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Abstract: Cloud cover remains a significant limitation to a broad range of applications relying on
optical remote sensing imagery, including crop identification/yield prediction, climate monitoring,
and land cover classification. A common approach to cloud removal treats the problem as an
inpainting task and imputes optical data in the cloud-affected regions employing either mosaicing
historical data or making use of sensing modalities not impacted by cloud obstructions, such as
SAR. Recently, deep learning approaches have been explored in these applications; however, the
majority of reported solutions rely on external learning practices, i.e., models trained on fixed datasets.
Although these models perform well within the context of a particular dataset, a significant risk
of spatial and temporal overfitting exists when applied in different locations or at different times.
Here, cloud removal was implemented within an internal learning regime through an inpainting
technique based on the deep image prior. The approach was evaluated on both a synthetic dataset
with an exact ground truth, as well as real samples. The ability to inpaint the cloud-affected regions
for varying weather conditions across a whole year with no prior training was demonstrated, and the
performance of the approach was characterised.

Keywords: cloud removal; Sentinel-1; Sentinel-2; deep image prior; internal learning; image inpainting

1. Introduction

Cloud occlusion reduces the temporal availability and, in turn, the usability of optical
satellite data, imposing a significant obstacle to applications where frequent sampling
of the ground surface is necessary. In the field of precision agriculture, for tasks such
as monitoring crop growth [1], crop classification [2], or crop yield prediction [3], gaps
in data result in challenges related to the development of accurate models, variability in
prediction performance, and the need for the use of data imputation. Open data sources,
such as those generated by the EU Copernicus Sentinel missions [4], have been instrumental
to the accelerated development of applications, enabling easy and wide access to large
sets of high-resolution data at relatively short revisit periods. However, the fundamental
limitations imposed by cloud obstruction remain, which can be mitigated either through the
development of new models that do not rely exclusively on optical data or by techniques
that reconstruct optical imagery for cloud-affected regions.

Reported approaches to cloud removal from optical satellite images can be segmented
into a number of strands. Most early developments, before the growth of deep-learning-
based approaches, used interpolation-based techniques [5–7], filtering [8,9], or the cre-
ation of image mosaics or composites [10–15]. A number of approaches employing ma-
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chine learning were reported [16–19] prior to a notable increase in research to deter-
mine the potential of deep neural networks to yield advances in performance [20–30].
Although a subset of the proposed methods attempt to remove clouds using a single
image [8,20,21,31–33], more common approaches either rely on multi-temporal data to in-
form the reconstruction [5,7,9–19,25,28,29,34–39] or use sensing modalities not impacted by
clouds [6,22,23,25–27,30,40].

Most deep-learning-based cloud removal methods depend on a form of external train-
ing [20–30,41,42], relying on a pre-training phase, during which the network is optimised
to produce a desired target output for a fixed dataset. As a consequence, the performance
and generalisation of the models depend heavily on the level of representation the fixed
dataset provides of the conditions encountered in deployment. The training dataset must
be sufficiently diverse to capture the complexity of the real-world application so as to min-
imise the expectation of loss within the operational scenario. Conversely, the consequence
of striving to achieve increased diversity is a trade in performance on individual samples
in favour of average accuracy.

Several deep learning approaches [27,30] claim that larger datasets result in neural
network models able to learn general and adaptable transformations. However, this
assertion is at odds with the fact that in practice, the majority of datasets contain bias and a
considerable amount of features that are highly predictive within the dataset, but do not
generalise to new samples [43]. Thus, methods that do not rely on a process of optimisation
on a fixed number of samples [5–15], but use engineered priors that guide the synthesis
process are more attractive. Recently, an approach [29] that combines external learning
with prior-based synthesis has been proposed where spatio-temporal representations
are reconstructed with a Deep Image Prior (DIP), while an externally trained network
enforces the context consistency of the synthesised images. It must be noted, however,
that the external network may introduce a bias in a similar fashion to other external
learning approaches.

Here, an alternative technique embracing a pure internal learning paradigm that relies
on the optimisation of the network on a single sample of interest and thus obviates the need
for pre-training on an external dataset is detailed and evaluated. The approach is restricted
to model tasks where a significant part of the information required for reconstruction is not
obscured in the source sample. Within the satellite imaging context, data are available from
multi-temporal and multi-source streams, enabling the application of knowledge arising
from solutions to a number of well-known computer vision inverse problems [44–47] such
as image completion, super-resolution, and denoising. To date, only one other reported
technique has adopted the proposed methodology [48], employing a sequence-to-sequence
internal learning scheme to translate sequences of Synthetic Aperture Radar (SAR) satellite
images to sequences of multi-spectral images using a 3D U-Net architecture. However,
the approach of [48] is fundamentally different from deep image prior work [44] and the
framework proposed here as it feeds the informing SAR signal directly to the reconstruction
network instead of employing noise tensor input and reconstructing the informing signal
along with the target optical representation. It is not demonstrated why this should be
beneficial in the internal learning context. The sequence-to-sequence model does, however,
limit the flexibility of the solution as the data are constrained to the same number of
SAR and optical samples. Furthermore, the method was evaluated only on three sample
sequences. During the review stage of this manuscript, an independent study on the
application of the deep image prior has been published [49]. The paper reported on
multi-temporal reconstruction and relied on a recent cloud-free reference, evaluated on 10
Landsat-8 and 10 Sentinel-2 patches. Here, the use of the multi-temporal historical average
signal or multi-source SAR information is proposed, which avoids issues with overlapping
cloud regions. Furthermore, this work performed a sensitivity analysis of the cloud mask
size and the synthesis quality.
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In this paper, an end-to-end workflow for the removal of cloud cover in Sentinel-2
optical satellite images is presented for precision agriculture applications, where flexibility
and adaptation to a target fixed region of interest is a key requirement. Several methods of
informing the reconstruction process were tested, including both multi-source and multi-
temporal approaches; for the former case, SAR images from Sentinel-1 were used as an
informing input.

The proposed solution is an application of the DIP methodology [44], a prominent
internal deep learning approach for image synthesis. Furthermore, the contribution of
this work involved the analysis and comparison of several processing approaches to the
problem, depending on what data sources were used. Evidence is provided that the
proposed internal techniques are capable of producing high-quality reconstructions, which
was tested on a synthetic dataset with an accessible ground truth, as well as on real
images. Finally, unlike other deep learning methods for cloud removal, the solution is
readily adaptable with no additional training, be it using top-of-atmosphere or bottom-of-
atmosphere hyperspectral or, indeed, a number of other sensor data and irrespective of the
preprocessing approach employed.

The Materials and Methods Section (Section 2) provides details on the data pre-
processing routine and the creation of the synthetic dataset, followed by a description
of the proposed architectures (Section 2.2). Section 3 presents both quantitative results
(Section 3.1), where the performance metrics are computed for the entire dataset, as well as
qualitative results (Section 3.2). Conclusions are drawn in Section 4.

2. Materials and Methods

In this section, the dataset used for the evaluation experiments is described, followed
by a segment detailing the proposed model architectures.

2.1. Supporting Data

The focus was the removal of clouds from optical Sentinel-2 images in the context of
crop monitoring. Hence, the dataset created for the development was based on Sentinel-2
data from a Level-2A product, offering bottom-of-atmosphere reflectance measurements,
proven to be most appropriate in vegetation monitoring applications as opposed to top-of-
atmosphere data. Even so, the internal synthesis approach presented is adaptable as it is
based on the content of the target image only and, as a consequence, can be directly applied
to other image types, such as the more commonly used Level-1C Sentinel-2 images. In fact,
results (Section 3.2) are also reported on the performance of the method with Level-1C
samples for comparison with an external model. Finally, the resultant Sentinel-2 images
were paired with Sentinel-1 equivalents based on the closest temporal proximity.

The model requires a cloud mask (or cloud and shadow mask), and although a
significant number of cloud detection algorithms have been reported to date [50], the goal
was to evaluate the performance of the proposed method on the inpainting task alone.
To avoid the propagation of errors from the cloud detection models, the inpainting regions
were obtained by removing portions of images under clear sky, providing an accessible and
precise ground truth.

The dataset comprises two-year temporal coverage measurements for two different
regions, one in Scotland, the other in India, each containing approximately 200 samples
(data available at https://doi.org/10.5281/zenodo.5897695 (accessed on 9 February 2022)).
The extent of the data allows the valid test of the approach over a substantial period of time
subject to varying seasonal conditions and across two disparate geographical locations.
Every image is effectively a test sample, obviating the need for splitting the data into
training and test subsets, since an internal learning approach was employed. All available
images for the years 2019 and 2020 were manually assessed to extract a subset of clear
sky images to ensure that the samples were clouds-free. All clear sky images from 2019
were used as a source of prior information, and the images from year 2020 were used for
the evaluation. Cloud regions were simulated by obtaining plausible cloud masks from

https://doi.org/10.5281/zenodo.5897695
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Sentinel-2 data of the Scotland region with a coverage area between 10% and 50%, resulting
in 17 realistic mask shapes. The combination of clear sky images with each cloud mask
yielded the evaluation dataset. The resulting sample counts for both regions are shown in
Table 1.

Table 1. Resulting sample counts for each dataset. The bottom row contains the total count for
17 cloud masks.

Dataset Scotland India

Informing Samples (2019) 18 34
Inference Samples (2020) 20 30

Total Task Samples 340 510

The raw data are acquired and preprocessed using the analysis-ready data framework
described in [51], as shown in Figure 1. The Sentinel-1 SAR data were radiometrically
calibrated, speckle filtered, and terrain corrected. The Sentinel-2 multi-spectral bands and
cloud masks (opaque cloud and cirrus) from the Level-2A products were re-sampled to
a 10 m spatial resolution. Sentinel-1 and Sentinel-2 tiles were then co-located, yielding
image pairs of 256 × 256 px. The output pairs were then treated in a manner similar to [27].
Sentinel-1 images were (1) converted to a decibel scale, (2) clipped (VV range: [−25.0, 0],
VH range: [−32.5, 0]), and shifted to [0, 2]. Sentinel-2 images were clipped between [0, 104]
for all optical channels and divided by 2000.

Radiometric
Calibration

Speckle
Filtering

Terrain
Correction

Subset
(Clipping)

Sentinel-1
GRD BandExtractor

Collocation

BandExtractorResampleSentinel-2
Level 2A

Processed
Sentinel-1

Processed
Sentinel-2

Figure 1. Snap processing pipeline for Sentinel-1 Ground Range Detected (GRD) and Sentinel-2
Level-2A products.

2.2. Architecture

The internal cloud removal architectures proposed here rely on the techniques pro-
posed in [44], broadly referred to as Deep Image Prior (DIP). The key premise of the
approach is that signals, especially natural images, can be encoded in the weights of a deep
convolutional neural network by overfitting the model to generate the signal of interest
for a given constant input. The network weights tend to converge to solutions of lower en-
tropy [44], where all textures in the image are derived from a relatively narrow distribution,
rendering the DIP method applicable to several image inverse problems, such as image
inpainting, denoising, or super-resolution. DIP enables a significant amount of prior knowl-
edge on natural images to be introduced through the use of a convolutional architecture.

The applications demonstrated in the original DIP work operate on a single image;
here, the method was extended to cloud removal by using additional information, viz.
involving several images. The additional images can be obtained from a different sensor
(multi-source synthesis) or from different points in time (multi-temporal synthesis). The
results demonstrated that the DIP approach can be effectively applied to both multi-
temporal and multi-source satellite images through the stacking of all frames to create
an image representation with more channels. Furthermore, good-quality images were
produced even when a disparity between domains occurred, as is the case for optical and
SAR sensor data.

A number of DIP-based reconstruction methods have been proposed, depicted in
Figure 2. The most direct approach applies the DIP network to the masked hyperspectral
image alone, as shown in Figure 2a, in alignment with the default motivation of the tech-
nique, where the inpainting is based only on the textures present in the non-masked region,
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i.e., not obscured by clouds. Two approaches can be used to incorporate an additional
data source: either through the optimisation of (i) a residual target output (Figure 2b,c) or
(ii) a stack of the target image with the supporting information appended as additional
channels (Figure 2d–f). For the residual modes, the network is tasked with computing the
difference between either a sample from a different source (to achieve the same number of
channels (3) necessary for the multi-source residual, an additional channel containing the
VV and VH mean was appended to the SAR representation) (Figure 2b) or a sample from a
different time (Figure 2c). The residual component image that the core DIP network was
optimised to produce can be expected to exhibit a similarly narrow texture distribution, just
as the reconstructed Sentinel-2 image. For the stacked modes (Figure 2d–f), the supporting
information could be multi-source (d), multi-temporal (e), or a combination thereof (f).
For these cases, the mask was only applied to the cloudy query image so the supporting
data from the synthesised region could be backpropagated.

Basic Multi-Source Residual Multi-Temporal Residual

(a) (b) (c)

Multi-Source Multi-Temporal Multi-Source Multi-Temporal

(d) (e) (f)

Figure 2. Diagrams of synthesis modes: (a) single image, (b) multi-source residual, (c) multi-temporal
residual, (d) stacked multi-source, (e) stacked multi-temporal, and (f) stacked multi-source multi-
temporal.

Multi-temporal synthesis requires additional temporal samples to be used at the
inference time. This additional source can be static (the same reference used for a number
of different predictions) or dynamic, where an appropriate reference is chosen specifically
for the synthesised sample (for example, the last clear sky image taken before the cloudy
sample). The conducted experiments involved the former, to eliminate the deviation in
the reference and allow a consistent architectural assessment. In order to create a static
reference, all clear sky images from the year 2019 were averaged. The main purpose of
taking a mean over the entire year comprising multiple seasons and weather conditions
was to extract the static structural component of a given region. Moreover, taking the mean
also had an additional denoising effect, especially for SAR images. The resulting mean
representations of the informing samples are shown in Figure 3.

Cloud removal for Sentinel-2 data can be achieved by utilising Sentinel-1 SAR data
as the alternative sensing source. The SAR component was incorporated as a 2-channel
image (VV, VH) to enable a valid comparison with other cloud removal techniques [27].
Several approaches are possible to generate temporal support data. A source of dynamic
time-dependent support can be obtained from the last Sentinel-2 observation; however,
there is no guarantee that this image will not contain significant cloud cover. Thus, the last
cloud-free (or nearly cloud-free) observation could be used, but that may lead to temporal
inconsistencies between the inferred samples and their support counterparts, compromising
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performance stability. An alternative is to use a mean support sample derived as the average
signal from the cloud-free images captured over the preceding year of the inference period.
The average Sentinel-1 and Sentinel-2 data will contain an approximation of the static
component shared by all images over the year. This way, each inferred sample was biased
by the same support signal. Examples of the mean support data are shown in Figure 3.

Scotland Region India Region

(a) (b)

Figure 3. Mean images for year 2019 for the region in Scotland (a) and the region in India (b).
Sentinel-1 VV and VH are displayed as green and blue, respectively.

All the experiments conducted were obtained using an Adam optimiser with exponen-
tial decay rates for the first and second moment coefficients β1 = 0.9, β2 = 0.999, a stabilising
term ε = 10−8, and a learning rate of 2 × 10−2. The networks were trained for 4000 steps
with a regularisation noise of 10−1. The code for the proposed method is available at
https://github.com/cidcom/satellite-cloud-removal-dip (accessed on 9 February 2022).
The result of an ablation study is shown in Figure 4, demonstrating the visual quality of
the synthesised cloud inpainting for all synthesis modes presented in Figure 2. Two perfor-
mance metrics were employed for evaluation: Structural Similarity Index (SSIM) [52] as an
indicator of structural coherence and Root-Mean-Squared Error (RMSE) as a measure of
reflectance error. Tests were carried out by repeating each mode 4 times, and the displayed
examples corresponded to the run with the median SSIM, applied to the inpainted region
only, unless otherwise stated. The basic scenario with no extra informing data produced
results that matched the colour tones of the image, but lacked fine detail. The residual
multi-source approach produced poor-quality results and may require additional mech-
anisms to achieve improved synthesis. The multi-temporal residual mode produced a
reasonable quality result, but was constrained to the same number of synthesised channels
as the reference representation, unlike the stacked modes, where the output can be adjusted
to yield any number of frames and channels. The stacking approaches are presented in the
bottom row, leading to a considerable improvement when employing multi-temporal data.

The metrics between two images IA and IB (which correspond to a test image and
appropriate ground truth image) were computed using the following formulas:

RMSE(IA, IB) =

√
(IA − IB)2

H ×W
(1)

where H is the height and W is the width of both IA and IB.

SSIM(x, y) =
1

|Π(IA, IB)|

Π(IA ,IB)

∑
x,y

(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(2)

https://github.com/cidcom/satellite-cloud-removal-dip
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where x, y correspond to individual patches of size 11 × 11 in IA and IB (with Gaussian
window as described in [52]), respectively, where Π(IA, IB) is the set of all collocated
patches and |Π(IA, IB)| the total number of elements in that set. The variables with µ
correspond to the mean value, σ to the variance, and σxy to the covariance. Standard
constant values of c1 and c2 were used for computational stability, as proposed in [52].

Figure 4. Comparison of DIP-based synthesis approaches. Median score samples from 4 repeated
runs are shown. Metric values are given for the inpainting region.

3. Results

The quantitative results relied on the dataset described in Section 2, where clear sky
samples were reconstructed from artificially masked images. The qualitative results are
presented to demonstrate the visual appearance of the synthesised regions.

3.1. Quantitative Results

All synthesis modes were applied to the evaluation dataset containing the two regions
of Scotland and India, with performance metrics computed for the image as a whole and
for the inpainted region only; the results of the inference are shown in Table 2. The stacked
MT and MS-MT variants that utilised multi-temporal data consistently outperformed the
other variants for both datasets and for both the full image and inpainted regions (A metric
applied to the inpainted region measures the quality of new generated data and, when
applied to the whole image, quantifies the distortion introduced by the optimisation
process. The distortion can be partially prevented by stitching the uncovered region with
the synthesised pixels, but new distortions on the stitch borders may be introduced by
the process). This suggests that the inclusion of the multi-temporal component is more
beneficial for the considered synthesis framework. Both residual modes exhibited inferior
performance compared to the corresponding stacked modes that used equivalent data.
Furthermore, the residual modes constrained the number of frames and channels, and thus,
the remainder of the evaluation was focused on the stacked synthesis modes.

The evaluation dataset was designed to contain real cloud masks with coverage from
a selected range (10–50%), useful for simulating real-world conditions, but does not give
an opportunity to validate how the system performance varies depending on the size of
an inpainted region. Consequently, another experiment was carried out, where clear sky
samples from each of the two datasets were reconstructed for a number of artificial cloud
masks with a controlled coverage area. The resulting SSIM and RMSE traces are shown in
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Figure 5. The inpainting quality appears to be consistent for cloud coverage ratio between
0.1% to 16%, where the inpainted region SSIM is approximately 0.75 for the Scotland and
India regions. The SSIM decreased beyond 16% cloud coverage, however, but never fell
below 0.6. Naturally, the whole-image SSIM was higher than that of the inpainted region
since the whole image contained the noncovered region, which was optimised directly.
The visual quality of the reconstruction of selected samples from each dataset for a range of
cloud coverage levels is illustrated in Figure 6.

(a) (b)

Figure 5. SSIM and RMSE plots for the cloud coverage sweeps for MS-MT mode for the (a) Scotland
region and (b) India region.

Figure 6. Samples of images reconstructed in the cloud coverage sweep procedure (ranging from
0.5% to 64.0% cloud cover) for MS-MT mode in Scotland (top row) and India (bottom row). The SSIM
and RMSE metric values are shown for the inpainted region.
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Table 2. MS—Multi-Source (Sentinel 1), MT—Multi-Temporal, -R—Residual Variants. Optimal
performance maximizes SSIM and minimizes RMSE. This occurs for the modes using temporal
support data, with the MS-MT mode surpassing all others for both datasets and both for the inpainting
region and the whole image.

Dataset
Direct Modes Stacked Modes

Basic MS-R MT-R MS MT MS-MT

Scotland
Whole

SSIM ↑ 0.84 0.73 0.86 0.84 0.88 0.88
RMSE ↓ 0.09 0.13 0.08 0.08 0.07 0.07

Inpainting
SSIM ↑ 0.58 0.33 0.66 0.58 0.73 0.73
RMSE ↓ 0.15 0.23 0.15 0.14 0.12 0.11

India
Whole

SSIM ↑ 0.84 0.74 0.84 0.84 0.87 0.87
RMSE ↓ 0.07 0.12 0.08 0.07 0.06 0.05

Inpainting
SSIM ↑ 0.53 0.32 0.57 0.53 0.64 0.66
RMSE ↓ 0.13 0.21 0.15 0.12 0.11 0.09

3.2. Qualitative Results

Figures 7 and 8 present a compilation of the results distributed across the full year
for the Scottish and Indian regions. It is clearly evident that the synthesis modes adjusted
the content of the inpainted region based on the information available in the clear region,
and the informing reference acted as a guide for generating the static structure of the image.
The Multi-Source (MS) synthesis mode yielded fairly poor structural coherence, indicated
by consistently lower SSIM scores, also apparent upon visual inspection. Both MT and
MS-MT modes generated images with much higher structural coherence and achieved
a comparable level of performance. The main differences between the two modes can
be observed in the colours of individual objects in the inpainted region. The MT mode
had no recent (i.e., temporally proximate) reference of the inpainted regions and relied
only on historical data and on what was available outside of the cloud mask. On the
other hand, the MS-MT mode did entail access to temporally proximate SAR data, but the
different sensing modality contributed to textural distortions in the reconstruction of the
optical data. Similar textural distortions were visible in both MS and MS-MT modes,
but were less pronounced in the latter owing to the inclusion of the temporal source.
Finally, some samples were more challenging to synthesise. For instance, the sample of
28 December 2020 in Scotland (bottom row of Figure 7) contained a significant amount of
snow cover. The image contained a strong bias towards a value of saturated white with
low variance, posing a risk of unstable optimisation, which occurred in the MT mode for
this particular sample.

The influence of image content on the reconstruction process was accentuated when
the two geographical regions were compared. The Scotland region consisted of consid-
erably larger objects, yielding images that were inherently easier to fit as an output of a
Convolutional Neural Network (CNN). This was confirmed by the higher performance
achieved for the Scotland region in Table 2. The amount of fine structural detail can have a
considerable effect on the robustness of each tested synthesis mode. In this case, the infor-
mation from the SAR sensor, while useful for the large-scale coherence, contained noise
and had insufficient resolution, resulting in higher distortions of the inpainted regions,
an effect visible in Figure 8, where the MT approach provided more consistent inpaintings
than the other two approaches that used SAR data.
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Figure 7. A selection of reconstructed samples across the full year in the Scotland region. This
demonstrates the seasonal adaptability of the proposed methods. The cyan line delineates the
cloud-affected from the cloud-free regions in the image.
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Figure 8. A selection of reconstructed samples across the full year in the India region. This demon-
strates the seasonal adaptability of the proposed methods. The cyan line delineates the cloud-affected
from the cloud-free regions in the image.

The best- and worst-scored samples for both datasets are shown in Figures 9 and 10
for Scotland and India, respectively. Note that for the Scotland region, the snowy samples
from 28 December were excluded when selecting extreme results, as the severe saturation
of the images naturally yielded a high SSIM for the reconstructions. In Figure 9, the first
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two rows contain the samples yielding the worst performance, while the bottom two rows
contain the best. Interestingly, a degree of overlap between the identified extremes for the
individual modes can be identified. For instance, all modes share the same date for the
maximum and minimum RMSE scores, as well as for the maximum SSIM score in Figure 10,
potentially attributable to a combination of factors such as the specific image content, its
relation to the informing reference, and the mask area.

(a) MS (b) MT (c) MS-MT

Figure 9. Reconstructions with the lowest (top two rows) and highest (bottom two rows) performance
for both the SSIM and RMSE for the Scotland region. Each row contains all three stacked modes (MS,
MT, and MS-MT).

3.3. Application in a Blind Setting

The proposed techniques do not require pre-training and can be readily applied to
new settings. To demonstrate this capability, the methods were compared to an existing
cloud removal model of DSen2-CR [27]. The pre-trained DSen2-CR uses Level-1C Sentinel-2
images containing a top-of-atmosphere view. A small number of Level-1C top-of-atmosphere
cloud-affected images were obtained: three for both Scotland and India. Although the DIP-
based methods require cloud masks, it is nevertheless possible to use existing cloud detection
algorithms; however, these are likely to produce false negatives (i.e., undetected cloud regions).
Leakage of cloud components outside the mask can affect the optimisation process of the
proposed synthesis methods by distorting the texture distribution of the image. For that
reason, the six images used in the evaluation were manually annotated to ensure no leakage.

Figures 11 and 12 contain a comparison of the three considered synthesis modes
(multi-source, multi-temporal, and MS-MT) to an externally trained model of DSen2-CR
for Scotland and India, respectively. Generally, DSen2-CR generated clear-sky regions that
were very close to the S2 input; yet, dark artefacts were evident in the clouded regions
that poorly matched the colour distribution. The MS mode using equivalent input data
(with the addition of a cloud mask) did not produce the artefacts in the clouded regions.
The modes MT and MS-MT provided a more detailed structure in the synthesised output,
but relied on additional information.
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(a) MS (b) MT (c) MS-MT

Figure 10. Reconstructions with the lowest (top two rows) and highest (bottom two rows) perfor-
mance for both the SSIM and RMSE for the India region. Each row contains all three stacked modes
(MS, MT, and MS-MT).

Figure 11. Results on the blind cloud removal task, with no available clear sky references for the
Scotland region. The cloud masks were annotated manually to enable a comparison with the DSen2-
CR external method.
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Figure 12. Results on the blind cloud removal task, with no available clear sky references for the India
region. The cloud masks were annotated manually to enable the comparison with the DSen2-CR
external method.

4. Conclusions

The key factor differentiating the presented internal learning approach to cloud region
inpainting in satellite imagery from solutions relying on external learning is that it permits
the development of a flexible model not biased by the dataset. Elimination of the cost
and time of pre-training, as well as the sourcing, preparation, and curation of the training
dataset are an attractive set of advantages. Furthermore, inference takes in the order of
two minutes on a consumer-grade GPU (24GB NVIDIA Titan RTX), acceptable for almost
all agriculture applications considering the significantly higher delays already present in
satellite processing pipelines. For scenarios where processing of larger areas is required,
this pipeline can be fully parallelised on a high-performance computing platform to yield
a comparable processing time, assuming that an automatic cloud detection module is
employed (more details on the processing time are included in Appendix A). The key
advantage is that the proposed approach is modality agnostic and can be readily applied
to different signal types with no requirement for a new dataset or additional training,
particularly beneficial for settings where labelled data are not available.

The solutions presented adopted several approaches to inform the synthesis process.
The results showed that the DIP-based methods handle stacked data of the same modality
better than multi-source composites. Consequently, historical optical data yielded higher-
quality synthesised samples than the two-band SAR reference, potentially attributable to
the distortions present in the employed SAR representation. Potential solutions to mitigate
this effect are either to devise alternative architectures or improved SAR representation or
preprocessing. The advantage of a multi-temporal reference, observed in the context of the
presented developments, aligns with the early cloud removal solutions that also employ
historical data of the same modality. In this work, the benefit of the temporal reference
was maintained even when the time difference between the synthesised image and the
reference was as large as 1 y.

The proposed synthesis modes were evaluated both quantitatively and qualitatively
for two geographic locations of Scotland and India on data obtained throughout the year
2020. The multi-temporal and multi-source (MS-MT) mode offers the highest performance
of the three evaluated modes with an average SSIM greater than 0.87 and 0.64 for the
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whole image and inpainting regions, respectively. The Multi-Temporal only mode (MT)
offered performance on par with MS-MT. The MS performed significantly worse than the
temporal approaches. Furthermore, the MS-MT mode was tested for varying degrees of
cloud coverage, exhibiting a stable performance even when more than 16% of pixels were
inpainted. All three proposed internal synthesis modes were qualitatively compared to an
externally trained network to demonstrate the synthesis quality.

The techniques presented all rely on the application of high-quality cloud masks
and thus on a robust cloud detection scheme. Furthermore, the results indicated that
the synthesised images can vary depending on the run. While the characteristics of the
inpainting task impose a wide range of feasible solutions, further work is required to reduce
the distortion and variability of the synthesised outputs.

Author Contributions: Conceptualisation, M.C. and C.T.; methodology, M.C. and P.U.; software,
M.C., P.U. and C.D.; validation, M.C.; formal analysis, M.C.; investigation, M.C. and P.U.; data
curation, P.U., A.W., M.C. and C.D.; writing—original draft preparation, M.C.; writing—review and
editing, M.C., P.U., J.C., M.M., C.T. and I.A.; visualisation, M.C.; supervision, C.T., J.C., C.M. and I.A.;
project administration, M.C. and C.T.; funding acquisition, I.A., C.M., R.A. and C.T. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Union Horizon 2020 Research and Innovation
Programme, Grant Number 825355.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset comprises two-year temporal coverage measurements for
two different regions, one in Scotland, the other in India, each containing approximately 200 samples.
Data is available at https://doi.org/10.5281/zenodo.5897695 (accessed on 9 February 2022). The
code is openly available at https://github.com/cidcom/satellite-cloud-removal-dip (accessed on 9
February 2022).

Acknowledgments: The work was partially funded by the European Union Horizon 2020 Research
and Innovation Programme “Fostering Precision Agriculture and Livestock Farming through Secure
Access to Large-Scale HPC-Enabled Virtual Industrial Experimentation Environment Empowering
Scalable Big Data Analytics (H2020-ICT-2018-2020) (CYBELE)” under Grant Agreement No. 825355.

Conflicts of Interest: The authors declare no conflict of interest. The funder had no role in the design
of the study; in the collection, analyses, or interpretation of the data; in the writing of the manuscript;
nor in the decision to publish the results.

Appendix A. Technique Scalability

This section provides details on the time and memory cost of the current method
without any attempt to optimise the network for large-scale data processing and comments
on the result. Indicative results for a region of 100 × 100 km2 (10,240 × 10,240 px) of the
expected performance are presented in Table A1.

These results were obtained on a Scan 3XS EGX server, with an AMD 32-core EPYC
7452, 256 GB RAM, and 4 × 48 GB NVIDIA Tesla A40 GPUs. Note that this server setup is
different from that used in the original manuscript in order to permit parallel execution on
four GPUs with a larger memory of 48 GB each. The original timing of 2 min (referred to in
the Conclusion) for a single 2.5 × 2.5 km2 was obtained on a server with an Intel i9-7960X
CPU, 128 GB RAM, and 24 GB NVIDIA Titan RTX GPU.

The results indicated that with a single GPU, a patch of 50 × 50 km2 can be computed
in approximately 3 h 42 min. For an ROI of 100× 100 km2 and with adequate parallelisation,
the same processing time was maintained. To further speed up the processing for time-
sensitive applications, the patch size can be maintained as the original 2.5 × 2.5 km2

and independently processed on more computing resources.

https://doi.org/10.5281/zenodo.5897695
https://github.com/cidcom/satellite-cloud-removal-dip
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Table A1. The time and memory usage of the proposed technique. For 4 GPUs independently
processing segmented patches, a tile as large as 100 km by 100 km can be processed in under 4 h.

Resources 1 GPU 1 GPU 1 GPU 1 GPU 2 GPUs 4 GPUs

ROI Size (km2) 2.5 × 2.5 100 × 100 50 × 50 100 × 100 100 × 100 100 × 100

Patch Size (km2) 2.5 × 2.5 2.5 × 2.5 50 × 50 50 × 50 50 × 50 50 × 50

# of Patches 1 1600 1 4 4 4

GPU RAM (MB) 1921 1921 38,655 38,655 38,655 38,655

Epoch Time
(HH:MM:SS) 00:00:24 00:00:24 00:55:33 00:55:33 00:55:33 00:55:33

Total Time
(HH:MM:SS) 00:01:35 42:14:02 * 03:42:09 * 14:48:41 * 07:24:21 * 03:42:09

* Quantities with asterisk (*) are extrapolated from a single epoch time for 4 epochs and for the entire ROI size.
Single GPU mode processes each patch one after another.
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