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Abstract: The main objective of this study is to analyze the spatial and temporal variability of gross
and net primary production (GPP and NPP) in Peninsular Spain across 15 years (2004–2018) and
determine the relationship of those carbon fluxes with precipitation and air temperature. A time series
study of daily GPP, NPP, mean air temperature, and monthly standardized precipitation index (SPI)
at 1 km spatial resolution is conducted to analyze the ecosystem status and adaptation to changing
environmental conditions. Spatial variability is analyzed for vegetation and specific forest types.
Temporal dynamics are examined from a multiresolution analysis based on the wavelet transform
(MRA-WT). The Mann–Kendall nonparametric test and the Theil–Sen slope are applied to quantify
the magnitude and direction of trends (increasing or decreasing) within the time series. The use of
MRA-WT to extract the annual component from daily series increased the number of statistically
significant pixels. At pixel level, larger significant GPP and NPP negative changes (p-value < 0.1) are
observed, especially in southeastern Spain, eastern Mediterranean coastland, and central Spain. At
annual temporal scale, forests and irrigated crops are estimated to have twice the GPP of rainfed crops,
shrublands, grasslands, and sparse vegetation. Within forest types, deciduous broadleaved trees
exhibited the greatest annual NPP, followed by evergreen broadleaved and evergreen needle-leaved
tree species. Carbon fluxes trends were correlated with precipitation. The temporal analysis based on
daily TS demonstrated an increase of accuracy in the trend estimates since more significant pixels
were obtained as compared to annual resolution studies (72% as to only 17%).

Keywords: GPP; NPP; SPI; air temperature; Spain; time series

1. Introduction

A full description of the carbon cycle requires detailed information on spatiotemporal
patterns of surface–atmosphere carbon fluxes. One of the main carbon fluxes characterizing
terrestrial ecosystems and biodiversity is the gross primary production (GPP), i.e., the
amount of carbon absorbed by vegetation to perform photosynthesis, since it establishes
the main carbon and energy inputs to ecosystems for producing food, wood, and fiber [1].
However, approximately half of the GPP is respired by plants to provide the energy
that supports their growth and maintenance. Net primary production (NPP) is the net
carbon gain by vegetation and equals the difference between GPP and plant autotrophic
respiration [2]. NPP is recognized as the most relevant variable to characterize the state
of ecosystems since it represents the fundamental source of energy for all organisms in an
ecosystem and is a driver of the most essential of ecosystem services [2].

The role that Earth observation (EO) data play in quantifying carbon fluxes evolved
substantially in the last two decades with the beginning of the operational Moderate Reso-
lution Imaging Spectroradiometer (MODIS) GPP product from the National Aeronautics
and Space Administration (NASA) Earth Observing System (EOS) program [3]. Since

Remote Sens. 2022, 14, 1310. https://doi.org/10.3390/rs14061310 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14061310
https://doi.org/10.3390/rs14061310
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6354-9899
https://orcid.org/0000-0002-4849-9918
https://orcid.org/0000-0001-5929-3942
https://orcid.org/0000-0002-3548-1524
https://doi.org/10.3390/rs14061310
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14061310?type=check_update&version=2


Remote Sens. 2022, 14, 1310 2 of 19

then, long time series of EO-based products from different models have been provided at
different spatial and temporal scales. This is the case of the already mentioned MODIS
products, MOD17, at different temporal and spatial resolutions [4], the daily Soil Moisture
Active Passive (SMAP) Level-4 carbon (L4_C) product at 9 km [5] from NASA, or Gross
Dry Matter Productivity (GDMP) product at 1 km [6] from the Copernicus Global Land
Service. All of them are based on the production efficiency model (PEM) concept proposed
by Monteith [7].

Most studies on the response of vegetation dynamics to climate change in Spain
have focused until now on the NDVI time series (TS) [8] due to its well-recognized lineal
relationship with photosynthesis as well as with GPP and NPP across diverse ecosystems [9].
Although the robustness of vegetation indices (VIs) along with the availability of long TS
have led to a vast number of global carbon-climate studies [9,10], VIs only have a moderate
capacity to predict ecosystem structural and functional attributes. It is expected that GPP
and NPP provide more information regarding the vegetation status thanks to the PAR and
the light-use efficiency variables, which have shown a more rapid response than f APAR to
different environmental factors related to energy balance, water availability, and nutrient
levels [11].

However, the carbon flux models mentioned above do not offer completely satisfactory
results in Spain; some because of how they implement the water stress (MOD17 and L4_C),
and others because they do not implement it (GDMP). Particularly, it was demonstrated that
a different characterization of water stress, such as the one used in the current study, leads
to more accurate results in the region [12] (see a summary of the methodology in Section 2.3)
and, therefore, provides a better quality input for the temporal analysis. Moreover, a higher
temporal variability may offer the possibility of detecting more accurately the presence of
cloudy skies that leads to a carbon decrease related to the irradiation reduction and not to
the vegetation type. Hence, inappropriate daily GPP and NPP characterization may result
in inaccurate global GPP and NPP values at annual scales.

The development of effective methodologies for the analysis of TS is one of the most
important challenging issues for the remote sensing community due to the dynamic nature
of terrestrial ecosystems [13,14]. Many studies have tried to identify the best performing
method among the different approaches proposed in the literature (including statistical,
time–frequency-based, etc.). Based on previous comparative studies, ensemble empiri-
cal mode decomposition (EEMD) [15], wavelet transform (WT) [14], break for additive
trend and season (BFAST) [13], and detecting breakpoints and estimating segments in
trend (DBEST) [16] have proved their effectiveness for vegetation change analysis using
normalized difference vegetation index (NDVI) TS [15].

In this study, the multiresolution analysis based on the wavelet transform (MRA-
WT) was used because of its results during the last decades as a time–frequency analysis
tool for complex nonstationary signals in several fields (e.g., environment, medicine, fi-
nance) [17]. Particularly, it was useful in the study of nonstationary TS for vegetation
temporal dynamics [14,18,19].

The interannual variability of vegetation dynamics plays a key role in the description
of year-to-year variations of plant photosynthesis and production, determining land carbon
uptake and ecosystem capacity to be productive [20]. The interest in ecosystem productivity
responses to climate change grew substantially in the research community during the last
decade [8,21]. The relationships of vegetation interannual variability and conservative
climatic factors, particularly air temperature and precipitation, have been studied in other
regions [19,22].

The main objective of this study is to analyze (1) the spatial and interannual variations
of carbon fluxes in Peninsular Spain across 15 years from 2004 to 2018 using daily GPP
and NPP EO-based estimates and (2) their relationships with changes in air temperature
and precipitation, since the hydrological response to climate change over Spain due to the
increased air temperature and decreased precipitation is already confirmed [8].
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2. Material

Four datasets of 1 km spatial resolution and their interrelationship were analyzed:
daily GPP, NPP, and mean air temperature (T), along with monthly standardized precip-
itation index (SPI), all during the 2004–2018 period. This period was chosen due to the
availability of some of the data: solar irradiance was available only from 2004, while air
temperature and precipitation only until 2018.

SPI and T were obtained from the spatialization of ground measurements. GPP and
NPP were simulated respectively by means of a Monteith-like PEM [7] and the Biome-BGC
model, both previously optimized for the study area. In the following subsections, the data
needed to obtain these datasets, as well as the data processing, are briefly described.

2.1. SPI and T

Daily precipitation and minimum and maximum air temperature measurements
from ground stations were provided by the Spanish Meteorological Agency (http://www.
aemet.es, accessed on 13 January 2022) for the 2004–2018 period. Daily images at 1 km
spatial resolution for the same period were obtained from the measurements by ordinary
kriging [23]. T was calculated as the mean value between minimum and maximum air
temperature. SPI images were computed from daily precipitation images. The SPI quantifies
precipitation anomalies by transforming observed precipitation into a gamma distribution
for a specific time period [24]. In this study, the 12-month SPI over the period 2004–2018 was
computed in order to enhance the identification and understanding of vegetation changes.

2.2. Vegetation and Forest Type Maps

The 14-class and 1 km spatial resolution land cover map generated by [25] was used to
obtain a vegetation type map, which was used to simulate GPP (Section 2.3). Elevation ex-
tracted from the Shuttle Radar Topography Mission 3 arc second digital elevation model [26]
and land cover data from the Spanish Land Use Information System (SIOSE) [27] were
combined to obtain a forest type map [28], which was used to simulate forest respiration
(Section 2.4).

2.3. GPP

The PEM used to estimate the daily GPP (g m–2 d–1) images is

GPP = PAR f APAR εmax εW εT (1)

where PAR (MJ m–2 d–1) accounts for the photosynthetically active radiation in the 0.4–0.7 µm
spectral range. It was computed as 46% of the daily solar irradiance, which was given by
the MSG DIDSSF product (LSA-203) [29] reprocessed and available from 2004 up to the
present at https://landsaf.ipma.pt/ (accessed on 13 January 2022). This product was very
satisfactorily validated in the study area and is used as the input of the MSG/SEVIRI GPP
product LSA-411 [30].

The daily f APAR (fraction of absorbed photosynthetically active radiation) at 1 km
spatial resolution was obtained by applying the algorithm proposed in [31] to MODIS
products MCD43A1 and MCD43A2. This algorithm is actually used to derive the SE-
VIRI/MSG f APAR product (LSA-425) [32]. In this study, the f APAR TS were filtered and
reconstructed using an optimized locally weighted regression and smoothing scatterplots
(LOESS) method [33].

εW is the water stress coefficient CWS proposed by [34] and applied satisfactorily over
Mediterranean regions [12,35,36]. It is calculated as a linear relationship with the water
balance between actual and potential evapotranspiration (AET and PET, respectively):

CWS = 0.5 + 0.5 AET/PET (2)

If AET is not available and precipitation is lower than PET then it can be assumed that
AET is equal to precipitation. In this study, the accumulated precipitation and PET are used

http://www.aemet.es
http://www.aemet.es
https://landsaf.ipma.pt/
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because it demonstrated a better performance in the study area [36]. The accumulation
period depends on the vegetation type [28]. PET (mm·m–2·d–1) is calculated, according
to [37] parameterization, from the daily global irradiation Rg (kJ m–2 d–1), as given by the
LSA-203 product, and the daily T (in ◦C):

PET = Rg (0.025 T + 0.08)/2450 (3)

εmax (g MJ–1) is the ecosystem light use efficiency under optimal conditions and de-
pends on the vegetation type. The vegetation type map described in Section 2.2 was used
to assign the εmax value to each pixel according to the literature [11]. Finally, εT is the
Tmin_scalar used in MOD17 product [4], a linear ramp function of minimum air tempera-
ture that reduces εmax accounting for low temperatures, depending on the vegetation type.

This methodology was previously tested in the study area against eddy covariance
observations obtaining coefficients of determination between 0.5 and 0.96 in [12], where
more details on the estimation of GPP from remotely sensed data can be found.

2.4. NPP

Forest NPP was obtained based on the combination of the GPP calculated through equa-
tion (1), and the growth (RG) and maintenance (RM) respirations simulated by version 4.2
of the ecosystem process model Biome-BGC [38,39]. Daily precipitation, maximum and
minimum air temperature images, and the DIDSSF product described above were used.
Daylength, daylight average partial pressure of water vapor, and daily average air tem-
perature were simulated by the microclimate simulation model MT-CLIM [40] version 4.3.
The needed ecophysiological parameters were obtained in a previous study over an area of
similar eco-climatic features [41]. Elevation and forest type described in Section 2.2 were
also used. The rooting depth calibration, soil texture maps description, and more details on
how to use Biome-BGC over the study area can be found in [28].

In this study, forest NPP is calculated as

NPP = f (GPP − RG) − v RM (4)

where f is the actual to potential tree cover ratio and v is the actual to potential growing
stock volume (GSV) ratio. GPP calculated from Equation (1) needs to be corrected to
account only for the fraction of forest present in the pixel. This expression was proposed
in [42], based on the ecosystems distance to climax concept. These ratios are calculated as

f = [1 − exp (-v LAI)]/[1 − exp (-LAI)] (5)

and
v = 50 GSV ρ C/σ (6)

where LAI is the annual maximum leaf area index simulated by Biome-BGC, ρ is the basic
wood density, C is a biomass expansion factor, σ is the annual maximum dead stem carbon
simulated by Biome-BGC, and the factor 50 accounts for the unit conversion to m3/ha and
the transformation from carbon mass to dry mass (2 kg/kg). The growing stock volume
GSV was obtained in a previous study combining remotely sensed and forest inventory
data [43]. NPP was only calculated in forest pixels because GSV is only available for trees
in the Spanish Forest Inventory described in [44]. For the main Mediterranean forests, ρ
and C can be found in [45].

This methodology was previously assessed in the study area using forest inventory
observations. Coefficients of determination between 0.5 and 0.7 in [46] were obtained. A
detailed description on modeling of forest carbon storage can be found in [46].

3. Study Area

Peninsular Spain is located in the southwest of Europe, approximately between (44◦,
−10◦) and (36◦, 3◦) lat/lon. The ecosystem’s diversity, mainly caused by its orography (its
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elevation ranges from sea level to 3479 m), is remarkable. Its geographical location leads to
a range of climates from Atlantic in the northwest to semiarid in the southeast. Its annual
precipitation follows the same gradient, ranging from around 2000 mm in the northwest to
around 200 mm in the southeast. Figure 1a,b show the spatial distribution of the average
annual precipitation and the average annual T for the 2004–2018 period.
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Figure 1. Spatial distribution of the average annual precipitation (a) and the average annual T
(b) for the 2004–2018 period. Black crosses refer to the location of the sites used for the local
analysis (A–J). (c) Vegetation type map [25] used in the estimation of the GPP: GRA (grasslands),
SHR (shrublands), CRO (rainfed croplands), ICRO (irrigated crops), MCRO (mosaic cropland),
BF (broadleaved forest), NF (needle-leaved forest), MF (mixed forest), SPV (sparse vegetation).
(d) Specific forest type map used to derive the NPP: EBF (evergreen broadleaved forest), LDBF (low-
altitude deciduous broadleaved forest), HDBF (high-altitude deciduous broadleaved forest), LENF
(low-altitude evergreen needle-leaved forest), and HENF (high-altitude evergreen needle-leaved
forest). These data are described in Section 2.

According to the land cover map by [25] (Figure 1c), 52% of the pixels of the study
area are classified as croplands, 21% as forests, and 25% as shrublands, grasslands, or
sparse vegetation. Figure 1d shows the forest type map used in the simulation of forest
respirations [28]. Forests in Peninsular Spain present great spatial complexity and GSV
irregularity. According to the Third Spanish Forest Inventory, 56% of the forest areas
covered by tree species are broadleaved forests with Quercus ilex as the most common
species, while the other 34% are needle-leaved forests with majority of Pinus halepensis [44].

Ten sites representative of the study area (Table 1) were selected to examine their
seasonal variations. One site was chosen for each vegetation type indicated in Figure 1c,d.
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All sites present ecoclimatic features representative of the corresponding vegetation type
except site F, which presents higher air temperature.

Table 1. Vegetation type, main ecoclimatic features, and coordinates of the ten selected sites with
their average annual precipitation (PRE), average annual T, and elevation above sea level (h). SPV
(sparse vegetation), GRA (grasslands), SHR (shrublands), CRO (rainfed croplands), ICRO (irrigated
crops), EBF (evergreen broadleaved forest), LDBF (low-altitude deciduous broadleaved forest), HDBF
(high-altitude deciduous broadleaved forest), LENF (low-altitude evergreen needle-leaved forest),
and HENF (high-altitude evergreen needle-leaved forest).

Site Vegetation Type Latitude (◦) Longitude (◦) PRE (mm y−1) T (◦C) h (m)

A SPV 37.07 −2.36 241 17.2 463
B GRA 38.77 −5.50 396 16.9 365
C SHR 38.95 −0.87 466 15.9 763
D CRO 39.34 −1.83 404 14.2 756
E ICRO 41.71 0.90 450 14.0 224
F EBF 36.40 −5.54 841 17.9 278
G LDBF 42.95 −1.61 1419 12.8 619
H HDBF 43.12 −4.78 1150 11.4 1044
I LENF 38.12 −2.76 634 15.7 696
J HENF 40.74 −2.09 497 11.8 1099

Site A is a sparse vegetation region located in the southeast of Spain, at the north of
Desierto de Tabernas, in the province of Almería, characterized by pronounced dry conditions
causing desertification. Site B is a grassland located at the east of the province of Badajoz,
in the interior of Spain. Site C is a shrubland located at the southwest of the province of
València, in the east of Spain. Site D is a rainfed cropland located in the province of Cuenca.
Site E is an irrigated cropland located in the province of Lleida, in the Ebro basin. Forest
sites (F–J) are located in or near to national parks. Site F is an evergreen broadleaved forest,
particularly, the most extensive cork forest in Spain and one of the largest in the world
dominated by Quercus suber. Site G is a deciduous broadleaved forest located in the second
largest and best preserved beech forest in Europe, the national park Selva de Irati, in the
province of Navarra (north of Spain). Site H is a high-altitude deciduous broadleaved forest
located at the southeast of Picos de Europa. Site I is a low-altitude evergreen needle-leaved
forest located in the national park of Sierras de Cazorla, Segura y las Villas, the Spanish largest
continuous area of pine forest with representatives of nearly all pine species found in the
Iberian Peninsula, the most abundant being Pinus nigra. Site J is a high-altitude evergreen
needle-leaved forest located in the north of the national park Serranía de Cuenca, in the
province of Guadalajara. All the described sites were selected according to the vegetation
type provided by the land cover map produced by [25], which uses land cover data from
1999 to 2006.

4. Methods

Two procedures are used for the temporal analysis at pixel level. First, the temporal
dynamics of GPP, NPP, SPI, and T are assessed using the MRA-WT procedure (Section 4.1).
Second, the trend (with magnitude and direction) of the annual component is obtained
through the combination of the Mann–Kendall test and the Theil–Sen slope estimator
(Section 4.2).

4.1. Interannual Component from MRA-WT

The MRA-WT allows for a fast implementation of the discrete wavelet transform
by means of a decomposition of the TS into timescales based on powers of two, 2j (j = 1,



Remote Sens. 2022, 14, 1310 7 of 19

. . . , m), where j refers to the different levels of decomposition and m to the highest level
considered [47]. As a result of the MRA, the original signal can be reconstructed as

g (t) = Am (t) + Σm
j =1 Dj (t) (7)

where A is the approximation component and D the detail component. The MRA can
be understood as a sequence of the A component at the lowest level and complementary
information given by the details D time series, which provide information of high-frequency
contributions at each temporal resolution.

The temporal resolution of each level depends on the center frequency of the selected
wavelet and the temporal resolution of the TS. In our case, the Meyer wavelet (with central
frequency vc = 0.67213 Hz) is chosen due to its potential for vegetation dynamic analysis
shown in previous studies [14,48]. For example, in the case of daily temporal resolution
(GPP, NPP, and T in the current study), the approximation component of each level accounts
for all the vegetation variations at the following specific time resolutions: A1 (1.5 days), A2
(3 days), A3 (6 days), A4 (12 days), A5 (24 days), A6 (48 days), A7 (96 days), A8 (192 days),
A9 (385 days). The detail components provide information about the portion of the signal
that can be attributed to variations between the resolutions [j − 1, j]. The sum of detail
components D between different levels provides the variability (V) of the signal attributed
to the temporal frequencies between these particular levels. Details of this methodology
can be found in [14].

The MRA-WT is applied until level nine for daily TS (GPP, NPP, and T) and until level
four for monthly SPI series since it gives us the approximation component (A9 and A4,
respectively) to study the interannual changes. Figure 2 shows an example of the MRA-WT
decomposition applied to the GPP series for a deciduous broadleaved forest pixel. The top
panel shows the original TS, whereas the center plot refers to the total variation removed
from the interannual part corresponding to days between 6 and 385 days (V4–9). The plot
on the bottom shows the interannual (A9) component of the original TS.
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Figure 2. Example of MRA-WT decomposition for the GPP (g m−2 d−1) TS of a deciduous
broadleaved pixel. The top panel refers to the original GPP TS. The center panel refers to the
variability of the original signal V4–9. The bottom panel shows the interannual A9 component.

4.2. Trend Analysis

Once the interannual components are derived, the Mann–Kendall nonparametric
test [49,50] and the Theil–Sen slope estimator [51] are applied to statistically detect trends in
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the GPP (QGPP), NPP (QNPP), SPI (QSPI), and T (QT) interannual TS. The Mann–Kendall test
has been extensively used to identify the direction and statistical significance of monotonic
trend within each pixel of the image TS [52]. A nonsignificant Mann–Kendall test value
(0 value) means the null hypothesis (H0) of this test (no trend exists) may not be rejected,
whereas a significant test value (1 value) assumes H0 is rejected, and a trend is considered.
H0 was rejected at p-value under 0.1 significance levels for the daily time series, such as
carbon fluxes and temperature TS (GPP, NPP, and T). For SPI, this condition was relaxed to
p-values under 0.3 in order to have a larger number of pixels to be compared with the GPP
and NPP trend values.

QGPP, QNPP, and QT are, respectively, calculated as the Theil–Sen slope obtained for
GPP, NPP, and T divided by the mean value of GPP, NPP, and T, and multiplied by 100. This
normalization is not needed with QSPI since SPI is already normalized by definition [24].

The MRA-WT procedure (Section 4.1) along with the trend analysis (Section 4.2) are
performed at pixel level in order to quantify the long-term changes in Peninsular Spain.
A local analysis is also carried out for the ten selected sites (see Table 1 in Section 3). The
interrelation between carbon fluxes and meteorological variables (air temperature and
precipitation) trends are investigated at this scale by calculating correlations between their
annual components (A9 for GPP, NPP, and T, and A4 for SPI).

5. Results
5.1. Spatial Patterns of Vegetation

Figure 3 shows the spatial distribution of average annual GPP and NPP for the study
period (2004–2018). Both GPP and NPP show a strong latitudinal gradient increasing from
low to high latitudes. Exceptionally, the most southern region, where site F is located,
exhibits average annual GPP and NPP similar to those in the northern regions. Table 2
shows average annual GPP and NPP for the vegetation and forest types indicated in
Figure 1c,d. The results reveal that the greatest GPP is found for broadleaved forests (1.6,
1.8, and 2.0 kg m–2 y–1 for EBF, HDBF, and LDBF, respectively), while the smallest GPP is
found for sparse vegetation and rainfed crops, both presenting GPP = 0.6 kg m–2 y–1. The
greatest forest NPP is also found for broadleaved forests (0.4, 0.5, and 0.8 kg m–2 y–1 for
EBF, HDBF, and LDBF, respectively). Needle-leaved forests reach NPP values up to half of
the broadleaved forests NPP (0.2 kg m–2 y–1).

Table 2. Average annual GPP and NPP. Only pixels with coherent classification between Figures 1c
and 1d were used in the calculations of the means and the standard deviations (between brackets). SPV
(sparse vegetation), GRA (grasslands), SHR (shrublands), CRO (rainfed croplands), ICRO (irrigated
crops), EBF (evergreen broadleaved forest), LDBF (low-altitude deciduous broadleaved forest), HDBF
(high-altitude deciduous broadleaved forest), LENF (low-altitude evergreen needle-leaved forest),
and HENF (high-altitude evergreen needle-leaved forest).

Vegetation Type GPP (kg m–2 y–1) NPP (kg m–2 y–1)

SPV 0.6 (0.3)
GRA 0.8 (0.3)
SHR 0.7 (0.2)
CRO 0.6 (0.3)
ICRO 1.4 (0.4)
EBF 1.6 (0.5) 0.4 (0.3)

LDBF 2.0 (0.3) 0.8 (0.2)
HDBF 1.8 (0.4) 0.5 (0.2)
LENF 1.2 (0.3) 0.20 (0.16)
HENF 1.1 (0.3) 0.20 (0.14)
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5.2. Change Detection Analysis

Figure 4 shows the annual GPP and NPP for the selected sites (Table 1) in order to
illustrate general behaviors between land covers. A significant gradient is observed in the
GPP values, where the highest GPP values are found in broadleaved forests, the interme-
diate ones in needle-leaved forests, and the lowest ones in shrublands and nonirrigated
crops. Particularly, sites B, D, F, and J (much less pronounced) reproduce well the years
characterized by low vegetation activity due to drought episodes (e.g., 2005, 2012, and
2015). In fact, site F provides the highest GPP and NPP decrease throughout the period
considered (see QGPP and QNPP in Table 3). This effect is also identified in the annual NPP
values for the evergreen site F, whereas a flat trend dominates in the rest of the forest sites.
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Figure 4. Annual GPP (a) for all sites and NPP (b) only for forest sites described in Table 1.

The normalized trends of GPP (QGPP) and NPP (QNPP) and annual averages are
presented in Table 3 together with their correlations between SPI and T annual components.
The grassland (B), shrubland (C), rainfed crop (D), and low-altitude evergreen needle-
leaved forest (I) sites are the most sensitive to annual precipitation. A strong negative
correlation with temperature is also observed for sites B, C, D, and I, as opposed to the
positive correlation found for deciduous broadleaved forest sites (G and H). The poorest
correlations are obtained for the irrigated crop (site E) and the sparse vegetation (A). Site
A is practically a desert and has the lowest mean annual GPP and the lowest interannual
GPP variation. In case of NPP, a similar behavior is found for all forest sites with a notable
decrease of biomass (QNPP < –0.28 x 10–2 d–1) shown by the low-altitude evergreen forest
site (I) and evergreen broadleaved forest (F) site. A strong correlation between NPP and
annual precipitation is observed for these sites, I and F.

Table 3. GPP and NPP normalized trends (in d–1) (QGPP and QNPP ) and average annual values for
(in kg m–2 y–1) the sites in Table 1. Correlations of annual GPP and NPP with interannual SPI and
mean annual T are included. The correlation is derived considering anomaly time series for GPP and
NPP. R > |0.6| in bold (p-value < 0.05).

Site GPP QGPP
(
10−2) rSPI-GPP rGPP-T NPP QNPP

(
10−2) rNPP-SPI rNPP-T

A 0.10 −0.93 ± 0.09 0.59 0.12 − − − −
B 0.53 0.26 ± 0.05 0.72 −0.52 − − − −
C 0.65 −0.056 ± 0.014 0.74 −0.56 − − − −
D 0.33 −0.17 ± 0.03 0.63 −0.64 − − − −
E 1.60 0.10 ± 0.02 0.18 0.27 − − − −
F 2.22 −0.202 ± 0.011 0.56 −0.43 0.53 −0.280 ± 0.015 0.61 −0.53
G 2.11 0.15 ± 0.02 0.55 0.65 0.91 0.173 ± 0.017 0.52 0.64
H 2.19 0.161 ± 0.006 0.16 0.42 0.77 0.111 ± 0.005 0.17 0.29
I 1.08 −0.021 ± 0.015 0.64 −0.53 0.17 −0.23 ± 0.04 0.75 −0.69
J 0.93 −0.029±0.011 0.37 −0.21 0.13 −0.039 ± 0.013 0.27 −0.30

Figure 5a,b illustrate the GPP and NPP trend images for the period 2004–2018 (QGPP
and QNPP). Red values refer to negative changes, whereas green values are indicative of
positive variations. No significant variation during the 15-year period is observed in 28%
(5%) of the GPP (NPP) values. Highly significant GPP (NPP) decrease is observed in 16%
(25%) of the Spain pixels. Highly significant GPP (NPP) increase is observed in 56% (70%)
of the Spain pixels. The associated errors with QGPP (Figure 5c) and QNPP (Figure 5d) are
also computed. The images reveal that larger errors are observed for greater changes, and
the opposite is also true. Therefore, there has not been a spatial pattern found in the relative
image, and relative errors below 10% (absolute error < 2 × 10−4) are observed for the major
part of the study area.
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Figure 5a demonstrates a positive GPP trend in northeastern and western Spain. In 
this figure, increasing productivity is observed in areas 1 and 2. Conversely, the negative 
trends in the GPP come with an associated rainfall diminution along time (Figure 6a). As 
an example, in eastern Spain, croplands at the south of the Teruel province (area 3 in Figure 
5a) and north of the Castilla y León region (area 5 in Figure 5a) can be observed. This be-
havior is also observed in site F (national park of Los Alcornocales in Cádiz province, area 6 
in Figure 5a), with a decrease in GPP and NPP, as supported by results shown in Table 3.  
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Figure 5a demonstrates a positive GPP trend in northeastern and western Spain. In
this figure, increasing productivity is observed in areas 1 and 2. Conversely, the negative
trends in the GPP come with an associated rainfall diminution along time (Figure 6a). As an
example, in eastern Spain, croplands at the south of the Teruel province (area 3 in Figure 5a)
and north of the Castilla y León region (area 5 in Figure 5a) can be observed. This behavior
is also observed in site F (national park of Los Alcornocales in Cádiz province, area 6 in
Figure 5a), with a decrease in GPP and NPP, as supported by results shown in Table 3.

To better understand the nature of observed changes, Figure 7 identifies areas with
positive and negative GPP trends based on different precipitation and temperature behav-
ior. Thus, spot areas of natural vegetation (Figure 7a) with negative production trends
and potentially affected by long- and short-term degradation processes (dark blue, light
blue, and red colors) are located in Almería, Murcia, and València provinces. Areas with a
negative GPP trend and rainfall patterns shifting towards conditions of increasing aridity
(e.g., Almería region) [53] are those associated with QGPP < 0, QT < 0, and QSPI < 0 (dark
blue color). Regions with negative GPP trends values in spite of increasing rainfall, that
should favor the production rise unless the canopy is in a very degraded condition, are
selected based on QGPP < 0, QT < 0, and QSPI > 0 values (light blue color). Positive pro-
duction trends along with positive precipitation variations mainly correspond to most
mountain areas located in northeastern and northwestern Spain (dark green). Figure 7b
exhibits the cropland areas changes. In spite of the precipitation trend, large crop areas with
positive productivity (QGPP > 0) are mainly concentrated on irrigated and nonirrigated



Remote Sens. 2022, 14, 1310 12 of 19

lands in the Guadalquivir and Ebro basins (light and dark green colors in northwestern and
southern Spain). A productivity increase is observed in the Ebro basin (QGPP > 0 and QSPI
> 0), whereas a productivity loss and nonfavorable precipitation conditions are found in
croplands (QGPP < 0 and QSPI < 0 values located in areas 7, 8, and 9 in Figure 7b).
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6. Discussion

This paper has explored the dynamics of GPP and NPP variables in Peninsular Spain,
which is located in the mid-latitude ecotone (MLE) [54], the zone between 30◦–60◦ latitude
that comprises a transition belt between forests (temperate forest in Spain) and drylands.
GPP and NPP are variables linked to carbon fluxes and biomass production, which can
be used to analyze the ecosystem state. Thus, the analysis of GPP and NPP time series
on a long-term basis may be useful to detect degradation processes and loss of ecosystem
services as a consequence of environmental changes and social pressures that characterize
the MLE.

6.1. Spatial Patterns of Vegetation

The spatial distribution and magnitude of annual GPP in this study were consistent
with the estimates of other studies [30,55]. Forests annual NPP followed a similar pattern
to the one exhibited by GPP, but its magnitude is reduced to more than half its value
because the methodology used to simulate NPP in this study only accounts for the trees
in the pixel, while GPP accounts for all vegetation included in the pixel (see Section 2).
This reduction is especially noticed for needle-leaved forests, probably explained as an
underestimation by the methodology which was recently reported [46]. Previous studies
stated that spatial variations of GPP and NPP are mainly controlled by climate conditions,
vegetation types, and their spatial distribution [56,57]. Thus, broadleaved forests constitute
the main potential natural vegetation of carbon storage over much of temperate Europe,
the strategy of which is to deal with the lack of sunlight and cold temperatures in winter.
This causes broadleaved trees to usually exhibit the maximum peak in summer due to the
highest PAR, and undergo consequent loss of leaves in winter. The estimates of this study
were also able to capture the intermediate annual GPP and NPP values given by evergreen
forests (site F) in spite of remaining green all year. The smallest GPP was observed for
sparse vegetation due to the small fraction of the pixel actually covered by vegetation.

6.2. Change Detection Analysis

The temporal analysis based on daily TS offered an opportunity to infer a higher
accuracy in the trend estimates since more significant pixels are obtained as compared
to annual resolution studies. This can be checked with GPP: the combination of daily
interannual time series (derived from the MRA-WT) with the Mann–Kendall and the Theil–
Sen slope methods provided 72% of the considered pixels with statistically significant trend
in this study, as opposed to only 17% found in a previous study over the same area using
only annual series [58], even if three more years were used (18 instead of 15).

Trend results are consistent with similar studies performed over different periods [8].
The associated errors with QGPP and QNPP reveal that the precision does not depend on the
vegetation type cover, since a specific spatial pattern was not found. Furthermore, larger
significant negative changes and associated errors are observed, especially in southeastern
Spain, eastern Mediterranean coastland, and central Spain, as was already found in [14] for
1989–2002, where a remarkable loss of productivity in southeastern and eastern Spain was
observed. Particularly, the sparse natural vegetation in Almería province (almost a desert)
is the most affected land cover with a significant loss of production during this period.
Positive GPP trends are generally coincident with positive SPI trends (see Figures 5a and 6a),
but in some areas they may be partly assured by the abandonment of old cultivated fields in
mountain areas that have been transformed to natural vegetation [59]. For example, positive
patches in the Ebro basin (Figures 5a and 7b) may be the consequence of the abandonment of
old irrigated fields due to relocation and socioeconomic changes benefiting from the positive
precipitation trend (QSPI > 0 in Figure 6a) for the same period [59]. Most of these areas are
classified as arable lands and grasslands (http://sigpac.aragon.es/visor/, accessed on 13
January 2022) with a high response to favorable meteorological conditions. Moreover, a
high overlap with the conservative areas included in the Natura 2000 ecological network
(https://www.miteco.gob.es/, accessed on 13 January 2022) is found. It comprises up to

http://sigpac.aragon.es/visor/
https://www.miteco.gob.es/
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40% of agricultural lands, predominantly marginal areas with low productivity. Conversely,
the productivity increase in the Guadalquivir basin (light green color in Figure 7b) coexists
with unfavorable precipitation conditions (Figure 6a). This could be attributed to the
remarkable expansion in irrigated areas and modernization of irrigation systems [60]. In
other areas, vegetation recovery from forest fires that occurred in the beginning of the period
may explain this behavior. This is the case of a 34,000 ha area affected by the 2004 forest fire
in Riotinto (Huelva province) and 22,000 ha burnt in 2005 in La Riba (Guadalajara province),
as well as croplands and needle-leaved forests in Murcia and Comunitat Valenciana.

Precipitation is one of the most important meteorological factors that drive GPP
in natural vegetation. Negative trends in GPP demonstrate its close relationship with
precipitation (Figure 5a). A similar pattern can be observed in the SPI trend (Figure 6a).
These observations are particularly clear in arid and semiarid areas where cloudy skies
are not frequent, and precipitation is a controlling factor of vegetation phenology and
productivity [61]. In this case, the lack of water provision (Figure 6a) has a direct impact on
carbon absorption (mainly controlled by PAR) and carbon assimilation after autotrophic
respiration. Negative trends in agricultural areas (areas 7, 8, and 9 in Figure 7b) mainly
belong to regions where average rainfall decreased and its seasonal distribution was altered.
For instance, La Mancha wetlands (area 7) has been widely recognized to suffer from the
depletion of the groundwater due to an excessive water extraction from the aquifers [62] and
an intense use of agricultural exploitation practices. At local scale, the strong correlation
between GPP (rSPI-GPP > 0.59) and NPP (rSPI-GPP > 0.53) with SPI found for almost all
sites (Table 3) reinforces the statement that precipitation is a key factor of vegetation
dynamics in temperate regions [57]. A remarkable reduction in photosynthetic activity and
carbon assimilation (QGPP(10−2) < −0.02 d−1; QNPP(10−2) < −0.23 d−1) was observed on
interannual scale at sites C (shrublands), D (rainfed crops), F (evergreen broadleaved forest),
and I (low-altitude evergreen needle-leaved forest). In these cases, a negative correlation
with temperature may possibly be a determinant factor. Increasing temperatures can cause
high evaporation and larger vapor pressure deficit, which in turn creates water deficit and,
subsequently, a negative impact on optimum plant growth which seems to more directly
affect carbon fluxes [63]. Particularly, site F (Mediterranean evergreen cork oak) was
reported to experience a considerable increase of mean annual air temperature and rainfall
extremes during recent decades, projecting a higher frequency of droughts and intense
rain events. Productivity losses reported in this study are supported by a generalized
decline of the cork oak in the Mediterranean basin found in different studies [64]. Site F
shows a severe reduction in annual GPP in 2005, 2012, 2013, and 2017. As reported by the
Spanish Meteorological Agency (www.aemet.es, accessed on 13 January 2022), 2005 has
been recognized as the driest year, followed by 2017 and 2012 with 40%, 27%, and 15% less
annual precipitation than the mean value, respectively. In this regard, [63] reported that
drought is the driving factor of global NPP diminution. Moreover, different causes, such as
the increase in the outbreaks of tree disease due to more favorable conditions for pathogen
development, extreme overgrazing by livestock leading to a reduced regeneration rate,
and an excessive development of forest resources [64] may also explain these findings.
For site I (conifer forest species, mainly Pinus nigra ssp.), a reduction in productivity was
observed (QGPP(10−2) = −0.021 ± 0.015 d−1; QNPP(10−2) = −0.23 ±0.04 d−1), which was
more important in the production of new biomass. The large positive correlation with SPI
and the large negative correlation with air temperature may indicate that this ecosystem is
particularly vulnerable to climate variations. Vulnerability of zonal ecosystems, particularly
forests, over the MLE is very high given its significant role in carbon and hydrological
cycling studies [65]. Evidence of major changes for Mediterranean conifer species located
at low elevations was also found in [66].

Site A (sparse vegetation) presented the largest negative GPP trend (QGPP(10−2) =
−0.93 ± 0.09 d−1) and a poor correlation with air temperature. The trend is supported
by the land aridity observed in recent decades due to water scarcity, temperature, and
radiation factors [8]. The small correlation between GPP and air temperature (rGPP-T = 0.12)
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evidences the precipitation (rGPP-SPI = 0.59) as a limiting growth factor compared to air
temperature. In sparse vegetation areas, vegetation conduces to the expansion of root
system for the increasing absorption of minerals and water in an attempt to increase
resilience. Figure 6a revealed that a very advanced degradation process may be explained
by the severely decreased precipitation in the studied period. As reported by [67], less
precipitation in aridity areas is compensated in the long term by a proportional loss of
density in vegetation cover.

Increase of productivity (positive GPP (NPP) trend) was observed in sites B (grass-
lands), E (irrigated crops), G (low-altitude DBF), and H (high-altitude DBF). While site
B revealed a positive correlation between GPP and SPI and negative correlation between
GPP and air temperature, site G provided a positive correlation between GPP (NPP) and
both SPI and air temperature. Site B belongs to a Mediterranean savanna-like ecosystem
with scattered trees (open holm oak woodland) over annual grassland, where the favorable
condition of precipitation observed in Figure 6a may account for the increasing of GPP
(reaching GPP values up to 5 g m–2 d–1). Site G belongs to a broadleaved forest where
favorable precipitation and air temperature conditions lead to the predominance of pos-
itive GPP (NPP) trends rather than negative ones (Figure 6 and Table 3). The smallest
correlations between GPP (NPP) and SPI were found in sites E and H. Despite these low
correlations, site E showed positive GPP trend mainly controlled by irrigation systems.
Although this site exhibited productivity values up to 15 g m–2 d–1, it may be slightly
affected by water restrictions due to water resources scarcity as it was observed in lower
peaks over drought events (e.g., 2015). In this case, the response of the crop to this situation
would depend on the drought magnitude and resilience of the affected area. Site H showed
a higher correlation between GPP (NPP) and air temperature than between GPP (NPP) and
SPI. It is probable that warming is amplified with elevation resulting in rapid changes in
temperature, humidity, and water in mountains areas [68]. However, although these areas
may be affected by drought periods, the development of the vegetation generally continues
in spring and summer because enough water is still available. Thus, significant positive
trends may be found (QGPP(10−2) = 0.161 ± 0.006 d−1; QNPP(10−2) = 0.111±0.005 d−1).

To better understand the effect of these long-term changes, other magnitudes may
be also examined regarding other significant information on carbon fluxes. This is the
case of the carbon use efficiency (CUE). It is an interesting variable that describes how
efficiently plants incorporate the carbon fixed during photosynthesis into biomass gain [69].
It can be calculated as the ratio between NPP and GPP. In a previous study [70], the
CUE was analyzed for the Peninsular Spain study area throughout eight years, 2005–2012.
Results showed that CUE exhibited a positive correlation with precipitation and a negative
correlation with temperature in most ecosystems. In this study, GPP refers to the whole
ecosystem, whereas NPP refers only to the trees and is only obtained for forest canopies;
then, an analysis of CUE cannot be addressed to compare with previous results. However,
considering the annual values of our NPP and GPP (Table 3) as a proxy of CUE, it is
observed that, effectively, the correlation between CUE and precipitation is positive (for all
the sites except for J), and the correlation between CUE and temperature is negative (for all
sites except G), thus confirming a general tendency of CUE to decrease when the ecosystem
conditions change towards aridity.

7. Conclusions

The methodology proposed to infer long-term vegetation changes (MRA-WT) from
15-year daily GPP and NPP 1 km spatial resolution series over Peninsular Spain demon-
strated its effectiveness in a multilevel decomposition time series at different tempo-
ral scales.

The main key findings of our study are as follows:

i. Daily GPP and NPP time series demonstrated to be a high quality input for the
temporal analysis, specifically for water stress characterization in sparse vegetation
areas (obtained the same precision, 10%, as in dense vegetation areas).
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ii. A higher temporal resolution offered an opportunity to improve the accuracy in the
trend estimates since more significant pixels (72%) were obtained as compared to
annual resolution studies (17%).

iii. A negative clear agreement between GPP and precipitation was observed, particu-
larly in southeastern Spain, eastern Mediterranean coastland, and central Spain. An
increase in temperature was shown to favor the carbon assimilation of deciduous
broadleaved forest in the north of Spain.

iv. Evidence of forest vulnerability was confirmed, particularly in Mediterranean conifer
species located at low elevations.

As further research, the quantification of limiting factors, such as water stress in the
vegetation response and the production of biomass, is particularly relevant. In this sense,
the interannual CUE characterization of this region would be of great interest, as would
the water used efficiency (WUE), which is defined as the ratio of carbon gain to water
consumption (i.e., evapotranspiration) and quantifies the rate of carbon uptaken per unit
of water loss.
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