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Abstract: Crowdsourced data from smart devices play an increasingly important role in water quality
monitoring. However, guaranteeing and evaluating crowdsourced data quality is a key issue. This
study aims to extract more accurate water reflectance data from smartphone photographs with vari-
able exposure parameters, and to test the usability of these data in deriving water quality parameters.
A set of low–cost reference cards was designed to be placed in the center of the photograph near the
water surface, and a calculation model was proposed to convert the photograph digital numbers
(DNs) to water reflectance. A nonlinear DN–to–reflectance model was constructed using the inherent
reflectance and DN of the reference card in the photograph. Then, the reflectance of the water surface
in the same photograph was estimated. During the evaluation of this scheme in seven different
waterbodies with 112 sampling sites, small differences were observed between the estimated and
measured remote sensing reflectance; the average unbiased relative errors (AUREs) for the red, green,
and blue bands were 25.7%, 29.5%, and 35.2%, respectively, while the RMSEs for the three bands
were 0.0032, 0.0051, 0.0031, respectively. The derived water reflectance data were used to retrieve the
Secchi–disk depth (Zsd) and turbidity, with accuracies of 72.4% and 60.2%, respectively. The results
demonstrate that the proposed method based on the smartphone camera can be used to derive the
remote sensing reflectance and water quality parameters effectively with acceptable accuracy.

Keywords: water reflectance; mobile phone; Secchi–disk depth; turbidity

1. Introduction

To slow and reverse the deterioration of water quality, it is necessary to strengthen the
monitoring, evaluation, and governance of surface water quality. Traditional water quality
monitoring mainly relies on collecting water samples on site and sending them to the
laboratory to measure various water quality parameters. This method has the advantage
that many different water quality parameters can be measured, with relatively high accuracy.
However, the disadvantage is that water quality data can only be collected at limited time
points, and the sampling interval is usually long. This is because such sampling usually
requires professional equipment and trained technicians, and many of the instruments are
expensive, heavy, inconvenient to carry, and labor intensive. The development of satellite
remote sensing technology provides a feasible way to monitor water quality across large
areas and long time series, and to further discover the temporal and spatial distribution
characteristics and migration paths of pollutants [1]. However, its application is strongly
affected by the satellite revisit period, remote sensing data resolution, and cloud coverage,
among other factors. With the rapid development of modern big data technology and
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communication technology, as well as increasing public interest in environmental quality,
water quality monitoring is no longer limited to traditional observational and remote
sensing data; environmental monitoring has gradually entered the era of multi–source big
data [2–5]. In this regard, intelligent mobile devices show great potential, providing new
possibilities for water quality monitoring.

Digital cameras and smartphone cameras have high spatial resolution and time flexi-
bility and are not affected by cloud coverage. Thus, they can complement satellite remote
sensing technology, which is affected by cloud coverage. However, how to make effective
quantitative use of the citizen science data acquired from the handheld cameras and in-
corporate it into scientific research is a difficult issue to tackle. Sequoia Scientific Inc. has
developed the HydroColor mobile application available at http://misclab.umeoce.maine.
edu/research/HydroColor.php (accessed on 7 March 2022), which uses a mobile phone
camera as a three–band remote sensing spectral radiometer. The user takes a series of
three–band pictures according to the guiding information, calculates the red, green, and
blue wide bands of the water–leaving reflectance from these pictures, and estimates the
water turbidity and suspended matter on this basis [6,7]. Because the reference card must
be photographed, HydroColor is not friendly to non–professional users. Moreover, the
water–leaving reflectance calculation can be seriously affected by the bidirectionality of the
reference card. HydroColor also faces some technical problems, such as a lack of correction
for changes in camera exposure parameters and the nonlinear response of DNs, resulting
in large uncertainties in the inversion results [8–11]. As stated above, there are various
problems related to the quantitative application of water surface photographs. There is an
urgent need to develop a stable and applicable method to retrieve more accurate water
reflectance and water quality data based on smartphone photographs.

A digital camera can be seen as a multispectral remote sensor with three visible bands:
red, green, and blue. Many multispectral satellites, such as the Landsat TM and ETM+ imagery
and MODIS land surface reflectance products, also include only three visible bands, and these
bands have been applied for the inversion of typical water quality parameters. Liu et al. [12]
constructed a transparency inversion model of green and red band means based on MODIS
and used it to analyze the temporal and spatial variation law of transparency of large lakes in
China from 2000 to 2018. Lathrop and Lillesand [13] used the SPOT–1 green wave band to
estimate water transparency in Green Bay and Lake Michigan in the United States. Binding
et al. [14] used the good relationship between the green band near 550 nm and the transparency
to monitor the water transparency of the Great Lakes of North America from 1979 to 1985 and
from 1998 to 2006 with the data from the Coastal Zone Color Scanner and the Sea–viewing
Wide Field–of–view Sensor. Olmanson et al. [15] established a water transparency model using
the blue:red band ratio of Landsat data, and applied it to retrieve the water transparency and
the trophic state of Minnesota lakes from 1985 to 2005. They then analyzed the distribution
and changes in the water transparency and trophic state of these lakes over the 20 years. Song
et al. [16] used the normalized value model of red and green light for the turbidity inversion of
Taihu Lake from Landsat8 OLI images. In addition to the above band combination methods,
the visible red, green, and blue bands have also been used to obtain the Forel–Ule index, and
then to retrieve the water quality of waterbodies. Wang et al. [17] developed a Forel–Ule index
calculation method based on MODIS red, green, and blue bands, and further applied it to
transparency estimation [18] and trophic state index evaluation [19]. These studies show that
remote sensing data comprising three visible bands can be used for the inversion of typical
water quality parameters, which has supported the inversion of water quality parameters
using water surface photographs with only three visible bands.

Citizen science plays an increasingly important role in water quality monitoring
and can be used as a complementary means to the remote sensing of water quality. The
smartphone camera is a convenient and useful tool in obtaining crowdsourced data in
citizen science. However, a key issue to tackle is to control the quality of crowdsourced
data and make quantification use of these data so that they can be smoothly combined
with remote sensing data. In this study, we develop a low–cost reference card–assisted
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scheme to derive water reflectance data with a smartphone camera. This scheme was
further evaluated through the derivation of remote sensing reflectance (Rrs, sr−1) and water
quality parameters in seven water bodies.

2. Study Area and Datasets
2.1. Study Area

In 2020, we carried out a series of field measurement experiments in seven study
areas, including the Nanfei River, the Summer Palace, Guanting Reservoir, Danjiangkou
Reservior, Baiguishan Reservior, Xiaolangdi Reservior and Yuqiao Reservior (Figure 1). The
locations, sampling times, and number of sampling sites are shown in Table 1. During the
experiments, the weather was sunny, without any clouds near the sun. The experiments
were carried out at 9:30–15:45 local time, and the solar zenith angles ranged from 16◦ to 66◦.
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Figure 1. Distribution maps of sampling points in smartphone water quality monitoring experiment,
based on automatic exposure.

Table 1. Overview of the water quality monitoring experiment, based on automatic exposure
of smartphones.

Research Area Name Center
Longitude

Center
Latitude

Sampling
Date

Time Range
(Local Time)

Sampling
Number

Nanfei River 117.40E 31.77N 22 May 2020 9:30–15:45 40
The SummerPalace 116.27E 39.99N 19 June 2020 10:15–14:15 3
Guanting Reservoir 115.73E 40.34N 13 August 2020 9:55–13:50 18
Danjiangkou Reservoir 110.58E 32.74N 2 September 2020 9:30–15:45 9
Baiguishan Reservoir 113.19E 33.73N 4 September 2020 10:15–14:15 20
Xiaolangdi Reservoir 112.33E 34.94N 22 October 2020 9:55–13:50 10
Yuqiao Reservoir 117.53E 40.04N 8 November 2020 9:30–15:45 12

2.2. In Situ Dataset

The field measured dataset includes 112 samplings collected from the seven study
areas, which mainly include the remote sensing reflectance Rrs spectrum, Zsd and turbidity
s, as well as the water surface photos taken by mobile phones with reference cards.

In the Rrs measurement, a portable field spectrometer (ASD FieldSpec®, Analytical
Spectral Device, Inc., Boulder, CO, USA) was used at each water surface sampling sta-
tion following the ‘above water method’ [20]. Using the spectrometer, the radiance of a
30 × 30 cm2 reference panel (Lp), the total radiance of the water body (Lw), and the down-
ward radiance of the sky (Lsky) were measured. The total radiance of the water body was
measured 10 times at each sampling station. The outliers in the 10 spectra were mostly
those affected by sun–glint and were excluded from the dataset. The remaining spectra
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were averaged to calculate Lw. The equation for calculating the Rrs (remote sensing re-
flectance) (sr−1) from the measured spectral data is shown in Equation (1). Figure 2 shows
the water–leaving reflectance at each of the 112 sampling points in the seven study areas.
As there is little difference in the red–green–blue (RGB) spectral response functions of
different digital cameras [21], and the factory spectral response function of a smartphone
camera is usually not provided, the water–leaving reflectance spectra were simulated as
RGB bands using the Canon 50D RGB band response function. The simulated RGB bands
from the water–leaving reflectance were used to validate the Rrs values calculated from the
RGB bands from the water surface photographs.

Rrs = (Lw − rsky × Lsky)/(Lp × π/Rp) (1)

where rsky is the fraction of skylight reflected by the water surface, which depends on the
position of the sun, observation geometry, and water surface roughness. In the ‘above water
method’, the viewing direction is about 40◦ from nadir and the viewing azimuth is about 135◦

from the plane of the sun. For this observation geometry, and for the relatively low wind
speeds observed during the seven experiments, rsky≈ 0.028 was regarded as acceptable [22,23].
Rp is the reflectance of the reference panel, which was calibrated in the laboratory.
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Figure 2. Remote sensing reflectance spectra measured with a field spectrometer at 117 sampling
points at: (a) Nanfei River, (b) The Summer Palace, (c) Guanting Reservoir, (d) Danjiangkou Reservior,
(e) Baiguishan Reservoir, (f) Xiaolangdi Reservoir, and (g) Yuqiao Reservoir.
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The Secchi–disk depth (Zsd) was measured by slowly lowering the black and white
Sechi disk into the water and noting the rope scale when the disk became invisible. A
portable turbidity meter, AZ8601 (AZ ® Instrument, Taiwan, China), was calibrated and
used to measure the turbidity of the water on site.

Water surface photographs were collected quickly while performing the spectral
measurements and water quality parameter measurements in the seven study areas, to
avoid solar radiation changes during the experiment. The smartphone models used in the
collection of the water surface photographs are shown in Table 2, together with the water
quality parameters in the seven study areas.

Table 2. Summary of smartphone models used for photography and water quality parameters in the
study areas.

Study Area Name Smartphone Model
(Operating System)

Average
Zsd (cm)

Standard Deviation
of Zsd (cm)

Average Turbidity
(NTU)

Standard Deviation
of Turbidity (NTU)

Nanfei River Mi 8 (Android) 38.4 9.8 30.1 21.3
The Summer Palace Mi 8 (Android) 46.7 2.4 20.3 1.6
Guanting Reservior Mi 8 (Android) 57.7 9.2 15.6 3.7
Danjiangkou Reservior Apple XS (Apple) 455.7 85.5 1.2 0.6
Baiguishan Reservior Apple XS (Apple) 122.2 29.0 5.4 1.9
XiaolangdiReservior Apple XS (Apple) 245.0 42.0 2.2 0.3
Yuqiao Reservior Honor9 (Android) 85.5 14.2 8.4 3.7

3. Methods
3.1. Water Surface Photographs Taken by Smartphone Camera
3.1.1. Observation Geometry Design

Obtaining water–leaving radiation using a smartphone camera is the same as using
the field spectrometer, and solar glint and shore reflectance need to be avoided. Therefore,
the observation geometry for the photograph taken using a smartphone camera also
followed the above–water spectral observation geometry described in the ocean optic
protocol [20]. Briefly, when the photograph is taken, the smartphone camera should be
pointing toward the water surface at a viewing zenith angle of 40◦–45◦, and the viewing
azimuth angle should be approximately 135◦. Using this observation geometry, the
influence of the bidirectionality of the reference card on the inversion results could be
significantly avoided.

3.1.2. Five-Color Reference Card

As the exposure parameters of smartphone cameras cannot be controlled, and the
exposure time significantly affects the DN values of the photograph, a five-color reference
card with specific reflectance was designed in this study and used while taking the water
surface photographs. A similar five-color reference card has been used as the target
cloth during UAV flight [24] and can minimize bidirectionality. During the water surface
photography, the five-color reference card was placed horizontally, close to the water
surface in the middle of the photograph view, and the color scale bar of the reference card
was pointed forward (Figure 3). Table 3 shows the reflectance of the five-color reference card
in the three visible bands, which was carefully measured and calibrated with spectrometer
in an optical laboratory [24]. The specific reflectance of this five-color reference card in the
photograph was then used to fit the relationship between the surface reflectance and its
DNs, and subsequently to calculate the water reflectance [9].
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Figure 3. (a) The five-color reference card used in this study. (b) Sample image of five-color reference
card and water taken using a smartphone with automatic exposure parameters. The red box indicates
the position of the uniform area clipped.

Table 3. Reflectance parameters of each band of the five-color reference card.

ReflectanceScale
Band

Red Band Green Band Blue Band

White card 0.6769 0.6697 0.6458
Bright gray card 0.4824 0.4695 0.4596

Medium gray card 0.1983 0.1973 0.1927
Dark gray card 0.0957 0.0978 0.1005

Black card 0.0312 0.0315 0.0316

3.2. Rrs Derivation from Water Surface Photograph

The upward radiance of the water surface is the sum of the water–leaving radiance
and the reflected radiance of the sky, within which only the water–leaving radiance con-
tains information about the water constituents. As stated above Equation (1), the Rrs
is the ratio of the water–leaving radiance to the downwelling irradiance. However, the
water–leaving reflectance in many studies on the inversion of water quality parameters
is simply derived by dividing the surface reflectance by π, neglecting the small contri-
bution of skylight reflection [25–27]. This study uses the same strategy to calculate the
water–leaving reflectance.

3.2.1. Reference Card and Water Body Photograph Clipping

First, a rectangular section of the water body was clipped out, avoiding solar reflec-
tions, shadows, and floating objects. Then, the other rectangle that contained the five-color
reference card was clipped out. Figure 3b shows the examples for the two clipped rectan-
gles. After clipping, the median DN value in the water body rectangle and the median
DN values for the five gray colors in the reference card rectangle were calculated, and the
values would be used in subsequent calculations.

3.2.2. Water Reflectance Calculation

According to [8], for current smartphone cameras and ordinary commercial cameras,
the GAMMA correction parameters used for converting the incident light intensity to
the DNs of the photograph are not uniform, and there are large uncertainties. In this
study, the water surface and five-color reference card were photographed at the same
time in a single photograph; thus, the downwelling irradiance (Ed) was the same. Hence,
a nonlinear model converting the DN values to reflectance, rather than the light intensity
or upwelling radiance, was fitted for each water surface photograph, as shown in
Equations (2)–(4). Owing to the uncertainties of the GAMMA correction, the nonlinear
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response between the reflectance and photograph DN values of the five-color reflectance
reference card was first fitted using either the power function model or the E–index
model. Then, the model coefficients a, b, c, and d were derived using the DN values of the
five-color reference card and their interior reflectance. The final model was determined
by comparing the R2 values of the two models. The determined model was further used
to obtain the water reflectance (Rw) using the median DN value of the water surface
photograph. Finally, Rrs was calculated by dividing the derived water reflectance by π,
as shown in Equation (4).

R = a× DNb (2)

R = c× exp(d×DN) (3)

Rrs = Rw/π (4)

where R is the specific reflectance of the five-color reference card. DN is the digital value of
the five-color reference card in the photography. Rw represents water reflectance calculated
using the determined R–DN model. a, b, c, and d are the fitted model coefficients.

3.3. Water Quality Retrieval

Turbidity and Secchi–disk depth are two quantitative indicators of the turbidity of
lake water. Commonly used water quality parameter inversion methods mainly include
analytical/semi–analytical methods, empirical/semi–empirical methods, and machine
learning algorithms. To preliminarily test the effectiveness of water quality parameter
inversion from automatically exposed water surface photographs taken using smart-
phones, several empirical/semi–empirical algorithms were tested. Thus, relatively simple
empirical/semi–empirical methods are used for the inversion modeling analysis in this
study, such as the RGB band reflectance, reflectance band ratio, reflectance band difference,
and chromaticity angle [19]. For two–thirds (N = 76) of all the water surface sampling
points across the seven study areas (randomly chosen), the least squares method was
used to establish the mathematical statistical analysis models, such as linear regression,
exponential/logarithmic function regression, and polynomial regression [28,29]. The re-
served 1/3 (N = 36) water sample points was used to validate the established water quality
parameter models.

3.4. Accuracy Evaluation

To evaluate the model accuracy, this study used the root mean square error (RMSE),
the average unbiased relative error (AURE), the coefficient of determination (R2), and
the average ratio between the calculated and measured values (hereafter the accuracy
ratio) [30], as accuracy evaluation indices. Thereinto, the RMSE indicated the absolute
errors, the AURE indicated the relative errors, the R2 indicated the goodness of the fitting,
and the accuracy ratio indicated the ratio of the straight line fitted to the measured data.
These indices can be calculated using the equations as follows:

RMSE =

√√√√ N

∑
i=1

(Xi− xi)2/N (5)

AURE =
N

∑
i=1

(
|Xi− xi|

(Xi + xi)/2

)
/N (6)

R2 = 1− ∑i(Xi− xi)2

∑i(x− xi)2 (7)

Accuracy ratio =
N

∑
i=1

Xi/xi/N (8)
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where Xi represents the modelled value; xi represents the field measured data; x represents
mean measured data; N refers to the number of sampling stations.

4. Results
4.1. Validation of Smartphone Photograph–Derived Rrs

The DN values of the waterbodies at the 112 sampling points and their associated
reference cards were calculated as Rrs using Equations (2)–(4), based on the water surface
photographs derived from a reference card–assisted smartphone camera with automatic
exposure parameters. Scatterplots of the Rrs obtained from the digital photographs and the
equivalent water–leaving reflectance measured by the spectrometer are shown in Figure 4.
The accuracy evaluation parameters (RMSE, AURE, R2, and the accuracy ratio) are shown
in Table 4. The accuracy of reflectance is high, R2 is between 0.92 and 0.98, AURE is between
25.7 and 35.2%, and the accuracy ratio is between 0.80 and 1.20.
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Table 4. Retrieval accuracy of water reflectance from 112 sampling–point photographs.

Band RMSE (sr−1) AURE (%) R2 Accuracy Ratio

Red 0.0032 25.7 0.98 0.98
Green 0.0051 29.5 0.94 1.20
Blue 0.0031 35.2 0.92 0.80

4.2. Secchi–Disk Depth Estimation Based on Smartphone Photography

With Rrs derived from the smartphone photos, several frequently used Zsd models
were tested using the in situ dataset. Figure 5 shows four outperformed models, including
the logarithmic model of the red band, the linear model of the green:red band ratio, the
e–index model of the difference between the red and blue bands, and the linear model of
the chromaticity angle. Figure 6 shows scatterplots using the remaining 36 sampling points
to test the four models. Table 5 compares the accuracy evaluation indicators of the four
models. In a comprehensive analysis of the accuracy indicators, the Zsd inversion model
based on the difference between the red and blue bands was the best–performing model.
The inversion model is shown in Equation (9). The fitting R2 was 0.88, calculated based on
the modeling data (N = 76). The R2 between the calculated Zsd inversion results and the
measured values was 0.94, based on the validation data (N = 36), and the unbiased relative
error was 27.6%.

Zsd = 231.33× exp(−85.82× (R− B)) (9)
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Table 5. Zsd model accuracy test.

Zsd Inversion Model Name AURE (%) Accuracy Ratio R2

(a) Red band model 25.5 0.74 0.76
(b) Green:red band ratio model 37.5 0.75 0.89
(c) Red and blue band difference model 27.6 0.90 0.94
(d) Chromaticity angle model 27.0 0.85 0.92

4.3. Turbidity Estimation Based on Smartphone Photography

Turbidity is an important water quality parameter in river water environment monitor-
ing, and it has a close relationship with suspended solids. The analysis of turbidity changes
is helpful for understanding the distribution of total suspended solids or sediments in
waterbodies and can provide effective information for studying the behavior of pollutant
sedimentation, decomposition, and diffusion in waterbodies. Therefore, monitoring the
spatial distribution of turbidity is of great significance for water pollution control [31].
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With Rrs derived from the smartphone photos, several frequently used turbidity
models were tested using the in situ dataset. Figure 7 shows four outperformed models,
including the models based on red band, green band, red–blue band difference, and
chromaticity angle. Figure 8 shows scatterplots for the validation of these four models.
Table 6 shows a comparison of the accuracy evaluation indicators of the models. After a
comprehensive analysis of the various indicators, the turbidity inversion model based on
the difference between the red and blue bands was the best, as shown in Equation (10).
Based on the modeling data (N = 76), the calculated fitting R2 was 0.65. The R2 between the
turbidity inversion results calculated based on the validation data (N = 36) was 0.61, and
the unbiased relative error was 39.8%.

Turbidity = 1.84× exp(41.73× R) (10)
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Table 6. Turbidity model accuracy test.

Turbidity Inversion Model Name AURE (%) Accuracy Ratio R2

(a) Red band model 39.8 0.99 0.61
(b) Green band model 50.5 0.91 0.32
(c) Red and blue band difference model 35.7 0.82 0.57
(d) Chromaticity angle model 31.9 0.62 0.61

5. Discussion on the Uncertainties Caused by Smartphone Parameter Settings

In this study, a smartphone–based method for calculating water–leaving reflectance
was constructed. It was applied to the inversion of typical water quality parameters and
achieved good results. The next step is to integrate these methods into a mobile app.
In our calculations, we did not consider the influence of the parameter settings of the
smartphone, such as spectral response function and the white balance. The parameter
settings of different mobile phone cameras may cause calculation errors. Therefore, in
this section, we further explore and discuss the influence of some smartphone parameter
settings, including the influence of the spectral response function of different cameras and
the white balance.

5.1. Uncertainties Caused by the Spectral Response Functions of Different Digital Cameras

There are two main water surface photograph collection devices in daily life: mobile
phones and cameras. Mobile phones are divided into Android and Apple phones.
Because of the photosensitive elements in the cameras, they have specific wavelength
response ranges, namely, the spectral response function. Different cameras have different
spectral response functions. Figure 9 shows the spectral response function curves of
four cameras [21], together with the reflectance curve of the five-color reference card
used in the experiment, and the equivalent results of the spectral response functions
of the four cameras. It showed that the spectral response functions of the Canon 50D
camera, Nikon D50 camera, and Sony NEX 5N900 camera were very similar across
all bands. The red band of the Nokia N900 camera has an additional peak at 630 nm.
To further quantify the differences of the four cameras, the reflectance spectra of the
five-color reference card used in the study is equivalent to the blue, green, and red bands
using the spectral response function of the cameras. Figure 10 shows the equivalent
spectral reflectance values on the three visible bands for the five-color reference card
from the four cameras. It was found that the results for the four cameras were almost
the same. Therefore, the uncertainty in the water–leaving reflectance values introduced
by using different cameras is relatively small. This is similar to the conclusion drawn
in [32]. To further confirm this, the blue, green and red band reflectance of the 4 digital
cameras were equivalent from the spectrum measured by the field spectrometer in
Nanfei River according to the four cameras’ spectral response function. Taking the
three bands’ equivalent value of the Canon 50D camera as the true value, the calculated
average errors of the other cameras for the red, green, and blue bands were 1.66%,
2.46%, and 7.10%, respectively. This indicates that the uncertainty caused by the spectral
response functions of different digital cameras is generally small (<10%), as the cameras
are basically designed to capture the same color as that seen by the human eye, so their
spectral response functions do not differ significantly.
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5.2. Uncertainties Caused by the Automatic White Balance

Different light sources have different spectral characteristics, which are called color
temperatures in optics. As they are affected by the light source, white objects tend to be
reddish at low color temperatures and bluish at high color temperatures. The human eye
can correct our vision, automatically adjusting for the color deviation caused by different
color temperatures and ensuring color constancy. If the camera cannot adjust its white
balance with the color temperature of the scene light, it will lead to a color cast. Color
cast refers to the color in the photograph, which is obviously different from the real color,
with an overall bias towards one color. The white balance is used to adjust the color circuit
inside the camera to offset color casts in images taken under different color temperature
conditions, similar to the adjustments made by the human eye [33,34].

To study the effect of the white balance on the calculation of water reflectance in
photographs, this study used a Canon 50D camera, set the camera’s white balance to
2500 K, 10,000 K, and automatic white balance, and captured images of a color card and
the five-color reference card (Figure 11). The chromaticity angles of the corresponding
color cards in the photographs with severe color casts were calculated using the DN value
and the Rrs, after correction using the five-color reference card. As shown in Figure 12,
the chromaticity angles calculated from the DN values of the photographs with severe
color casts differed significantly from the chromaticity angles calculated from the automatic
white balance DN values. When the five-color reference card was used to correct the
reflectance of the color card in the photographs with serious color casts, the angle difference
decreased, indicating that the five-color reference card can be used to reduce the effects of
the different white balance algorithms of different devices or insufficient white balance.
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6. Conclusions

This study focused on the calculation of reflectance based on digital water surface pho-
tographs and the inversion of typical water quality parameters, including water reflectance,
based on smartphone photographs taken with automatic exposure. The main findings and
conclusions obtained are outlined in the following two sections.

6.1. Calculation of Water Reflectance Based on Digital Photographs of the Water Surface

Because smartphone applications cannot usually control the exposure parameters of
the camera, photographs can only be taken in automatic exposure mode. Therefore, this
study developed a set of water reflectance correction methods based on smartphones with
automatic exposure parameters: First, when photographing the water surface, five different
reflectance references (combined into a five-color reference card) were simultaneously
captured in the photograph. The five-color reference card was then used to fit the nonlinear
relationship between reflectance and the DNs of the photograph. The water reflectance
could then be calculated, ignoring the sky light correction. The water surface reflectance
spectra of 112 sampling points obtained from experiments in seven study areas, including
Nanfei River and Guanting Reservoir, were used to test the water reflectance results
extracted from synchronous photographs. The average relative errors of the red, green,
and blue bands were 24.5%, 35.5%, and 30.4%, respectively, and the R2 were 0.98, 0.94, 0.92,
indicating that the accuracy of this method is relatively high.

6.2. Inversion of Water Quality Parameters by Calculating Water Reflectance Based on Smartphone
Water Surface Photographs

In this study, typical water quality parameter inversion models of water reflectance
were constructed, based on smartphone photographs: First, we compared the statistical
relationships between four spectral indices (single–band, band ratio, band difference, and
chromaticity angle) of water reflectance calculated from the smartphone photographs and
two typical water quality parameters (Zsd and turbidity) measured in seven study areas,
to obtain the most accurate models. It was found that the model based on the difference
between red and blue bands was the best performing for Zsd estimation and the model
based on the red band was the best performing for turbidity estimation. Second, these
two models were verified using the reserved 36 sampling points. The errors of the Zsd
and turbidity models were 27.6% and 39.8%, respectively, and the R2 values were 0.94 and
0.57, indicating that the method proposed in this paper is reliable for the retrieval of water
quality parameters from smartphone photographs.
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