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Abstract: Precisely monitoring the growth condition and nutritional status of maize is crucial for
optimizing agronomic management and improving agricultural production. Multi-spectral sensors
are widely applied in ecological and agricultural domains. However, the images collected under
varying weather conditions on multiple days show a lack of data consistency. In this study, the
Mini MCA 6 Camera from UAV platform was used to collect images covering different growth
stages of maize. The empirical line calibration method was applied to establish generic equations for
radiometric calibration. The coefficient of determination (R2) of the reflectance from calibrated images
and ASD Handheld-2 ranged from 0.964 to 0.988 (calibration), and from 0.874 to 0.927 (validation),
respectively. Similarly, the root mean square errors (RMSE) were 0.110, 0.089, and 0.102% for
validation using data of 5 August, 21 September, and both days in 2019, respectively. The soil and
plant analyzer development (SPAD) values were measured and applied to build the linear regression
relationships with spectral and textural indices of different growth stages. The Stepwise regression
model (SRM) was applied to identify the optimal combination of spectral and textural indices
for estimating SPAD values. The support vector machine (SVM) and random forest (RF) models
were independently applied for estimating SPAD values based on the optimal combinations. SVM
performed better than RF in estimating SPAD values with R2 (0.81) and RMSE (0.14), respectively.
This study contributed to the retrieval of SPAD values based on both spectral and textural indices
extracted from multi-spectral images using machine learning methods.

Keywords: empirical line calibration method (ELCM); machine learning; soil and plant analyzer
development (SPAD); spectral and textural indices; stepwise regression model (SRM); unmanned
aerial vehicle (UAV)

1. Introduction

The unmanned aerial vehicle (UAV) mounted with multi-sensors has attracted great at-
tention for the easy deployment, flexibility, and high temporal (daily) and spatial (centimeter-
levels) resolutions in ecological and environmental domains [1–4].Compared with satellite
platforms, UAVs are generally labelled as being light weight, with optional flying alti-
tude, flexible dates for data acquisition, and easy deployment [5–8]. Therefore, UAVs are
gradually becoming an alternative tool to satellite remote sensing in several applications,
such as modelling, mapping, and monitoring biophysical parameters of vegetations in
ecology, rangelands, forests, and agriculture [9–13]. UAVs mounted with multi-sensors are
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commonly applied to acquire high resolutions images for crop phenotyping of breeding
and quantifying crop biophysical parameters variability for site-specific management in
precision agriculture (PA) [14–18]. UAV remote sensing can be used in various agricul-
tural aspects, such as predicting the soil and plant analyzer development (SPAD) values
of canopy, detecting water stress, measuring crop’s canopy temperature, and predicting
agricultural yields [19–22]. The high-throughput data, such as the high spatial resolution
of multi-spectral images, provide great potentials in optimizing agronomic management of
input to maximize crop yields and quality in PA [23–25].

The multi-spectral images can hardly be directly used to retrieve the physiological
parameters of vegetation (forests and crops), as the original digital number (DN) contained
both atmospheric effects and camera noise [26,27]. The statistical-based empirical line
calibration method (ELCM) was commonly applied to calibrate the sensors mounted on
satellites by reducing the atmospheric effects and converting the DN into reflectance. Com-
monly, two or more calibration targets of different gray levels were deployed, and the
relationship between DN and reflectance was assumed to be linear [28]. With the devel-
opment of UAV technology, the ELCM was widely applied in calibrating multi-spectral
images acquired from UAV platforms. The detailed processing workflow containing data
collection, pre-processing, radiometric calibration, and image classification based on the
Mini MCA-6 Camera (MMC, Tetracam, Inc., Chatsworth, CA, USA) from a fixed-wing UAV
was proposed and shown [29]. The radiometric calibration of a multi-spectral sensor with
several calibration targets using ELCM was simplified, and achieved high accuracy [30].
The radiometric calibration using both artificial and natural objects were applied by a
vicarious method [31]. However, the images were mostly acquired on a single day in men-
tioned studies, of which the climatic condition merely changed during the data acquisition.
Therefore, there remained uncertainties in the synchronous measurement of reflectance
due to accidental errors (measurement error from observation) and rapid changes of cli-
matic variables (weather conditions and solar radiation). Thus, there is a need to test
the effectiveness of the generic equations using the images collected on multi-days with
the ELCM.

Various spectral indices (SIs) such as the normalized difference vegetation index
(NDVI) and near-infrared reflectance of vegetation (NIRv) were widely used to investigate
the plant’s physiological status, such as the nitrogen and CC, as well as the green leaf
biomass and gross primary production (GPP) at large scales [32–35]. The textural indices
(TIs) referred to the spatial variations of image greyscale levels as a function of scale, which
were very helpful in improving the accuracy in image classification, image segmentation,
change detection, yield prediction, and pattern cognition [36–38]. Combining SIs and TIs
has great potential in interpreting features in pixel-based classification [39,40]. The SIs
and TIs were combined to estimate the leaf area index (LAI) of rice, and results showed
the combination of both texture and spectrum improved the prediction accuracy [41].
The potential performance of added textural information for image classification using
the object-based image analysis (OBIA) techniques was tested, and achieved relatively
high accuracy [42]. So far, textural information’s potential ability to monitor the growth
condition of crops was rarely reported and kept unknown. Meanwhile, previous studies
mainly used the data collected on limited growth stages of crops. Therefore, there is a need
to assess the ability of combining the SIs and TIs for monitoring the growth condition of
crops covering the entire growth stages.

The SPAD-502 chlorophyll meter (SPAD-502, Spectrum Technologies, Inc., Plainfield,
IL, USA) was commonly applied to measure SPAD values, of which the values were
proven to have correlated with the growth condition of crops and forests [1,43–46]. The
readings of SPAD values can reflect the growth condition of vegetation in a direct way, of
which high values indicated healthy growth of the plants [1,11]. The limited samples of
SPAD values combined with near-surface UAV remote sensing can be applied for a large
scale with high accuracy [47]. The relationships between plot-level SIs derived from UAV
images and ground measured data, such as LAI and SPAD values, were calculated and
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compared, and the difference of these at two different rice growth stages were discussed and
analyzed [48]. Shu et al. improved the estimation accuracy of SPAD values by removing
the backgrounds from UAV hyper-spectral images [49]. The SPAD values of winter wheat
was estimated using the cluster-regression method based on UAV hyper-spectral data [50].
New indices were proposed to predict SPAD values based on UAV RGB images for naked
barley leaves [51]. The measurement of SPAD values provided effective and stable methods
for identifying the crop phenotyping. The SPAD values have the potential to be converted
into physiological parameters such as leaf chlorophyll content [52].

In this study, the ELCM was applied to obtain generic equations for the radiometric
calibration of multi-spectral images acquired on different growth stages of maize. The
hypothesis of this study was that the radiometric calibration using the generic equations
was still effective, and thus, the indices (Sis and Tis) calculated based on well calibrated
images will better catch the dynamic growth status of maize. The combined indices (spectral
and textural indices) will help to improve the accuracy of predictions of SPAD values
with advanced machine learning approaches at different growth stages of maize [53,54].
Therefore, the objectives of this study were to (1) generate and validate the generic equations
for radiometric calibration of MMC; (2) investigate the potential ability of spectral indices,
textural indices, and combined spectral and textural indices for predicting SPAD values at
different growth stages of maize; and (3) scale up the estimations of SPAD values for maize
using two machine learning approaches.

2. Materials and Methods
2.1. Study Area

The data collection was conducted in Nanpi Eco-Agricultural Experimental Station
(NEES) (38.00◦ N, 116.40◦ E) (Figure 1). The site was initially built in the year 1982 by the
Chinese Academy of Sciences (CAS) to explore the sustainable development of agriculture
in North China Plain (NCP). For the current experimental design, there were 20 plots
cultivated with the same maize cultivar (Zhengdan 958), treated by different varieties
and amounts of fertilizers including nitrogen (N), phosphate (P), and potassium (K) in
2019. Each plot measured 10 m long and 8 m wide to avoid the disturbance from the side
plot. The total amount of fertilizers for each plot was equally divided into three parts, one
third was applied around ten days after crop emergence, another one third was applied
at the booting date, and the last one third was applied at the tasseling date. The detailed
information of fertilizers was given in Table A1 in Appendix A. The management practices
such as pest and weed control were strictly performed by professional workers under a
standard procedure.

The DJI M600 Pro UAV platform (https://www.dji.com/cn/matrice600-pro, Shen-
zhen, China, accessed on 10 August 2021) equipped with Mini MCA 6 Camera (MMC)
(http://www.tetracam.com/Products-Micro_MCA.htm, Tetracam Inc., Chatsworth, CA,
USA, accessed on 10 August 2021) was applied for data collection. The system was used to
collect images concerning 20 plots at different growth stages of maize (Figure 1b,c). The
center wavelengths (full width at half maximum) of MMC were 490 (10), 550 (10), 680 (10),
720 (10), 800 (20), and 900 (10) nm for six bands, respectively. The relative monochromatic
response filter transmission and peak transmission wavelength of each filter are displayed
in Figure 1e. The MMC was proven to be very useful in generating maps of vegetation
indices for assessing the water stress at the crown level due to the narrow bands [55,56].
The camera was very effective in evaluating the rangeland environments by classifying
shrub canopies and grass patches using object-based image classification approach [29].
The camera was also applied in PA for monitoring the growth of maize by calculating
NDVI [57].

For this study, two reflectance panels of 5% (0.6 × 0.6 m) and 60% (1.2 × 1.2 m)
reflectance were used as black and white calibration targets, respectively. The contrast ratio
of these two targets was (60/5 = 12), which was suitable for radiometric calibration [23].

https://www.dji.com/cn/matrice600-pro
http://www.tetracam.com/Products-Micro_MCA.htm
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These panels were relatively flat, the reflectance was uniform in all directions, and these
panels can be deemed as Lambertian targets (Figure 2).
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2.2. Data Collection

The UAV data covering the entire growth stages of maize were collected between
11:30 to 12:30 AM (Beijing time) to minimize changes in solar zenith angle in cloudless
weather conditions. The important phenological events of maize, including the tasseling
date (18 August), silking (25 August), blister (7 September), milk (15 September), phys-
iological maturity (21 September), and maturity (30 September), were selected for data
collection in the year 2019. For each flight, the altitudes and the speeds were strictly con-
trolled as 50 m and 4 m/s, respectively. Each flight’s forward and side overlaps were set as
80 and 70%, and the detailed information of trajectory of UAV flight routes weraree clearly
shown in Figure A1. The detailed locations of four ground control points (GCPs) were
measured using the real-time kinematic (RTK) S86T system with fixed solutions (Table 1,
Figure A2) [11]. The original RAW images were converted into single TIFF images, and
then six single TIFF images of each shot were converted into one big multi-tiff image within
PixelWrench2 Software (PW2, Tetracam Inc., Chatsworth, CA, USA) [29]. The orthophoto
containing six multi-spectral bands was generated within Pix4D Mapper, based on the
stacked images (Lausanne, Switzerland). The orthophotos acquired from different growth
stages of maize were selected using the same region of interest (ROI) for each plot within
Exelis ENVI (version 5.3, http://www.exelisvis.com, accessed on 15 August 2021) [58–61].

The panels were pre-set before each flight, and the reflectance was measured us-
ing ASD Handheld-2 (ASD-HH2, ASD Inc., Boulder, CO, USA, http://www.asdi.com/,
accessed on 16 September 2021) shortly after the flight mission. The ASD Handheld-2 can
measure reflectance ranging from 325 to1075 nm with spectral resolution being 1 nm [24].
To ensure the high accuracy of the spectrum collection, the measurement of reflectance was
performed within 15 min after each flight. The reflectance of maize in 20 plots was inde-
pendently collected on 5 August and 21 September 2019 for validation. Since the different
spectrum resolutions of bands for MMC and ASD-HH2, there is a need to resample the

http://www.exelisvis.com
http://www.asdi.com/
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narrow spectrum resolution of ASD-HH2 to make data consistent, fitting the wide spectrum
resolution of MMC. The spectrum resampling was processed using the following equation:

Re =

∫ λ2
λ1

ρλSλdλ∫ λ2
λ1

Sλdλ

(1)

where λ1 and λ2 are the maximum and minimum wavelengths of each band, Sλ is the spec-
tral response at wavelength λ, and ρλ is the reflectance of calibration target at wavelength
λ, respectively [31,62]. The dλ is the difference of signal of each wavelength (λ).
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Table 1. The detailed geo-location information of the ground control point (GCP) measured using
the real-time kinematic (RTK) S86T system. The columns each present the locations of the GCP, and
fixed solutions indicate the measurement was stable. The rows each represent the series number of
the GCP.

Latitude (◦) Longitude (◦) Height (m) Fixed Solution

GCP 1 38.0156966331 116.6801892261 1.434 yes
GCP 2 38.0155875386 116.6794440042 1.530 yes
GCP 3 38.0149917169 116.6794959572 1.487 yes
GCP 4 38.0149398778 116.6802395461 1.316 yes
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The SPAD values of maize in each plot were measured using SPAD-502Plus (Spectrum
Technologies, Inc., Plainfield, IL, USA). A total of five sampling points were conducted
at four corners and center in each plot. For each sampling, three strains of maize were
randomly selected for the measurement of SPAD values using SPAD-502Plus [63,64]. There
were 15 SPAD values in each plot, and the average values were calculated to be repre-
sentative. This procedure was applied for data collection during the entire growth stages
of maize.

2.3. Radiometric Calibration of Multi-Spectral Images

For the radiometric calibration, the DN and reflectance of calibration targets of all
dates were applied to obtain the generic equations. Firstly, the ROI covering 18 × 18 pixels
at the center of calibration targets were made within ENVI5.3. Secondly, the average DN
of the calibration targets within the ROI of the entire growing season were applied to plot
against in-situ reflectance. Then, the ELCM was applied to confirm a line that can best fit
all points as follows:

Reflectance = k × DN ± intercept (2)

where the Reflectance was the reflectance of calibration targets, and k and DN (in 8 bit
format) each represent the inherent properties of MMC, and the intercept is composed of
systematic noise and atmospheric effects [23,65]. Through this method, the generic equation
was independently confirmed for each band of the camera. Thirdly, the radiometric
calibration was conducted by applying the generic equations to the original images.

For validation, the reflectance of maize was compared from calibrated images and
from ASD-HH2 on 5 August, 21 September, and on both days. The accuracy was as-
sessed by calculating the coefficients of determination (R2, Equation (3)), the root mean
square error (RMSE, Equation (4)), and the normalized root mean square error (NRMSE,
Equation (5)), respectively.

R2 =
∑n

i=1
(

Mi −M
)(

Pi − P
)√

∑n
1
(

Mi −M
)2 −∑n

1
(

Pi − P
)2

(3)

RMSE =

√
1
n ∑n

1 (Pi −Mi)
2 (4)

NRMSE =

√
∑N

i=1(Pi −Mi)
2

n
× 100× n

∑n
i Mi

(5)

In the equations, n represents total number of samples, and Mi and Pi each represent
the measured reflectance from ASD-HH2 and calibrated images. The M and P each
represent the average values of M and P, respectively.

2.4. Extractions of Spectral and Textural Indices and Optimal Combinations

The multi-spectral images were applied to extract the SIs and TIs of each plot covering
the entire growth stages of maize. Before calculation of SIs, the images were divided into
vegetation (maize) and non-vegetation (soil and other disturbance) using statistics-based
segmentation approach. Since the maize was well managed by professional workers, it was
assumed that the pixels only contained maize and soil. There was an intuition that the
reflectance of maize and soil was totally different in the near-infrared band, and it was
promising they could be successfully separated. To find out the real difference of the maize
and soil, the pixels only containing maize and the pixels only containing soil were obtained
and counted. The results showed that the reflectance of maize and soil were completely
different in the near-infrared band (720 nm), of which the reflectance of soil was relatively
low in the near-infrared band, and the threshold for dividing the maize and soil was set as
4%. The pixel with reflectance higher than 4% was deemed as vegetation, and the rest was
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set as soil. Then, the pixels contained only maize were applied to calculate the SIs using the
equations in Table 2.

Table 2. The multi-spectral indices evaluated in this study. B, G, R, RE, and NIR each represent the
blue, green, red, red edge, and near infrared band in reflectance. The first column indicates the name
of spectral indices, the second column is the corresponding definition of the spectral indices, and the
third column is the reference.

Spectral Indices Formulations Reference

Normalized Difference Vegetation
Index (NDVI) (NIR − R)/(NIR + R) [66]

Enhanced Normalized Difference Vegetation
index (ENDVI) (RE + G − 2 × B)/(RE + G + 2 × B) [67]

Infrared Percentage Vegetation Index (IPVI) NIR/(NIR + R) [68]
Normalized Red Index (NRI) R/(RE + NIR + R) [69]

Transformed Normalized Difference
Vegetation Index (TNDVI)

√
((NIR− R)/(NIR + R + 0.5) [70]

MERIS Terrestrial Chlorophyll Index (MTCI) (NIR − RE)/(RE − R) [71,72]
Modified Double Difference Index (MDD) (NIR − RE) − (NIR − R) [73,74]
Normalized Difference Red Edge (NDRE) (NIR − RE)/(NIR + RE) [75,76]

Red Edge Chlorophyll Index (RECI) (NIR/RE) − 1 [67]
Green Soil Adjusted Vegetation

Index (GSAVI) 1.5 × (NIR − G)/(NIR + G+0.5) [73]

Red Edge Chlorophyll Index (CI Red Edge) NIR/RE − 1 [67]
DATT (NIR − RE)/(NIR − R) [77]

Normalized Red Edge Index (NREI) RE/(RE + NIR + G) [78]
Modified Chlorophyll Absorption In

Reflectance Index (MCARI) (NIR − RE) − 0.2 × (NIR − R) ×NIR/RE [79]

Blue Ratio Vegetation Index (GRVI) NIR/B [80]
Normalized Red Vegetation Index (NRI) R/(RE + NIR + R) [81,82]

Modified Enhanced Vegetation Index (MEVI) 2.5 × (NIR − RE)/(NIR + 6 × RE − 7.5 × G + 1) [78,83]
Transformed Normalized Difference

Vegetation Index (TNDVI)
√
((NIR− R)/(NIR + R) + 0.5) [70]

Normalized pigment chlorophyll ratio
Index (NPCI) (R − B)/(R + B) [84–86]

Modified Red Edge Green Blue Difference
Vegetation Index (MRGBVI) (RE + 2 × G − 2 × B)/(edge + 2 × G + 2 × B) Commonly applied

Enhanced NIR Green Blue Difference
Vegetation Index (ENGBVI) (RE × NIR + 2 × G − 2 × B)/(RE × NIR +2 × G + 2 × B) Commonly applied

Modified Red Edge NIR Green Blue
Difference Vegetation Index (MRNGBVI) (RE × NIR + G − B)/(RE × NIR + G + B) Commonly applied

The commonly applied TIs containing the contrast, correlation, energy, homogeneity
were extracted based on gray level co-occurrence matrix (GLCM). The GLCM was a typical
method for the extraction of textural properties proposed by Haralick et al. in 1973 [87,88]
(Table 3). The TIs were independently extracted for each plot based on GLCM, the average
properties were calculated, and the temporal changes of TIs were obtained for different
growth stages.

The linear regression analysis was applied between spectral and textural indices (inde-
pendent variables), and the SPAD values (dependent variable) in 20 plots of maize for the
entire growing season (including six phenological dates, from tasseling to harvest). Then,
both spectral and textural indices with higher R2 were retained as a potential predictor of
SPAD values at each growth stage using stepwise linear regression method (SRM) [89–91].
In this way, all spectral and textural indices were input into the equation model, and the op-
timal combination of spectral and textural indices at each growth stage was independently
confirmed [92].
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Table 3. The definition of the textural indices used in this study. The first column indicates the name
of textural indices, the second column is the corresponding definition, and the third column is the
ranges of each textural index.

Textural Indices Formula Value

Contrast Contrast = ∑i,j|i− j|2 p(i, j) 0 to the square of the gray level minus one

Correlation Correlation = ∑
i, j

(i−µi)(j−µj) p(i,j)
σiσj

−1 to 1

Energy Energy = ∑
i, j

p(i, j)2 0 to 1

Homogeneity Homogeneity = ∑
i, j

p(i,j)
1+|i−j| 0 to 1

Note: Where, i, j are the length and width of the image. The p is the number of gray-level co-occurrence matrices
in GLCM.

2.5. Machine Learning Methods for Modeling the SPAD Values

The support vector machine (SVM) was benchmarked in remote sensing for classifica-
tion and regression, and it has been widely applied for solving regression problems using
linear, polynomials, splines, and radial basis function networks [93–95]. The Libsvm was
developed by Chang and Lin (2011), and the model was widely distributed in many pro-
gramming languages for classification and regression [96]. The regression kernel functions,
such as epsilon-SVR and nu-SVR in Libsvm, can be applied for regression. To be more
specific, the kernel type was set as sigmoid, with the SVM type being epsilon-SVR, and the
parameter of epsilon was set as 0.01 for predicting SPAD values.

Random forest (RF) was firstly developed by Breiman (2016), as an extension of the
bagging classification tree [97–99]. RF measured the importance of each variable and
selected the candidate predictor to improve the accuracy of regression. The model can
also be applied to handle the high-dimensional big data in remote sensing and artificial
intelligence domains [100–102].

The SVM and RF models were conducted to build the non-linear relationships between
the selected indices and SPAD values. To be more specific, both models were built based
on the data collected at different growth stages of maize. There were 20 samples of spectral
and textural indices with the SPAD values for each growth stage. To improve the stability
of the models, the samples were firstly replicated (data augmentation), the leave one out
(LOO) method was applied hundreds of times, and the model with highest R2 and lowest
RMSE were confirmed as the optimized model. The SVM and RF models with optimized
parameters were applied to predict SPAD values with selected indices at optimal growth
stages of maize for the region, respectively.

3. Results
3.1. The Calibration and Validation of MMC

The multi-spectral images acquired from MMC at different growth stages of maize
were obtained, mosaicked, and independently clipped using the same ROI within ENVI5.3.
The subtracted multi-spectral of different growth stages are shown in Figure 3.

The R2 ranged from 0.964 to 0.988 for six bands (n = 14, p < 0.001), indicating goodness
of fit indicators (Figure 4). The calibration equation for each band was obtained, and the
k values in each equation represented the specific characteristics. The similar values of k
were found for band 1, band 2, band 3, and band 4 indicated the similar characteristics of
these four bands. The k values for band 5 and band 6 of 0.0030 and 0.0035 implied that
these two bands (near-infrared) have a fundamental difference from band 1 to band 4.

The validation of calibration was performed by comparing reflectance from cali-
brated images, and ASD-HH2 is shown in Figure 5. The R2 were 0.874 (5 August),
0.927 (21 September), and 0.882 on both days (5 August and 21 September). The correspond-
ing RMSEs (NRMSE) were 0.110 (0.177), 0.089 (0.138), and 0.102 (0.152), respectively. Thus,
the radiometric calibration achieved high accuracy with the proposed generic equations.
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Figure 4. The scatter plots of DN from multi-spectral images and reflectance from ASD-HH2. Note:
each dot in sub-image represents one calibration target. (a) band 1: 490 nm, (b) band 2: 550 nm,
(c) band 3: 670 nm, (d) band 4: 700 nm, (e) band 5: 800 nm and (f) band 6: 900 nm.

3.2. Linear Regression Analysis between Indices and SPAD Values

The linear regression analysis was performed between the VIs and SPAD values during
the entire growing season. The regression equations with R2, and p-values of the first ten
indices were shown (Table 4). The R2 ranged from 0.001 to 0.412 with p-values significant.
Thus, the R2 was not relatively high enough, and the top ten largest R2 were shown with
equations. The linear regression coefficients were different for different growing stages of
maize and the modeling of SPAD values at each growth stages should rely on data collected
on the same day.
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Table 4. The results of linear regression analysis between spectral indices and SPAD values of the
entire growing season. The first column indicates the name of spectral indices, the second column is
the linear regression equations, and the third and fourth columns are the R2 and p, respectively.

Spectral Indices Linear Regression Equations R2 p

NDRE Y = 31.07X + 62.76 0.412 p < 0.001
RECI Y = 38.74X + 12.60 0.389 p < 0.001

ENDVI Y = 59.29X − 14.00 0.352 p < 0.001
DATT Y = 24.16X + 53.00 0.411 p < 0.001
NGI Y = 90.11X − 127.24 0.332 p < 0.001

MCARI Y = 42.40X + 30.29 0.381 p < 0.001
MRGBVI Y = 60.76X – 14.77 0.328 p < 0.001
MRNRVI Y = 30.01X + 9.92 0.376 p < 0.001

MTCI Y = 39.96X + 9.74 0.375 p < 0.001
MDD Y = 50.67X + 58.37 0.399 p < 0.001

The SIs and SPAD values at each growth stage of maize was conducted using the linear
regression analysis, and the first seven indices with high R2 are shown in Figure 6. The
detailed results of the regression equations, R2 and p-values of linear regression analysis,
were given (Table A2). The average values of R2 using the higher seven indices were 0.5174,
0.375, 0.398, 0.4189, 0.535, 0.512, and 0.340 for the different growth stages of maize. The R2

using different growth stages were commonly larger than those using the entire growing
season. The highest R2 occurred on 21 September, indicating that the phenology was a very
important indicator for predicting SPAD values.
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Figure 6. The R2 of the linear regression between spectral indices and SPAD values at different
growth stages of maize. The x-axis represents different spectral indices and the different colors
indicate the indices calculated for different dates.

The linear regression analysis was conducted between TIs and SPAD values at each
growth stage of maize (Figure 7). The detailed results of R2 and p values are given in
Table A3. The average values of R2 using the TIs were 0.189, 0.389, 0.211, 0.127, 0.216, and
0.389, respectively. It can be indicated that the R2 using TIs were also different for different
growth stages of maize, and the highest R2 occurred on 25 August.
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The results of SRM for identifying the optimal combination of SIs and TIs for predicting
SPAD values at each growth stage of maize are shown in Table 5.
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Table 5. The optimal combinations of spectral and textural indices for predicting SPAD values using
stepwise regression model. The first column represents the different dates of data acquisition, the
second column is the corresponding phenology, and the third and fourth columns are the optimized
combinations of spectral and textural indices.

Dates Phenology Spectral Indices Textural Indices

18 August tasseling date ENDVI, DATT, NRI, MRGBVI,
ENGBVI, MRNGBVI Contrast, Correlation, Energy, Homogeneity

25 August silking ENDVI, DATT, NRI, MRGBVI,
ENGBVI, MRNGBVI Contrast, Correlation, Homogeneity

7 September blister ENDVI, NRI, MRGBVI,
MRNGBVI, MDD Contrast, Correlation, Energy, Homogeneity

15 September milk ENDVI, NRI, MRGBVI,
ENGBVI, MRNGBVI Contrast, Correlation, Energy, Homogeneity

21 September physiological
maturity

ENDVI, NRI, MRGBVI,
ENGBVI, MRNGBVI, MDD Contrast, Energy, Homogeneity

30 September maturity ENDVI, NRI, MRGBVI,
ENGBVI, MRNGBVI, MDD Contrast, Energy, Homogeneity

3.3. Predicting SPAD Values of Maize Using Machine Learning Methods

RF and SVM models were independently built for predicting SPAD values, and the
results of evaluations are shown in Figure 8. It can be easily observed that R2 of SVM were
commonly larger than RF, and similarly, the RMSEs of SVM were commonly smaller than
RF. Thus, SVM performed better than RF, and SVM may have greater potential ability in
predicting SPAD values of maize at different growth stage.
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Figure 8. The validation of the support vector machine (SVM) and random forest (RF) methods at differ-
ent growth stages of maize. Note: Aug represents August, and Sep represents September, respectively.

The parameters with highest R2 and lowest RMSE of RF and SVM were applied for
predicting SPAD values at different growth stages of maize (Figures 9 and 10). It should be
noted that there was a significant difference between the predicted SPAD values using RF
and SVM.
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Figure 9. Predicted SPAD values using the support vector machine (SVM) at different growth stages
of maize. Note: the dates under images are the date of data acquisition. (a–f) each represented
the predicted SPAD values for 18 August, 25 August, 7 September, 15 September, 21 September,
30 September, respectively.
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Figure 10. Predicted SPAD values using the random forest (RF) model at different growth stages
of maize. Note: the dates under images are the date of data acquisition. (a–f) each represented
the predicted SPAD values for 18 August, 25 August, 7 September, 15 September, 21 September,
30 September, respectively.

4. Discussion
4.1. The Radiometric Calibration of the Multi-Spectral Images Using ELCM

In this study, the radiometric calibration of MMC was performed using ELCM. The
critical innovation laid in the general equations for radiometric calibration were confirmed
using data collected from multi-days (sunny and cloudless). Thus, the calibrated reflectance
will be more precise and more reliable by reducing accidental errors, atmospheric effects,
and dark noise. The R2 of the calibration were 0.874 and 0.927, and the RMSE (NRMSE)
were 0.110 (0.177) and 0.089 (0.138), using data collected on 5 August and 21 September,
respectively. The R2 (0.883) and RMSE (5.6%) for the radiometric calibration of MMC were
reported [29]. It was reported the ELCM was applied for the radiometric calibration of
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MMC and RMSE ranged from 0.025 to 0.064% [30]. The maximum error means of six bands
were tested and confirmed as 8% [31]. Similar results were also obtained in the radiometric
calibration for ultra-high-resolution of five bands multi-spectral images acquired from the
UAV system, where the RMSE was 0.063% for calibration targets and 0.040, 0.048, and
0.089% for the red, green, and blue bands, respectively [103]. The R2 for red and NIR bands
ranged from 0.96 to 0.99, and from 0.95 to 0.99 with five different calibration targets using
ELCM, respectively [104]. There should also be noted that the calibration and validation
were based on the data collected in a single day in most previous studies. However,
as introduced in the section method the calibration in this study was based on data collected
on six different phenological dates, and the validation was conducted by comparing the
reflectance of maize on 5 August and 21 September. Therefore, the radiometric calibration
of this study was more convincing concerning the results from previous studies. Despite
the relatively high accuracy, there still remained uncertainties to be addressed. Firstly, the
synchronous reflectance measurement of the calibration targets was difficult to perform as
the weather conditions changed rapidly during the data collection. Secondly, the precise
locations of maize for validation on 5 August and 21 September were difficult to confirm in
images due to the coarse spatial resolution of the multi-spectral images (5 cm). Moreover,
the sampled reflectance of maize was influenced by mixed pixels (soil and maize). Thirdly,
the Bidirectional reflectance distribution function (BRDF) that can influence the reflectance
of the calibration target was ignored [105]. The BRDF is defined as reflectivity in different
reflection directions, and thus, for the ground objects such as maize there was an optimal
observation angle to obtain the highest accuracy. The important biophysical structural
parameters, such as vegetation structure and vegetation cover fraction, can be derived
from BRDF. However, the application of BRDF was based on the images collected from
different angles. This was highly difficult to perform during the whole growth stage period
of maize. Therefore, the BRDF was not explored in the current study, and future studies
could include such issues for obtaining more reliable results.

4.2. The Predictions of the SPAD Values of Maize

In previous studies, the vegetation indices, such as NDVI and enhanced vegetation
index (EVI), were mainly applied to monitor crops’ growth conditions. Commonly, the
spectral indices were directly applied to predict SPAD values using linear or non-linear
regression models. However, the mechanisms for different growth stage may be different,
as the spectral indices varied dramatically at different growth stages of maize. In this
study, the optimal combination of SIs and TIs were separately confirmed using SRM. The
TIs were closely correlated with SPAD values compared with the SIs. The TIs have great
potentials in predicting SPAD values, and this was in consistence with previous studies
where the integrated SIs and TIs achieved high accuracy in expressing the dynamic growth
condition of maize at different growth stages [10,106]. Although relatively high accuracy
was achieved, there were still limitations in predicting SPAD values. Firstly, the sampled
SPAD values using SPAD-502Plus may not be so representative for each plot. Thus, more
samples can be included for minimizing the uncertainties in future analysis. Secondly,
the Sis and Tis calculated may be influenced by mixed pixels. Methods for extracting
pixels only containing maize should be proposed. Thirdly, the SPAD can be converted into
physiological parameters, such as leaf chlorophyll content, which is commonly applied to
assess the leaf photosynthetic capacity and leaf nitrogen content. However, in the current
study, the precise measurement of leaf chlorophyll content was not performed, and thus,
the linear regressions between the SPAD values and leaf chlorophyll content can hardly
be obtained. Therefore, it was recommended the adoption of leaf chlorophyll content for
monitoring the growth condition and yield prediction of maize in future analysis.
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SVM and RF were independently applied to predict SPAD values. In Figure 9, the
accuracy of SVM were usually higher than that using RF. There was a significant improve-
ment in R2 and RMSE by SVM compared with RF. SVM is a novel small sample learning
method with a solid theoretical foundation. In essence, it can avoid the traditional process
from induction to deduction, realizing the efficient “transduction reasoning” from training
samples to prediction samples, simplifying the usual problems such as classification and
regression [107,108]. SVM has realized good “robustness” compared with other machine
learning methods, as the adding and deleting non-supporting vector samples had no effects
to the original model [109]. SVM could perform well with little data, which was quite
useful when the number of samples was limited. Even though SVM achieved relatively
high accuracy with limited samples of SPAD values, and it was still recommended the
conduction of more ground samples. Moreover, SVM and RF models were relatively tra-
ditional ones, and there is need to evaluate more advanced models for predicting SPAD
values in future analysis.

5. Conclusions

In this study, the empirical line calibration method was applied for obtaining the
generic equations based on the multi-spectral images on multiple days, and results showed
the radiometric calibration achieved high accuracy. The commonly applied spectral and tex-
tural indices were extracted from multi-spectral images, and the linear regression analysis
was conducted between these indices and SPAD values. Both spectral and textural indices
were closely correlated with the SPAD values. The stepwise regression model was applied
to select the optimal combination of spectral and textural indices for predicting SPAD
values at different growth stages. The results showed the proposed method by combing
spectral and textural indices improved the estimation accuracy. Precisely estimating SPAD
values offers potential for obtaining leaf chlorophyll content, which is a very important
indicator of chloroplast development, photosynthetic capacity, and leaf nitrogen content for
monitoring plant health. The SPAD values can be converted into leaf nitrogen content for
better retrieving the physiological parameters of maize. SVM and RF were independently
conducted to predict SPAD values based on optimal combinations. The results showed
that SVM performed better than RF with higher R2 and lower RMSE. Therefore, it is highly
recommended the adoption of optimal combination of spectral and textural indices for
estimating SPAD values of maize using SVM.
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Table A2. The result of linear regression analysis between SIs and SPAD values for different growth
stages. The spectral indices mean different information, and the stages are in according with the date
of data acquisition in Figure 3. The Equation represents the linear regression equation, R2 means the
coefficient of determination, and the p means the significant values.

Spectral
Indices Stages Equations R2 p Stages Equations R2 p

ENDVI 1 Y = −19.4X + 67.44 0.509 p <0.001 2 Y = −12.6X + 59.88 0.477 p < 0.001
3 Y = −15.92X + 60.23 0.485 p < 0.001 4 Y = −12.44X + 59.36 0.427 p = 0.002
5 Y = −24.88X + 62.32 0.690 p < 0.001 6 Y = −13.13X + 53.32 0.373 p = 0.004

DATT 1 Y = 42.23X + 31.65 0.144 p = 0.099 2 Y = 26.33X + 40.57 0.373 p = 0.002
3 Y = 52.42X + 26.01 0.582 p = 0.004 4 Y = 55.61X + 21.48 0.381 p = 0.004
5 Y = 75.03X + 11.66 0.160 p = 0.008 6 Y = 36.43X + 29.99 0.464 p < 0.001

NRI 1 Y = 404.58X + 40.71 0.314 p = 0.001 2 Y = 420.27X + 38.92 0.493 p < 0.001
3 Y = −885.74X + 84.08 0.211 p = 0.042 4 Y = 517.44X + 34.17 0.204 p = 0.045
5 Y = −1211.04X + 99.23 0.293 p = 0.014 6 Y = −131.92X + 104.61 0.567 p < 0.001

MRGBVI 1 Y = −24.85X + 72.75 0.520 p < 0.001 2 Y = −14.19X + 61.84 0.462 p < 0.001
3 Y = −17.16X + 61.82 0.422 p < 0.001 4 Y = −13.3X + 60.47 0.485 p < 0.001
5 Y = −27.72X + 65.87 0.668 p < 0.001 6 Y = −14.31X + 54.83 0.374 p = 0.004

ENGBVI 1 Y = −20.64X + 68.26 0.522 p < 0.001 2 Y = −12.37X + 59.44 0.473 p = 0.002
3 Y = −15.12X + 58.24 0.461 p < 0.001 4 Y = −11.32X + 57.99 0.512 p < 0.001
5 Y = −22.97X + 60.23 0.683 p < 0.001 6 Y = −11.03X + 51.37 0.379 p = 0.004

MRNGBVI 1 Y = −24.57X + 72.52 0.518 p < 0.001 2 Y = −13.62X + 61.54 0.450 p = 0.002
3 Y = −17.24X + 61.71 0.434 p < 0.001 4 Y = −13.78X + 60.84 0.491 p < 0.001
5 Y = −26.74X + 64.89 0.665 p < 0.001 6 Y = −13.52X + 54.04 0.374 p = 0.004

MDD 1 Y = 45.81X + 52.76 0.620 p < 0.001 2 Y = 26.79X + 53.91 0.124 p = 0.128
3 Y = 56.37X + 52.43 0.410 p = 0.002 4 Y = 60.72X + 49.19 0.382 p = 0.004
5 Y = 86.66X + 49.29 0.367 p = 0.005 6 Y = 45.13X + 48.22 0.155 p = 0.086

Note: 1–6 each represented different growth stages: 18 August (tasseling date), 25 August (silking), 7 September
(blister), 15 September (milk), 21 September (physiological maturity), and 30 September (maturity).

Table A3. The result of linear regression analysis between textural indices and SPAD values for
different growth stages. The textural indices mean different textural information, and the stages are in
according with the date of data acquisition in Figure 3. The Equation represents the linear regression
equation, R2 means the coefficient of determination, and the p means the significant values.

Textural
Indices Stages Equations R2 p Stages Equations R2 p

Contrast 1 Y = 34.80X + 51.21 0.185 p < 0.001 2 Y = 45.12X + 48.23 0.478 p < 0.001
3 Y = −42.39X + 61.80 0.151 p < 0.001 4 Y = 51.20X + 47.13 0.122 p < 0.001
5 Y = 44.6X + 43.02 0.014 p < 0.001 6 Y = 50.76X + 35.01 0.381 p = 0.004

Correlation 1 Y = −50.46X + 84.27 0.255 p < 0.001 2 Y = −26.49X + 69.76 0.088 p = 0.002
3 Y = −56.10X + 81.05 0.358 p < 0.001 4 Y = −23.57X + 67.19 0.147 p < 0.001
5 Y = −102.57X + 103.22 0.545 p < 0.001 6 Y = −1.95X + 48.92 0.228 p = 0.004

Energy 1 Y = −9.83X + 61.59 0.129 p < 0.001 2 Y = −17.87X + 65.01 0.511 p = 0.002
3 Y = 38.99X + 33.21 0.284 p < 0.001 4 Y = −17.77X + 64.48 0.116 p < 0.001
5 Y = 68.31X + 23.33 0.289 p < 0.001 6 Y = −29.41X + 58.77 0.566 p = 0.004

Homogeneity 1 Y = −69.60X + 120.81 0.185 p < 0.001 2 Y = −90.25X + 138.49 0.478 p = 0.128
3 Y = 84.79X − 22.98 0.051 p = 0.002 4 Y = −102.40X + 149.54 0.122 p = 0.004
5 Y = −89.32X + 132.35 0.014 p = 0.005 6 Y = −101.52X + 136.53 0.381 p = 0.086

Note: 1–6 each represented different growth stages: 18 August (tasseling date), 25 August (silking), 7 September
(blister), 15 September (milk), 21 September (physiological maturity), and 30 September (maturity).
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