Evaluation of Spectroscopy and Methodological Pre-Treatments to Estimate Soil Nutrients in the Vineyard
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Areas
2.2. Soil Sampling and Laboratory Analysis
2.3. Spectral Data Acquisition and Pre-Processing
2.4. Prediction Models
2.4.1. Regression Analysis: Calibration and Validation
2.4.2. Partial Least-Squares Regression (PLSR)
2.4.3. Random Forest (RF)
2.4.4. Statistics Estimating Model Performance
2.5. Mapping for Soil Characterization
3. Results and Discussion
3.1. Spectral Signatures and Main Variables
3.2. Partial Least-Squares Regression (PLSR) and Random Forest (RF) Analysis
PLSR | RF | ||||||||
---|---|---|---|---|---|---|---|---|---|
Nitrogen | Nitrogen | ||||||||
R2 | RMSE | SEP | RPD | F | R2 | RMSE | SEP | RPD | |
All r. | 0.53 | 0.04 | 0.04 | 1.64 | 3 | 0.57 | 0.04 | 0.04 | 1.49 |
VIS | 0.53 | 0.04 | 0.04 | 1.64 | 1 | 0.61 | 0.04 | 0.04 | 1.58 |
NIR | 0.50 | 0.04 | 0.04 | 1.67 | 1 | 0.53 | 0.04 | 0.04 | 1.41 |
SWIR | 0.53 | 0.04 | 0.04 | 1.64 | 4 | 0.43 | 0.05 | 0.05 | 1.27 |
Organic matter | Organic matter | ||||||||
R2 | RMSE | SEP | RPD | F | R2 | RMS | SEP | RPD | |
All r. | 0.61 | 1.29 | 1.28 | 1.62 | 4 | 0.68 | 1.18 | 1.20 | 1.74 |
VIS | 0.57 | 1.35 | 1.36 | 1.66 | 1 | 0.68 | 1.16 | 1.18 | 1.77 |
NIR | 0.84 | 0.79 | 0.80 | 1.39 | 6 | 0.57 | 1.36 | 1.38 | 1.51 |
SWIR | 0.65 | 1.22 | 1.22 | 1.59 | 7 | 0.53 | 1.44 | 1.46 | 1.43 |
Clay | Clay | ||||||||
R2 | RMSE | SEP | RPD | F | R2 | RMSE | SEP | RPD | |
All r. | 0.68 | 2.34 | 2.31 | 1.55 | 7 | 0.50 | 2.91 | 2.95 | 1.41 |
VIS | 0.37 | 3.34 | 3.31 | 1.79 | 3 | 0.51 | 3.01 | 3.06 | 1.36 |
NIR | 0.67 | 2.34 | 2.33 | 1.55 | 5 | 0.56 | 2.70 | 2.74 | 1.51 |
SWIR | 0.68 | 2.33 | 2.35 | 1.56 | 7 | 0.47 | 3.00 | 3.05 | 1.36 |
3.3. Transformations
PLSR | RF | ||||||||
---|---|---|---|---|---|---|---|---|---|
No transformation (NT) | |||||||||
Variable | R2 | RMSE | SEP | RPD | F | R2 | RMSE | SEP | RPD |
N | 0.53 | 0.04 | 0.04 | 1.64 | 3 | 0.57 | 0.04 | 0.04 | 1.49 |
OM | 0.66 | 1.29 | 1.28 | 1.62 | 4 | 0.68 | 1.18 | 1.20 | 1.74 |
Clay | 0.68 | 2.34 | 2.31 | 1.55 | 7 | 0.50 | 2.91 | 2.95 | 1.41 |
Signal smoothing by Savitzky-Golay (SG) | |||||||||
Variable | R2 | RMSE | SEP | RPD | F | R2 | RMSE | SEP | RPD |
N | 0.67 | 0.03 | 0.03 | 1.79 | 3 | 0.60 | 0.04 | 0.04 | 1.52 |
OM | 0.70 | 1.12 | 1.13 | 1.82 | 3 | 0.68 | 1.18 | 1.19 | 1.75 |
Clay | 0.49 | 2.99 | 3.01 | 1.39 | 3 | 0.50 | 2.92 | 2.96 | 1.40 |
Baseline normalization (BN) | |||||||||
Variable | R2 | RMSE | SEP | RPD | F | R2 | RMSE | SEP | RPD |
N | 0.64 | 0.04 | 0.04 | 1.75 | 2 | 0.59 | 0.04 | 0.04 | 1.54 |
OM | 0.69 | 1.15 | 1.15 | 1.79 | 2 | 0.62 | 1.29 | 1.31 | 1.59 |
Clay | 0.47 | 3.04 | 3.05 | 1.37 | 6 | 0.39 | 3.38 | 3.43 | 1.21 |
First derivative (FD) | |||||||||
Variable | R2 | RMSE | SEP | RPD | F | R2 | RMSE | SEP | RPD |
N | 0.62 | 0.04 | 0.04 | 1.70 | 1 | 0.53 | 0.04 | 0.04 | 1.44 |
OM | 0.67 | 1.18 | 1.18 | 1.74 | 2 | 0.66 | 1.22 | 1.23 | 1.69 |
Clay | 0.37 | 3.33 | 3.35 | 1.25 | 4 | 0.64 | 2.54 | 2.58 | 1.61 |
Standard normal variate (SNV) | |||||||||
Variable | R2 | RMSE | SEP | RPD | F | R2 | RMSE | SEP | RPD |
N | 0.62 | 0.04 | 0.04 | 1.707 | 2 | 0.54 | 0.04 | 0.04 | 1.47 |
OM | 0.68 | 1.15 | 1.16 | 1.784 | 3 | 0.61 | 1.30 | 1.32 | 1.58 |
Clay | 0.44 | 3.14 | 3.16 | 1.333 | 4 | 0.43 | 3.11 | 3.16 | 1.31 |
Spectroscopy (SP) | |||||||||
Variable | R2 | RMSE | SEP | RPD | F | R2 | RMSE | SEP | RPD |
N | 0.69 | 0.03 | 0.03 | 1.892 | 1 | 0.61 | 0.04 | 0.04 | 1.54 |
OM | 0.73 | 1.06 | 1.06 | 1.938 | 3 | 0.69 | 1.16 | 1.18 | 1.77 |
Clay | 0.52 | 2.90 | 2.91 | 1.444 | 3 | 0.52 | 2.85 | 2.90 | 1.43 |
Standard normal variate and detrending (SNV-D) | |||||||||
Variable | R2 | RMSE | SEP | RPD | F | R2 | RMSE | SEP | RPD |
N | 0.64 | 0.04 | 0.04 | 1.750 | 1 | 0.56 | 0.04 | 0.04 | 1.49 |
OM | 0.70 | 1.13 | 1.13 | 1.821 | 2 | 0.62 | 1.28 | 1.30 | 1.61 |
Clay | 0.39 | 3.26 | 3.28 | 1.283 | 7 | 0.54 | 2.93 | 2.98 | 1.39 |
3.4. Plot Mapping
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mashalaba, L.; Galleguillos, M.; Seguel, O.; Poblete-Olivares, J. Predicting Spatial Variability of Selected Soil Properties Using Digital Soil Mapping in a Rainfed Vineyard of Central Chile. Geoderma Reg. 2020, 22, e00289. [Google Scholar] [CrossRef]
- Pouladi, N.; Møller, A.B.; Tabatabai, S.; Greve, M.H. Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging. Geoderma 2019, 342, 85–92. [Google Scholar] [CrossRef]
- Alfaia, S.S.; Ribeiro, G.A.; Nobre, A.D.; Luizão, R.C.; Luizão, F.J. Evaluation of soil fertility in smallholder agroforestry systems and pastures in western Amazonia. Agric. Ecosyst. Environ. 2004, 102, 409–414. [Google Scholar] [CrossRef]
- Imre, S.P.; Kilmartin, P.A.; Rutan, T.; Mauk, J.L.; Nicolau, L. Influence of soil geochemistry on the chemical and aroma profiles of pinot noir wines. J. Food Agric. Environ. 2012, 10, 280–288. [Google Scholar]
- Tajik, S.; Ayoubi, S.; Zeraatpisheh, M. Digital mapping of soil organic carbon using ensemble learning model in Mollisols of Hyrcanian forests, northern Iran. Geoderma Reg. 2020, 20, e00256. [Google Scholar] [CrossRef]
- Brevik, E.C.; Calzolari, C.; Miller, B.A.; Pereira, P.; Kabala, C.; Baumgarten, A. Soil mapping, classification, and pedologic modeling: History and future directions. Geoderma 2016, 264, 256–274. [Google Scholar] [CrossRef]
- Fathololoumi, S.; Vaezi, A.R.; Alavipanah, S.K.; Ghorbani, A.; Saurette, D.; Biswas, A. Improved digital soil mapping with multitemporal remotely sensed satellite data fusion: A case study in Iran. Sci. Total Environ. 2020, 721, 137703. [Google Scholar] [CrossRef]
- Xing, Z.; Tian, K.; Du, C.; Li, C.; Zhou, J.; Chen, Z. Agricultural soil characterization by FTIR spectroscopy at micrometer scales: Depth profiling by photoacoustic spectroscopy. Geoderma 2019, 335, 94–103. [Google Scholar] [CrossRef]
- Van der Meer, F. The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 3–17. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J.; Yao, X.; Cao, W.; Zhu, Y. Laboratory assessment of three quantitative methods for estimating the organic matter content of soils in China based on visible/near-infrared reflectance spectra. Geoderma 2013, 202–203, 161–170. [Google Scholar] [CrossRef]
- Cambule, A.H.; Rossiter, D.G.; Stoorvogel, J.J.; Smaling, E.M.A. Building a near infrared spectral library Journal of Spectroscopy 11 for soil organic carbon estimation in the Limpopo national park, Mozambique. Geoderma 2012, 183–184, 41–48. [Google Scholar] [CrossRef]
- Bowers, S.; Hanks, R.J. Reflectance of radiant energy from soils. Soil Sci. 1965, 100, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Dalal, R.C.; Henry, R.J. Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry. Soil Sci. Soc. Am. J. 1986, 50, 120–123. [Google Scholar] [CrossRef]
- Ben-Dor, E. Quantitative remote sensing of soil properties. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2002; Volume 75, pp. 173–243. [Google Scholar]
- Hill, J.; Schütt, B. Mapping complex patterns of erosion and stability in dry Mediterranean ecosystems. Remote Sens. Environ. 2000, 74, 557–569. [Google Scholar] [CrossRef]
- Demattê, J.A.; Campos, R.C.; Alves, M.C.; Fiorio, P.R.; Nanni, M.R. Visible-NIR reflectance: A new approach on soil evaluation. Geoderma 2004, 121, 95–112. [Google Scholar] [CrossRef]
- Nanni, M.R.; Demattê, J.A.M.; Fiorio, P.R. Discriminant analysis two alone by means of non-terrestrial level spectral response. Pesq. Agropec. Bras. 2004, 39, 995–1006. [Google Scholar] [CrossRef] [Green Version]
- Seema; Ghosh, A.K.; Das, B.S.; Reddy, N. Application of VIS-NIR spectroscopy for estimation of soil organic carbon using different spectral preprocessing techniques and multivariate methods in the middle Indo-Gangetic plains of India. Geoderma Reg. 2020, 23, e00349. [Google Scholar] [CrossRef]
- Tan, K.H. Soil Sampling, Preparation and Analysis; Marcel Dekker: New York, NY, USA, 1996. [Google Scholar]
- Comino, J.R.; Bogunovic, I.; Mohajerani, H.; Pereira, P.; Cerdà, A.; Ruiz Sinoga, J.D.; Ries, J.B. The impact of vineyards abandonment on soil properties and hydrological processes. Vadose Zone J. 2017, 16, 1–7. [Google Scholar] [CrossRef]
- Peregrina, F.; Pérez-Álvarez, E.P.; Colina, M.; García-Escudero, E. Cover crops and tillage influence soil organic matter and nitrogen availability in a semi-arid vineyard. Arch. Agron. Soil Sci. 2012, 58, SS95–SS102. [Google Scholar] [CrossRef]
- Boyoucos, G.F. Hidrometer method improved for making particle size analyses of soils 1. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Fernández, I.; Cabaneiro, A.; Carballas, T. Organic matter changes immediately after a wildfire in an Atlantic forest soil and comparison with laboratory soil heating. Soil Biol. Biochem. 1997, 29, 1–11. [Google Scholar] [CrossRef]
- Vašát, R.; Kodešová, R.; Klement, A.; Borůvka, L. Simple but efficient signal pre-processing in soil organic carbon spectroscopic estimation. Geoderma 2017, 298, 46–53. [Google Scholar] [CrossRef]
- Rinnan, Å.; Van Den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Buddenbaum, H.; Steffens, M. The effects of spectral pretreatments on chemometric analyses of soil profiles using laboratory imaging spectroscopy. Appl. Environ. Soil Sci. 2012, 2012, 274903. [Google Scholar] [CrossRef] [Green Version]
- McBratney, A.B.; Minasny, B.; Rossel, R.V. Spectral soil analysis and inference systems: A powerful combination for solving the soil data crisis. Geoderma 2006, 136, 272–278. [Google Scholar] [CrossRef]
- Williams, P.; Dardenne, P.; Flinn, P. Tutorial: Items to be included in a report on a near infrared spectroscopy project. J. Near Infrared Spectrosc. 2017, 25, 85–90. [Google Scholar] [CrossRef]
- Næs, T.; Isaksson, T.; Fearn, T.; Davies, T. A User-Friendly Guide to Multivariate Calibration and Classification; NIR Publications: Chichester, UK, 2002; Volume 6. [Google Scholar]
- Cozzolino, D.; Cynkar, W.U.; Dambergs, R.G.; Shah, N.; Smith, P. In situ measurement of soil chemical composition by near-infrared spectroscopy: A tool toward sustainable vineyard management. Commun. Soil Sci. Plant Anal. 2013, 44, 1610–1619. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Goydaragh, M.G.; Taghizadeh-Mehrjardi, R.; Jafarzadeh, A.A.; Triantafilis, J.; Lado, M. Using environmental variables and Fourier Transform Infrared Spectroscopy to predict soil organic carbon. Catena 2021, 202, 105280. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F. A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning. ISPRS J. Photogramm. Remote Sens. 2018, 135, 173–188. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.-M.; McBratney, A. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends Anal. Chem. 2010, 29, 1073–1081. [Google Scholar] [CrossRef]
- Lu, P.; Wang, L.; Niu, Z.; Li, L.; Zhang, W. Prediction of soil properties using laboratory VIS–NIR spectroscopy and Hyperion imagery. J. Geochem. Explor. 2013, 132, 26–33. [Google Scholar] [CrossRef]
- Vasques, G.M.; Grunwald, S.; Sickman, J.O. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma 2008, 146, 14–25. [Google Scholar] [CrossRef]
- Rossiter, D.G. Applied Geostatistics Tutorial: Regional Mapping of Climate Variables from Point Simples. 2019. Available online: http://www.css.cornell.edu/faculty/dgr2/_static/files/R_PDF/exRKGLS.pdf (accessed on 9 November 2021).
- Nychka, D.; Furrer, R.; Paige, J.; Sain, S. “Fields: Tools for Spatial Data”. R Package Version 13.3. 2021. Available online: https://github.com/dnychka/fieldsRPackage (accessed on 2 January 2022).
- Rossiter, D.G. Exercise: Thin Plate Spline Interpolation. Cornell University. 2016. Available online: http://www.css.cornell.edu/faculty/dgr2/_static/files/R_PDF/exTPS.pdf (accessed on 9 November 2021).
- Rossel, R.V.; McBratney, A.B. Diffuse reflectance spectroscopy as a tool for digital soil mapping. In Digital Soil Mapping with Limited Data; Springer: Dordrecht, The Netherlands, 2008; pp. 165–172. [Google Scholar]
- Wetterlind, J.; Stenberg, B.; Söderström, M. The use of near infrared (NIR) spectroscopy to improve soil mapping at the farm scale. Precis. Agric. 2008, 9, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Stenberg, B.; Rossel, R.A.V.; Mouazen, A.M.; Wetterlind, J. Visible and near infrared spectroscopy in soil science. Adv. Agron. 2010, 107, 163–215. [Google Scholar]
- Jarquin-Sanchez, A.; Salgado-Garcia, S.; Palma-López, D.J.; Camacho-Chiu, W.; Guerrero-Pena, A. Analysis of total nitrogen in tropical soils with near-infrared spectroscopy (NIRS) and chemometrics. Agrociencia 2011, 45, 653–662. [Google Scholar]
- Northup, B.K.; Daniel, J.A. Near Infrared Reflectance-Based Tools for Predicting Soil Chemical Properties of Oklahoma Grazinglands. Agron. J. 2012, 104, 1122–1129. [Google Scholar] [CrossRef]
- Chang, C.-W.; Laird, D.; Mausbach, M.J.; Hurburgh, C.R., Jr. Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480. [Google Scholar] [CrossRef] [Green Version]
- Gras, J.-P.; Barthès, B.G.; Mahaut, B.; Trupin, S. Best practices for obtaining and processing field visible and near infrared (VNIR) spectra of topsoils. Geoderma 2014, 214, 126–134. [Google Scholar] [CrossRef]
- Bonett, J.P.; Camacho-Tamayo, J.H.; Ramírez-López, L. Mid-infrared spectroscopy for the estimation of some soil properties. Agron. Colomb. 2015, 33, 99–106. [Google Scholar] [CrossRef]
- Perret, J.; Villalobos-Leandro, J.E.; Abdalla-Bolaños, K.; Fuentes-Fallas, C.L.; Cuarezma-Espinoza, K.M.; Macas-Amaya, E.N.; López-Maietta, M.T.; Drewry, D. Development of spectroscopic methods and machine learning algorithms for evaluation of some soil properties in Costa Rica. Agron. Costarric. 2020, 44, 139–154. [Google Scholar]
- Zhao, D.; Arshad, M.; Wang, J.; Triantafilis, J. Soil exchangeable cations estimation using Vis-NIR spectroscopy in different depths: Effects of multiple calibration models and spiking. Comput. Electron. Agric. 2021, 182, 105990. [Google Scholar] [CrossRef]
- Ball, K.R.; Baldock, J.A.; Penfold, C.; Power, S.A.; Woodin, S.J.; Smith, P.; Pendall, E. Soil organic carbon and nitrogen pools are increased by mixed grass and legume cover crops in vineyard agroecosystems: Detecting short-term management effects using infrared spectroscopy. Geoderma 2020, 379, 114619. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.; McBratney, A.; Minasny, B. Proximal Soil Sensing; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Ben-Dor, E.; Banin, A. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci. Soc. Am. J. 1995, 59, 364–372. [Google Scholar] [CrossRef]
- Udelhoven, T.; Emmerling, C.; Jarmer, T. Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: A feasibility study. Plant Soil 2003, 251, 319–329. [Google Scholar] [CrossRef]
- Kooistra, L.; Wehrens, R.; Leuven, R.; Buydens, L.M.C. Possibilities of visible–near-infrared spectroscopy for the assessment of soil contamination in river floodplains. Anal. Chim. Acta 2001, 446, 97–105. [Google Scholar] [CrossRef]
- Du, C.; Zhou, J. Evaluation of Soil Fertility Using Infrared Spectroscopy—A Review. In Climate Change, Intercropping, Pest Control and Beneficial Microorganisms; Springer: Dodrecht, The Netherlands, 2009; pp. 453–483. [Google Scholar]
- Mukrimin, M.; Conrad, A.O.; Kovalchuk, A.; Julkunen-Tiitto, R.; Bonello, P.; Asiegbu, F.O. Fourier-transform infrared (FT-IR) spectroscopy analysis discriminates asymptomatic and symptomatic Norway spruce trees. Plant Sci. 2019, 289, 110247. [Google Scholar] [CrossRef]
- Rosero-Vlasova, O.A.; Pérez-Cabello, F.; Llovería, R.M.; Vlassova, L. Assessment of laboratory VIS-NIR-SWIR setups with different spectroscopy accessories for characterisation of soils from wildfire burns. Biosyst. Eng. 2016, 152, 51–67. [Google Scholar] [CrossRef]
- Odlare, M.; Svensson, K.; Pell, M. Near infrared reflectance spectroscopy for assessment of spatial soil variation in an agricultural field. Geoderma 2005, 126, 193–202. [Google Scholar] [CrossRef]
- He, Y.; Song, H.; Pereira, A.G.; Gómez, A.H. A new approach to predict N, P, K and OM content in a loamy mixed soil by using near infrared reflectance spectroscopy. In Proceedings of the International Conference on Intelligent Computing, Hefei, China, 23–26 August 2005; pp. 859–867. [Google Scholar]
- Vadillo, J.A.; Izquierdo, L.M.O.; Flaño, P.R.; Martínez, T.L. Spatial distribution of the vineyard in the autonomous community of La Rioja: Influence of topography and landforms. Polígonos Rev. Geogr. 2006, 16, 11–34. [Google Scholar]
N (%) | OM (%) | Clay (%) | |
---|---|---|---|
Plot | Mean | ||
Lobeira | 0.20 | 4.28 | 21.01 |
Monteveiga | 0.23 | 6.31 | 16.20 |
Ribadulla | 0.13 | 2.57 | 22.94 |
Maximum | |||
Lobeira | 0.32 | 7.57 | 29.30 |
Monteveiga | 0.39 | 11.05 | 19.53 |
Ribadulla | 0.26 | 6.07 | 30.86 |
Minimum | |||
Lobeira | 0.11 | 2.07 | 15.51 |
Monteveiga | 0.14 | 3.57 | 13.82 |
Ribadulla | 0.06 | 1.01 | 15.58 |
Standard deviation | |||
Lobeira | 0.05 | 1.20 | 3.59 |
Monteveiga | 0.06 | 1.62 | 1.48 |
Ribadulla | 0.05 | 1.29 | 3.71 |
RF | PC-RF | |||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
N | 0.57 | 0.04 | 0.49 | 0.04 |
OM | 0.68 | 1.18 | 0.59 | 1.34 |
Clay | 0.50 | 2.91 | 0.51 | 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Febereiro, M.; Dafonte, J.; Fandiño, M.; Cancela, J.J.; Rodríguez-Pérez, J.R. Evaluation of Spectroscopy and Methodological Pre-Treatments to Estimate Soil Nutrients in the Vineyard. Remote Sens. 2022, 14, 1326. https://doi.org/10.3390/rs14061326
Rodríguez-Febereiro M, Dafonte J, Fandiño M, Cancela JJ, Rodríguez-Pérez JR. Evaluation of Spectroscopy and Methodological Pre-Treatments to Estimate Soil Nutrients in the Vineyard. Remote Sensing. 2022; 14(6):1326. https://doi.org/10.3390/rs14061326
Chicago/Turabian StyleRodríguez-Febereiro, Marta, Jorge Dafonte, María Fandiño, Javier J. Cancela, and José Ramón Rodríguez-Pérez. 2022. "Evaluation of Spectroscopy and Methodological Pre-Treatments to Estimate Soil Nutrients in the Vineyard" Remote Sensing 14, no. 6: 1326. https://doi.org/10.3390/rs14061326
APA StyleRodríguez-Febereiro, M., Dafonte, J., Fandiño, M., Cancela, J. J., & Rodríguez-Pérez, J. R. (2022). Evaluation of Spectroscopy and Methodological Pre-Treatments to Estimate Soil Nutrients in the Vineyard. Remote Sensing, 14(6), 1326. https://doi.org/10.3390/rs14061326