Campos-Taberner, M.; García-Haro, F.J.; Brümmer, C.; Carrara, A.; Feig, G.; Grünwald, T.; Mammarella, I.; et al. Evaluation of the LSA-SAF gross primary production product derived from SEVIRI/MSG data (MGPP). ISPRS J. Photogramm. Remote Sens. 2020, 159, 220–236. [Google Scholar] [CrossRef]
- Roujean, J.; Breon, F. Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Algorithm Theoretical Basis Document for Vegetation Parameters (VEGA); LSA-SAF: Lisbon, Portugal, 2016.
- Moreno, Á.; García-Haro, F.; Martínez, B.; Gilabert, M.A. Noise Reduction and Gap Filling of fAPAR Time Series Using an Adapted Local Regression Filter. Remote Sens. 2014, 6, 8238–8260. [Google Scholar] [CrossRef] [Green Version]
- Potter, C.S.; Klooster, S.; Myneni, R.; Genovese, V.; Tan, P.N.; Kumar, V. Continental-scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982-1998. Glob. Planet. Chang. 2003, 39, 201–213. [Google Scholar] [CrossRef]
- Maselli, F.; Papale, D.; Puletti, N.; Chirici, G.; Corona, P. Combining remote sensing and ancillary data to monitor the gross productivity of water-limited forest ecosystems. Remote Sens. Environ. 2009, 113, 657–667. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Ruiz, S.; Moreno, A.; Piles, M.; Maselli, F.; Carrara, A.; Running, S.; Gilabert, M.A. Quantifying water stress effect on daily light use efficiency in Mediterranean ecosystems using satellite data. Int. J. Digit. Earth 2017, 10, 623–638. [Google Scholar] [CrossRef]
- Jensen, M.E.; Haise, H.R. Estimating evapotranspiration from solar radiation. J. Irrig. Drain. Div. 1965, 89, 15–41. [Google Scholar] [CrossRef]
- Running, S.; Hunt, E. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. In Scaling Physiological Processes: Leaf to Globe: A volume in Physiological Ecology; University of Montana: Missoula, MT, USA, 1993; pp. 141–158. [Google Scholar] [CrossRef]
- White, M.A.; Thornton, P.E.; Running, S.W.; Nemani, R.R. Parameterization and Sensitivity Analysis of the BIOME–BGC Terrestrial Ecosystem Model: Net Primary Production Controls. Earth Interact. 2000, 4, 1–85. [Google Scholar] [CrossRef]
- Thornton, P.E.; Hasenauers, H.; White, M.A. Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation: An application over complex terrain in Austria. Agric. For. Meteorol. 2000, 104, 255–271. [Google Scholar] [CrossRef]
- Chiesi, M.; Maselli, F.; Moriondo, M.; Fibbi, L.; Bindi, M.; Running, S.W. Application of BIOME-BGC to simulate Mediterranean forest processes. Ecol. Modell. 2007, 206, 179–190. [Google Scholar] [CrossRef]
- Maselli, F.; Chiesi, M.; Moriondo, M.; Fibbi, L.; Bindi, M.; Running, S.W. Modelling the forest carbon budget of a Mediterranean region through the integration of ground and satellite data. Ecol. Modell. 2009, 220, 330–342. [Google Scholar] [CrossRef]
- Sánchez-Ruiz, S.; Moreno-Martínez, Á.; Izquierdo-Verdiguier, E.; Chiesi, M.; Maselli, F.; Gilabert, M.A. Growing stock volume from multi-temporal landsat imagery through google earth engine. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101913. [Google Scholar] [CrossRef]
- DGCN III Inventario Forestal Nacional 1997–2007; Dirección General de Conservación de la Naturaleza, Ministerio de Medio Ambiente: Madrid, Spain, 2006.
- Federici, S.; Vitullo, M.; Tulipano, S.; De Laurets, R.; Seufert, G. An approach to estimate carbon stocks change in forest carbon pools under the UNFCCC: The Italian case. Iforest—Biogeosci. For. 2008, 1, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Ruiz, S.; Maselli, F.; Chiesi, M.; Fibbi, L.; Martínez, B.; Campos-Taberner, M.; García-Haro, F.J.; Gilabert, M.A. Remote sensing and bio-geochemical modeling of forest carbon storage in Spain. Remote Sens. 2020, 12, 1356. [Google Scholar] [CrossRef]
- Percival, D.B.; Walden, A.T. Wavelet Methods For Time Series Analysis; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Ben Abbes, A.; Bounouh, O.; Farah, I.R.; de Jong, R.; Martínez, B. Comparative study of three satellite image time-series decomposition methods for vegetation change detection. Eur. J. Remote Sens. 2018, 51, 607–615. [Google Scholar] [CrossRef] [Green Version]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffiin: London, UK, 1985. [Google Scholar]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- de Jong, R.; de Bruin, S.; de Wit, A.; Schaepman, M.E.; Dent, D.L. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ. 2011, 115, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Paniagua, L.L.; García-Martín, A.; Moral, F.J.; Rebollo, F.J. Aridity in the Iberian Peninsula (1960–2017): Distribution, tendencies, and changes. Theor. Appl. Climatol. 2019, 138, 811–830. [Google Scholar] [CrossRef]
- Song, C.; Pietsch, S.A.; Kim, M.; Cha, S.; Park, E.; Shvidenko, A.; Schepaschenko, D.; Kraxner, F.; Lee, W.K. Assessing Forest Ecosystems across the Vertical Edge of the Mid-Latitude Ecotone Using the BioGeoChemistry Management Model (BGC-MAN). Forests 2019, 10, 523. [Google Scholar] [CrossRef] [Green Version]
- Gilabert, M.A.; Sánchez-Ruiz, S.; Moreno, A. Annual gross primary production from vegetation indices: A theoretically sound approach. Remote Sens. 2017, 9, 193. [Google Scholar] [CrossRef] [Green Version]
- Cao, M.; Prince, S.D.; Small, J.; Goetz, S.J. Remotely Sensed Interannual Variations and Trends in Terrestrial Net Primary Productivity 1981-2000. Ecosystems 2004, 7, 233–242. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Ruiz, S.; Martínez, B.; Campos-Taberner, M.; García-Haro, F.J.; Gilabert, M.A. Análisis de tendencia en la GPP anual sobre la España peninsular. In Proceedings of the XVIII Congreso de la Asociación Española de Teledetección, Valladolid, Spain, 24–27 September 2019. [Google Scholar]
- Lasanta, T.; Arnáez, J.; Pascual, N.; Ruiz-Flaño, P.; Errea, M.P.; Lana-Renault, N. Space–time process and drivers of land abandonment in Europe. Catena 2017, 149, 810–823. [Google Scholar] [CrossRef]
- Expósito, A.; Berbel, J. Agricultural irrigation water use in a closed basin and the impacts on water productivity: The case of the Guadalquivir River Basin (Southern Spain). Water Switz. 2017, 9, 136. [Google Scholar] [CrossRef] [Green Version]
- Cleverly, J.; Boulain, N.; Villalobos-Vega, R.; Grant, N.; Faux, R.; Wood, C.; Cook, P.G.; Yu, Q.; Leigh, A.; Eamus, D. Dynamics of component carbon fluxes in a semi-arid Acacia woodland, central Australia. J. Geophys. Res. Biogeosci. 2013, 118, 1168–1185. [Google Scholar] [CrossRef]
- Oliver, G.; Florín, M. The wetlands of La Mancha, central Spain: Opportunities and problems concerning restoration. In Bases Ecológicas Para la Restauración de Humedales en la Cuenca Mediterránea; Consejería de Medio Ambiente, Junta de Andalucía: Sevilla, Spain, 1995; ISBN 84-87294-78-2. [Google Scholar]
- Zhao, M.; Running, S.W. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.N.; Jin, H.Y.; Kwak, M.J.; Khaine, I.; You, H.N.; Lee, T.Y.; Ahn, T.H.; Woo, S.Y. Why does Quercus suber species decline in Mediterranean areas? J. Asia-Pac. Biodivers. 2017, 10, 337–341. [Google Scholar] [CrossRef]
- Peña-Gallardo, M.; Vicente-Serrano, S.M.; Camarero, J.J.; Gazol, A.; Sánchez-Salguero, R.; Domínguez-Castro, F.; El Kenawy, A.; Beguería-Portugés, S.; Gutiérrez, E.; de Luis, M.; et al. Drought sensitiveness on forest growth in peninsular Spain and the Balearic Islands. Forests 2018, 9, 524. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Labourdette, D.; Nogués-Bravo, D.; Ollero, H.S.; Schmitz, M.F.; Pineda, F.D. Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. J. Biogeogr. 2012, 39, 162–176. [Google Scholar] [CrossRef]
- del Barrio, G.; Puigdefabregas, J.; Sanjuan, M.E.; Stellmes, M.; Ruiz, A. Assessment and monitoring of land condition in the Iberian Peninsula, 1989–2000. Remote Sens. Environ. 2010, 114, 1817–1832. [Google Scholar] [CrossRef]
- Arrogante-Funes, P.; Novillo, C.J.; Romero-Calcerrada, R. Monitoring NDVI inter-annual behavior in mountain areas of mainland Spain (2001–2016). Sustainability 2018, 10, 4363. [Google Scholar] [CrossRef] [Green Version]
- Frantz, J.M.; Bugbee, B. Acclimation of plant population to shade: Photosynthesis, respiration, and carbon use efficiency. J. Am. Soc. Hortic. Sci. 2005, 130, 918–927. [Google Scholar] [CrossRef] [Green Version]
- Cañizares, M.; Moreno, A.; Sánchez-Ruiz, S.; Gilabert, M.A. Variabilidad de la eficiencia en el uso del carbono a partir de datos MODIS. Rev. Teledetección. 2017, 48, 1–12. [Google Scholar] [CrossRef] [Green Version]
Site | Vegetation Type | Latitude (°) | Longitude (°) | PRE (mm y−1) | T (°C) | h (m) |
---|---|---|---|---|---|---|
A | SPV | 37.07 | −2.36 | 241 | 17.2 | 463 |
B | GRA | 38.77 | −5.50 | 396 | 16.9 | 365 |
C | SHR | 38.95 | −0.87 | 466 | 15.9 | 763 |
D | CRO | 39.34 | −1.83 | 404 | 14.2 | 756 |
E | ICRO | 41.71 | 0.90 | 450 | 14.0 | 224 |
F | EBF | 36.40 | −5.54 | 841 | 17.9 | 278 |
G | LDBF | 42.95 | −1.61 | 1419 | 12.8 | 619 |
H | HDBF | 43.12 | −4.78 | 1150 | 11.4 | 1044 |
I | LENF | 38.12 | −2.76 | 634 | 15.7 | 696 |
J | HENF | 40.74 | −2.09 | 497 | 11.8 | 1099 |
Vegetation Type | GPP (kg m–2 y–1) | NPP (kg m–2 y–1) |
---|---|---|
SPV | 0.6 (0.3) | |
GRA | 0.8 (0.3) | |
SHR | 0.7 (0.2) | |
CRO | 0.6 (0.3) | |
ICRO | 1.4 (0.4) | |
EBF | 1.6 (0.5) | 0.4 (0.3) |
LDBF | 2.0 (0.3) | 0.8 (0.2) |
HDBF | 1.8 (0.4) | 0.5 (0.2) |
LENF | 1.2 (0.3) | 0.20 (0.16) |
HENF | 1.1 (0.3) | 0.20 (0.14) |
Site | GPP | rSPI-GPP | rGPP-T | NPP | rNPP-SPI | rNPP-T | ||
---|---|---|---|---|---|---|---|---|
A | 0.10 | −0.93 ± 0.09 | 0.59 | 0.12 | − | − | − | − |
B | 0.53 | 0.26 ± 0.05 | 0.72 | −0.52 | − | − | − | − |
C | 0.65 | −0.056 ± 0.014 | 0.74 | −0.56 | − | − | − | − |
D | 0.33 | −0.17 ± 0.03 | 0.63 | −0.64 | − | − | − | − |
E | 1.60 | 0.10 ± 0.02 | 0.18 | 0.27 | − | − | − | − |
F | 2.22 | −0.202 ± 0.011 | 0.56 | −0.43 | 0.53 | −0.280 ± 0.015 | 0.61 | −0.53 |
G | 2.11 | 0.15 ± 0.02 | 0.55 | 0.65 | 0.91 | 0.173 ± 0.017 | 0.52 | 0.64 |
H | 2.19 | 0.161 ± 0.006 | 0.16 | 0.42 | 0.77 | 0.111 ± 0.005 | 0.17 | 0.29 |
I | 1.08 | −0.021 ± 0.015 | 0.64 | −0.53 | 0.17 | −0.23 ± 0.04 | 0.75 | −0.69 |
J | 0.93 | −0.029±0.011 | 0.37 | −0.21 | 0.13 | −0.039 ± 0.013 | 0.27 | −0.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, B.; Sánchez-Ruiz, S.; Campos-Taberner, M.; García-Haro, F.J.; Gilabert, M.A. Exploring Ecosystem Functioning in Spain with Gross and Net Primary Production Time Series. Remote Sens. 2022, 14, 1310. https://doi.org/10.3390/rs14061310
Martínez B, Sánchez-Ruiz S, Campos-Taberner M, García-Haro FJ, Gilabert MA. Exploring Ecosystem Functioning in Spain with Gross and Net Primary Production Time Series. Remote Sensing. 2022; 14(6):1310. https://doi.org/10.3390/rs14061310
Chicago/Turabian StyleMartínez, Beatriz, Sergio Sánchez-Ruiz, Manuel Campos-Taberner, F. Javier García-Haro, and M. Amparo Gilabert. 2022. "Exploring Ecosystem Functioning in Spain with Gross and Net Primary Production Time Series" Remote Sensing 14, no. 6: 1310. https://doi.org/10.3390/rs14061310
APA StyleMartínez, B., Sánchez-Ruiz, S., Campos-Taberner, M., García-Haro, F. J., & Gilabert, M. A. (2022). Exploring Ecosystem Functioning in Spain with Gross and Net Primary Production Time Series. Remote Sensing, 14(6), 1310. https://doi.org/10.3390/rs14061310