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Abstract: Cotton is an important economic crop, but large-scale field extraction and estimation can
be difficult, particularly in areas where cotton fields are small and discretely distributed. Moreover,
cotton and soybean are cultivated together in some areas, further increasing the difficulty of cotton
extraction. In this paper, an innovative method for cotton area estimation using Sentinel-2 images,
land use status data (LUSD), and field survey data is proposed. Three areas in Hubei province
(i.e., Jingzhou, Xiaogan, and Huanggang) were used as research sites to test the performance of the
proposed extraction method. First, the Sentinel-2 images were spatially constrained using LUSD
categories of irrigated land and dry land. Seven classification schemes were created based on spectral
features, vegetation index (VI) features, and texture features, which were then used to generate the
SVM classifier. To minimize misclassification between cotton and soybean fields, the cotton and
soybean separation index (CSSDI) was introduced based on the red band and red-edge band of
Sentinel-2. The configuration combining VI and spectral features yielded the best cotton extraction
results, with F1 scores of 86.93%, 80.11%, and 71.58% for Jingzhou, Xiaogan, and Huanggang. When
CSSDI was incorporated, the F1 score for Huanggang increased to 79.33%. An alternative approach
using LUSD for non-target sample augmentation was also introduced. The method was used for
Huangmei county, resulting in an F1 score of 78.69% and an area error of 7.01%. These results
demonstrate the potential of the proposed method to extract cotton cultivated areas, particularly in
regions with smaller and scattered plots.

Keywords: cotton extraction; spatial constraint; vegetation indices; spectral features; texture features;
CSSDI; LUSD

1. Introduction

As the world’s largest cotton producer, cotton, as China’s second-largest crop after
grain, is a crucial strategic material related to the national economy and people’s liveli-
hood [1,2]. China’s cotton is mainly produced in the Xinjiang province, the Yellow River
Basin, and the Yangtze River Basin. Located at the center, Hubei is the most important
cotton-producing province in the Yangtze River Basin [3]. Statistical data on cotton culti-
vated areas is commonly used for cotton yield estimation, economic index monitoring, and
agricultural management [4]. Due to changes in regional land use [5] and cotton subsidy
policies, coupled with high labor costs due to time-consuming and laborious planting
methods, Hubei’s cotton cultivated area has decreased significantly in recent years. How-
ever, due to the prevalence of small and fragmented cotton fields, accurately extracting
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and estimating cotton planting areas have remained extremely challenging, particularly in
large areas.

Nowadays, satellite remote sensing technology has been widely used in various
agricultural production applications [6,7]. The analysis, collection, processing, and visual
display of remote sensing data can be used to classify, extract, and estimate cultivated areas,
which is vital in agricultural production management, particularly in growth monitoring,
pest control, and yield estimation [8–11].

A number of studies have employed remote sensing technology and developed various
approaches for cotton area extraction and yield estimation. For example, Ahmad et al. [12]
combined multi-temporal MODIS data (with a resolution up to 250 m) with Landsat7
TM/ETM+ data (30 m) to extract cotton cultivated area and estimate the yield based
on NDVI index, demonstrating the economics and feasibility of large-scale crop yield
estimation. With the continuous development of satellite technology, high-resolution satel-
lite image data has been widely used in agricultural production and applications [13,14].
Yi et al. [15] constructed LAI estimation models at different development and growth stages
of cotton in northern Xinjiang for various applications, such as cotton yield estimation,
growth monitoring, and fertilization monitoring. However, other areas have varying cir-
cumstances that make popular RS estimation approaches unsuitable. For example, unlike
Xinjiang, which has large and mainly contiguous cotton fields, Hubei’s cotton production
comprises smaller and scattered plots. Xu et al. [16] used high spatial resolution satellite
images of GF-2 (up to 0.81 m) and QuickBird (up to 0.61 m) for accurate extraction of
farmland based on image texture features using object-oriented multi-scale hierarchical par-
titioning and various local segmentation algorithms. While their approach can accurately
extract farmlands in complex landscapes, it is limited by the revisit period and imaging
quality of high-resolution satellites. Using an unmanned aerial vehicle (UAV) equipped
with a hyperspectral sensor to capture low-altitude images, Liu et al. [17] classified cotton
fields by object-oriented segmentation method for yield estimation. However, the cost of
acquiring UAV data of large-scale fields is relatively high.

In data processing, algorithms such as deep learning, migration learning, and rein-
forcement learning are widely used in remote sensing data interpretation, improving the
extraction of crop spatial distribution [18,19]. Zhu et al. [20] used deep learning semantic
segmentation model for cotton ridge road recognition and utilized improved U-Net net-
works (i.e., Half-U-Net and Quarter-U-Net), providing a technical basis for the development
of cotton field intelligent agricultural machinery navigation equipment. Chen et al. [21]
built an improved Faster R-CNN model incorporating dynamic mechanisms to identify
the top buds of cotton in the field and verified the feasibility of deep learning image
processing algorithms in UAV remote sensing agriculture. Crane-Droesch [22] utilized
a semi-parametric variant of a deep neural network to predict annual corn yield in the
Midwest of the United States, resulting in better model effect and practical significance than
classical statistics and other methods. However, these deep learning-related algorithms
have been used mainly in small target areas, and require a large number of sample libraries.
These approaches are not suitable for cotton field extraction in areas with limited sample
sizes, such as Hubei.

In terms of remote sensing data analysis, time-series images and optimized results
can be obtained using various approaches, such as combining auxiliary data (e.g., land-
use planning vectors) [23,24], and establishing spatial-temporal data fusion model [25].
Zhang et al. [26] used an SVM extraction algorithm and a cultivated land mask on high-
resolution GF series satellite data to differentiate cotton from other crops, considerably
improving the efficiency of ground data survey collection. Zhang et al. [27] proposed a new
PMI index to monitor the spatial changes in rice, given the difficulties of rice field extraction,
particularly during the rice flooding period. A number of studies have also developed
field extraction approaches based on vegetation index (VI) from GF-5 AHSI satellite data,
using texture features extracted from GF-6 PMS and topographic factors from DEM, and
have tested different classification schemes employing Nearest Neighbor, Support Vector
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Machine, and Random Forest algorithms for regional tree species identification [28–31].
These studies can be used in developing new extraction approaches for cotton cultivated
areas that address the limitations of current methods.

To address the major challenges in RS field extraction for small cultivated plots, this
study proposes an innovative remote sensing monitoring approach for cotton cultivated
areas at the regional scale using Sentinel-2 images, land use status data (LUSD), and field
survey data. The study site is Hubei Province, where cotton plantations are fragmented
and irregular, and where cotton and soybean are cultivated together in some areas. Given
that the growth cycles of cotton and soybean are similar, cotton extraction can be extremely
confusing and highly prone to large errors. We utilized LUSD data as spatial constraint and
constructed seven schemes that use spectral features, vegetation index (VI), and texture
features. Based on SVM classification algorithm, we incorporated a new cotton and soybean
separation difference index (CSSDI) to separate cotton and soybean in adjacent planting
plots. For specific areas with few cotton samples, a non-object sample augmentation based
on LUSD categories was developed to improve the accuracy of cotton extraction. The results
of this study can be used to optimize regional cotton growth monitoring and cultivation
management, which are crucial for sustainable agricultural development.

2. Study Area and Data
2.1. Study Area

Hubei Province in central China is located between 29◦01′53” N–33◦6′47” N and
108◦21′42” E–116◦07′50” E, with a total area of 185,900 km2. Outside its mountainous region,
most of the area has a humid subtropical monsoon climate. For this study, three major
cotton production areas in Hubei were selected for field sampling and cotton extraction (see
Figure 1): Jingzhou, Xiaogan, and Huanggang. These regions have different topography.
Jingzhou is mainly composed of plain areas with altitudes ranging from 20–50 m. Xiaogan is
mostly hilly, with some mountainous areas in the north and plains in the south. Huanggang
is mountainous in the north, with hills and plains in the south.
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Figure 1. Location of the three study sites in Hubei: (a) Hubei Province; (b) Jingzhou; (c) Huanggnag;
and (d) Xiaogan.

2.2. Crop Phenology

Cotton is an important economic crop in Hubei. The main growing period is from
April to September. After maturity in mid-September, cotton harvesting is carried out
in batches, lasting until October. Aside from cotton, the dominant crops in Hubei—rice,
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corn, and soybean (Table 1)—share a similar growth period with cotton. In particular,
the blooming of cotton, the key stage for feature selection, is highly coincidental with the
maturity stage of the soybean, which negatively affects cotton extraction. The phenology
information of cotton and other main crops from April to October in Hubei is summarized
in Table 2.

Table 1. Percentage of four crops in the total sown area in different regions.

Region Cotton Soybean Rice Corn

Jingzhou 4.19% 3.84% 42.92% 3.12%
Xiaogan 3.16% 1.54% 72.13% 3.48%

Huanggang 7.42% 3.86% 80.20% 2.72%
Hubei 2.08% 2.71% 29.26% 9.31%

Note: data was from http://tjj.hubei.gov.cn/, accessed on 20 October 2021.

Table 2. The growth cycle of cotton and other crops in Hubei.

Month Period Cotton
[32,33]

Soybean
[34]

Rice
[33,35]

Corn
[33]

Early
Middle SowingApril

Late
Early

Sowing

Middle
Seedling

May
Late

Seedling

Early Planting
Middle

Sowing Sowing
June

Late

Budding
Tillering

Seedling
Early

Middle
Jointing

July
Late

Jointing

Early Booting
Middle

Heading/
Booting

BloomingAugust
Late

Blooming

Early
Filling Filling

Middle

Maturity

September
Late Harvest

Early Harvest Harvest

Middle

Harvest

October
Late

Note: Early refers to the first ten days of the month, middle refers to the next ten days, and late refers to the
remaining days.

2.3. Data
2.3.1. Satellite Data

The satellite images used in this study were Sentinel-2 Level-2A data covering 13 spec-
tral bands, with a temporal resolution of five days and spatial resolutions of 10 m, 20 m,
and 60 m. Based on the phenology characteristics of cotton, the images in late August and
late September 2020 were selected. The visible red (Band 4), green (Band 3), blue (Band 2),
and near-infrared (Band 8) at 10 m resolution were used for crop classification, while the
vegetation red-edge bands (Band 5, 6, and 7) at 20 m resolution were used to determine the
CSSDI. The pre-processing procedure included band combination, mosaicking, clipping,
and cloud masking. The red-edge band images were resampled to 10 m using the nearest
neighborhood method. The above steps were carried out in Google Earth Engine.

2.3.2. Land Use Status Data

The land-use status data (LUSD) used in this study were acquired in 2017–2019 from
China’s third nationwide land and resources survey. The dataset included information on

http://tjj.hubei.gov.cn/
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cultivated land, forest land, residential land, and other primary categories. Each primary
category was further decomposed into secondary categories. For instance, cultivated lands
were subcategorized into paddy fields, irrigated land, and dry land. In general, cotton,
soybean, and corn belong to irrigated or dry land categories, while rice is in the paddy
field grouping. LUSD can provide a spatial constraint on the original image, reducing the
impact of non-crop and rice on cotton extraction.

2.3.3. Field Sampling Data

The field survey was conducted during the main growing season for cotton from June
to September in Jingzhou, Huanggang, and Xiaogan.. In the field survey, the sampling route
was designed using expert knowledge and statistical information from statistical yearbooks
and the local Academy of Agricultural Sciences. The station description, including location
information, Sentinel and Google Earth Map images, and photos of the sampling points,
were obtained for each site. Table 3 shows the specific sample information, and Figure 2
shows the sampling distribution in Jingzhou, Xiaogan, and Huanggang.

Table 3. Field sample numbers and areas.

Category

Jingzhou Xiaogan Huangang

No. Average
Area (m2)

Total
Area (m2) No. Average

Area (m2)
Total

Area (m2) No. Average
Area (m2)

Total
Area (m2)

Cotton 32 2603 83,310 62 4242 263,028 38 1460 55,496
Soybean 46 2670 122,839 27 4019 108,520 20 4261 85,216

Corn 12 5116 61,392 27 4845 130,812 19 7220 137,176
Other crop 15 5453 81,790 25 6087 152,185 16 5429 86,861
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3. Methods

The Sentinel-2 satellite images for Jingzhou, Xiaogan, and Huanggang, acquired in
late August and September 2020, were selected for the cotton area extraction. First, pre-
processing was performed on the original images, including band combination, mosaicking,
clipping, and cloud masking. The pre-processed images were then spatially constrained
using the specific categories of LUSD. Another experiment using LUSD was carried out for
non-target sample augmentation for cotton extraction in order to make the samples balance
for each class and be evenly distributed in each region.

The multi-dimensional features calculated from four bands (i.e., red, green, blue, and
near-infrared bands) were selected and combined in seven schemes, which were then used



Remote Sens. 2022, 14, 1392 6 of 20

in SVM for crop classification. To have better separation for soybean and cotton fields in
Huanggang, CSSDI was established using red-edge and red band.

In order to balance the distribution of training samples and test samples, this study
conducted a five-fold cross-validation to test the stability of the proposed model. The
technical route of the study is shown in Figure 3.

Remote Sens. 2022, 13, x  6 of 20 
 

6 

The Sentinel-2 satellite images for Jingzhou, Xiaogan, and Huanggang, acquired in 

late August and September 2020, were selected for the cotton area extraction. First, pre-

processing was performed on the original images, including band combination, mosaick-

ing, clipping, and cloud masking. The pre-processed images were then spatially con-

strained using the specific categories of LUSD. Another experiment using LUSD was car-

ried out for non-target sample augmentation for cotton extraction in order to make the 

samples balance for each class and be evenly distributed in each region.  

The multi-dimensional features calculated from four bands (i.e., red, green, blue, and 

near-infrared bands) were selected and combined in seven schemes, which were then 

used in SVM for crop classification. To have better separation for soybean and cotton 

fields in Huanggang, CSSDI was established using red-edge and red band.  

In order to balance the distribution of training samples and test samples, this study 

conducted a five-fold cross-validation to test the stability of the proposed model. The tech-

nical route of the study is shown in Figure 3.  

 

Figure 3. The overall workflow of the study. 

3.1 Spatial Constraint 

In this study, the spatial constraint method was to use the geographic information 

data, including more detailed plot information and attribute information, to assist satellite 

images for object classification. According to the technical regulation for category identi-

fication of LUSD, cotton is generally divided into irrigated land and dry land. The data 

was collected in 2019, and the land type may vary for 2019 and 2020. Therefore, this study 

analyzed the distribution of cotton samples collected in the field in each category of LUSD 

to verify its reliability. 

Figure 4 shows that more than 90% of cotton samples in the three regions belong to 

the irrigated land and dry land categories, which indicates the reliability of the LUSD. 

Thus, the Sentinel-2 images were clipped using the irrigated and dry land categories as 

masks before performing crop classification.  

Figure 3. The overall workflow of the study.

3.1. Spatial Constraint

In this study, the spatial constraint method was to use the geographic information data,
including more detailed plot information and attribute information, to assist satellite images
for object classification. According to the technical regulation for category identification of
LUSD, cotton is generally divided into irrigated land and dry land. The data was collected
in 2019, and the land type may vary for 2019 and 2020. Therefore, this study analyzed
the distribution of cotton samples collected in the field in each category of LUSD to verify
its reliability.

Figure 4 shows that more than 90% of cotton samples in the three regions belong to the
irrigated land and dry land categories, which indicates the reliability of the LUSD. Thus,
the Sentinel-2 images were clipped using the irrigated and dry land categories as masks
before performing crop classification.
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3.2. Feature Selection and Combination
3.2.1. Features Selection

Each Sentinel-2 image has red, green, blue, and near-infrared bands, and all eight
spectral bands can be obtained using two-period images. VI is a combination of reflectance
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of two or more wavelengths to enhance features or details of vegetation. To distinguish the
two kinds of features in the paper, we refer to the original bands as spectral features and the
band combinations as VI features. In this study, 18 VIs were calculated, and the summary
of equations used is presented in Appendix A (Table A1). There were strong correlations
among some VIs and spectral bands. Therefore, correlation analysis was performed, and
features with high correlation were removed to reduce data redundancy. The correlation
coefficient threshold was set to 0.9, and VIs and spectral features with more significant
differences and small dimensionality were obtained. Figure 5 shows the correlation matrix
for the vegetation indices.
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Texture features provide supplementary information about object properties and can
be helpful for the discrimination of heterogeneous crop fields [36]. In this study, two widely-
used texture features for image classification, Entropy and Second Moment [31,37], were
used to assist in cotton extraction. To reduce data dimensionality, Principal Component
Analysis (PCA) was performed for two Sentinel-2 images, and only the first principal
component was used in calculating co-occurrence measures for each texture. The co-
occurrence shift included four directions (1, 0), (1, 1), (0, 1), (−1, 1), which represent 0◦, 45◦,
90◦, and 135◦, respectively. The results of the co-occurrence shift were averaged, producing
the final texture features for Entropy and Second Moment.

3.2.2. Feature Combination

Due to the diversity of crops and the limitation of spectral information acquisition,
different objects could be in the same spectrum, and objects in the same category could be
in different spectrums. In order to improve cotton extraction accuracy, seven classification
schemes were generated according to different combinations of spectral, texture, and VI
features selected. The different classification schemes are presented in Table 4.
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Table 4. Classification schemes and number of bands.

No. Classification Scheme

1 Spectral + Texture + Vegetation index
2 Spectral + Texture
3 Spectral + Vegetation index
4 Texture + Vegetation index
5 Vegetation index
6 Spectral
7 Texture

3.3. SVM Algorithm

The SVM classifier provides a powerful supervised classification method [38]. In this
study, we selected the radial basis function (RBF) kernel, where the gamma parameter
defines the influence of a single training example; a low gamma value means ‘far’, while a
high value means ‘near’. After parameter adjustment, the value of gamma was set to 0.1.
The penalty parameter C of the error term trades off the correct classification of training
examples against the maximization of the decision function margin. For larger values of C,
a smaller margin is accepted if the decision function is better at classifying all training
points correctly. Lower C encourages a larger margin, which means a simpler decision
function at the cost of training accuracy. After exploring, the value of penalty, parameter C
was set to 1.0. Four categories were used as input: cotton, soybean, corn, and other crops.

3.4. Cotton and Soybean Separation Difference Index

In some regions of Hubei, particularly in Huanggang, cultivated cotton areas have
been changed into soybean fields, resulting in mixed cotton and soybean cultivation. Due
to similar growth cycles and similar features in the visible and near-infrared bands, cotton
and soybean are difficult to separate using the SVM classifier. The red-edge bands are
closely related to the vegetation growth state. Sentinel-2 has vegetation red-edge bands,
i.e., Band 5 (VRE1), Band 6 (VRE2), and Band 7 (VRE3), with central wavelengths of 705 nm,
740 nm, and 783 nm, respectively.

This study compared the red band and the three red-edge bands of cotton and soybean.
As shown in Figure 6a,b, there were significant differences in the red band and VRE3
between cotton and soybean. Therefore, an index was developed based on the red band
and VRE3 in Sentinel-2 to differentiate between cotton and soybean. The index, termed the
cotton and soybean separation difference index (CSSDI), is calculated using the formula:

CSSDI =
VRE3 + Red
VRE3 − Red

(1)

where VRE3 and Red were Band 7 and Band 4 of Sentinel-2.
After calculating the CSSDI, the t-test for cotton and soybean was performed. The

resulting p-value was less than 0.01, indicating that there is a significant difference in CSSDI
values for cotton and soybean. The CSSDI and pixel count values for cotton and soybean
were plotted to define the separation threshold (see Figure 6c). The minimum overlapping
values of CSSDI ranged from 0.275 to 0.344. An increment value of 0.003 was applied from
the lower limit of 0.275 to the upper limit of 0.344. The accuracy was calculated for each
threshold value to find the optimal threshold value for segmentation. The final threshold
of 0.299 gave the maximum separation level and highest accuracy.
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Figure 6. Cotton and soybean separation method: (a) Statistical values of reflectance (*10,000) of
cotton and soybean in four bands, and VRE stands for vegetation red-edge; (b) cotton and soybean
reflectance (*10,000) in red and red-edge bands; and (c) histogram statistics of cotton and soybean
on CSSDI.

3.5. Evaluation Index

The field samples were divided into a training set and a test set at a 4:1 ratio, and a
five-fold cross-validation was conducted. A confusion matrix was established, and the
accuracy of the crop classification model was assessed in terms of overall accuracy (OA)
and Kappa coefficient. Producer’s accuracy, user’s accuracy, and F1 score (F1) were used to
assess the results of the cotton area extraction. F1 is the harmonic producer’s accuracy and
user’s accuracy.

Another evaluation index for cotton extraction is area error (Equation (2)), calculated
using the formula:

Area error =
abs

(
Aimage − Astatistics

)
Astatistics

× 100% (2)

where Aimage is the extracted cotton cultivated area and Aimage and Astatistics are the actual
cotton cultivated area. The data used for calculating the area error was the 2020 dataset
for Jingzhou, Xiaogan, and Huanggang obtained from official government statistics (http:
//tjj.hubei.gov.cn/tjsj/, accessed on 20 October 2021).

4. Results
4.1. Classification Result of Feature Combination for Cotton Extraction

Figure 7 shows the results of feature selection, which includes one spectral feature
(green band), one VI (RVI), and two texture features (Entropy and Second Moment) for
the August image, and one spectral feature (near-infrared band) and three VIs (NDVI,
MCARI2d, and RGBVI) for the September image. By the end of August, since cotton is in
the blooming stage, it exhibits its typical feature. At the end of September, cotton and other
crops with similar growth cycles are in harvest. However, the cotton harvest is carried out
in batches and lasts until October, which can show different features in images compared
to other crops.

http://tjj.hubei.gov.cn/tjsj/
http://tjj.hubei.gov.cn/tjsj/
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Figure 7. Features extraction results in Jingzhou: (a) Green band (late in August 2020); (b) Near-
infrared band (late in September 2020); (c) NDVI (late in September 2020); (d) MCARI2d (late in
September 2020); (e) RGBVI (late in September 2020); (f) RVI (late in August 2020); (g) Entropy (late
in August 2020); and (h) Second Moment (late in August 2020).

The three kinds of features were combined into seven classification schemes. The
results for the cotton extraction using the SVM classifier are shown in Figure 8. Among
the different schemes, the F1 values of the Spectral + VI configuration were highest in the
three regions at 86.93%, 80.11%, and 71.58%, respectively. The producer’s accuracy for
cotton was greater than the user’s accuracy by 12–17%. This suggests that the errors in
the cotton area extraction were mainly due to the misclassification of other crops to cotton.
In addition, the three evaluation indices for Jingzhou were higher than for Xiaogan and
Huanggang, primarily caused by Jingzhou’s flat terrain, uniform planting patterns, and
a consistent growth cycle for cotton. The confusion matrices of optimal results in three
regions are listed in Appendix B (Tables A2–A6).
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4.2. Improved Results of Cotton Extraction Based on CSSDI

As shown in Figure 8, the three evaluation indices for Huanggang were much lower
than for the other two regions, mainly because of misclassification between cotton and
soybean. This study proposed a CSSDI based on red and red-edge bands to improve the
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classification results by further separating cotton and soybean. In Appendix C (Figure A1),
different characteristics in the images of the same field can be found, leading to serious
misclassification between cotton fields and soybean fields. As shown in Figure 9, the
introduction of CSSDI improved the accuracy of cotton area extraction. Producer’s accuracy,
user’s accuracy, and F1 increased by 6.67%, 8.41%, and 7.75%, respectively, and the final
value of F1 was 79.33%. Similarly, CSSDI also improved the accuracy of soybean extraction.
For Xiaogan and Jingzhou, since there were fewer mixed planted areas, the introduction of
CSSDI resulted only in marginal improvements in cotton area extraction.
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4.3. Comparison of Different Spatial Constraint Methods

To further investigate the performance and explore the advantage of spatial constraint
using LUSD, we used two other cotton extraction methods for comparison: (1) without mask
and (2) using Globeland30 (G30) data as mask. G30 data provides a global geo-information
product available online (http://www.globallandcover.com/, accessed on 10 September
2021). The cultivated land categories of G30 were used as a mask before classification.
Aside from cotton, soybean, and corn, the SVM classifier includes a category for rice, which
was also collected in the field. For the method without mask, three additional classes were
added using visual interpretation to avoid misclassification of non-crops: water, building,
and forest.

The cotton extraction accuracy of the three methods was evaluated in two aspects,
actual samples collected in the field and actual cotton area from statistical data. The cotton
extraction results of the three methods were shown in Figure 10. The concentration of
cotton cultivated areas was similar for the three methods. However, the method without
mask produced a much larger cotton area compared to the statistical data. This suggests
that masking can significantly reduce extracted areas. The LUSD method was closest to
the statistical data, with area errors at 13.89%, 40.77%, and 20.66%. Accuracy assessment
using samples collected in the field was also performed, and the summary of results is
presented in Table 5. The LUSD approach produced higher F1 scores than the G30 method,
especially in Xiaogan. While the maskless approach generated the highest OA values, the
LUSD method can provide a balance between the two evaluation indices of actual area and
actual samples.

http://www.globallandcover.com/
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Table 5. Accuracy evaluation of three methods using field samples.

Method Evaluation Index Jingzhou Xiaogan Huanggang

Without mask

Producer’s accuracy 93.29% 81.22% 85.45%
User’s accuracy 75.18% 75.68% 76.50%
F1 83.26% 78.35% 80.73%
OA 85.31% 86.03% 95.34%
kappa 0.82 0.85 0.94
Area error 81.91% 286.87% 171.45%

G30 as a mask

Producer’s accuracy 85.98% 80.38% 67.67%
User’s accuracy 74.80% 41.72% 69.12%
F1 80.00% 54.93% 68.39%
OA 80.14% 51.65% 74.16%
kappa 0.75 0.37 0.63
Area error 28.60% 187.88% 39.14%

LUSD as a mask

Producer’s accuracy 93.29% 85.87% 86.06%
User’s accuracy 81.38% 76.35% 73.58%
F1 86.93% 80.83% 79.33%
OA 72.05% 73.02% 75.25%
kappa 0.60 0.61 0.65
Area error 13.89% 40.77% 20.66%

5. Discussion
5.1. Necessity of Feature Selection and Combination

The performance of different cotton extraction schemes with varying multi-feature
combinations was analyzed in this study. As shown in Figure 11, cotton extraction schemes
using a single texture feature or spectral feature can result in more over-segmentation or
under-segmentation. Schemes with VI features can effectively reduce the misclassifica-
tion between cotton and corn (Figure 11b), achieving relatively high accuracy of cotton
extraction. Although VIs are based on multiple spectral band calculations, the green and
near-infrared spectral bands can generate different crop information from VI features. The
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results suggest that the spectral + VI scheme provides higher accuracy than methods using
only a single VI feature.
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However, texture features had a relatively smaller role in cotton extraction. Texture
features indicate the distribution function statistics of the local crop properties in the
image, while spectral and VI reflect the crop-based features of pixels. In this study, the
small plot size and coarse spatial resolution of the Sentinel image limited the extraction of
representative texture features, causing the texture-feature-based methods to have lower
accuracy than spectral + VI. Some studies have also introduced texture features to help
crop classification. Using a 2 m spatial resolution WorldView-2 imagery, Wan et al. [39]
found that texture and spectral features can slightly improve crop classification compared
to using spectral bands alone. Kwak et al. [37] explored the impact of texture information
on crop classification based on UAV images with much finer resolution. They concluded
that GLCM-based texture features obtain the most accurate classification. These studies
suggest the usefulness of texture features for crop classification in high-resolution images.
In this study, the combination of features was found to increase crop classification accuracy.

5.2. Advantages of CSSDI for Separating the Cotton and Soybean

To improve crop differentiation and field extraction, we compared the spectral char-
acteristics between cotton and soybean. The biggest spectral differences between the two
crops were found in the red-edge band and the red band (Figure 6). Therefore, a new
vegetation index CSSDI was proposed. In Huanggang, the F1 scores increased by 7.75%.
Red-edge is the spectral feature corresponding to the maximum slope in the reflectance
profile of green vegetation [36]. Several studies that evaluated the capabilities of Sentinel-2
for vegetation classification have concluded that the red-edge band contributes significantly
to accurate crop classification [40,41]. Xiao et al. developed red-edge indices (RESI) by nor-
malizing three red-edge bands in Sentinel-2, applying them to map rubber plantations [42].
The index was sensitive to changes in moisture content and canopy density of rubber
plantations, with an overall accuracy of 92.50% and a kappa coefficient of 0.91. Kang et al.
combined NDVI time series and NDRE red-edge time series and used a Random Forest
algorithm for crop classification [43], resulting in better crop classification than single NDVI
time series.

Due to limitations in spatial resolution, the use of red-edge bands for crop classification
would be difficult for the entire Huanggang area. However, the results of this study
suggest that red edge bands play a key role in the further separation of soybean and cotton
cultivated areas, and that combining the visible, near-infrared, and red-edge bands would
result in better cotton area extraction.

5.3. Balance between F1 Scores and Area Errors Using LUSD

The spatial constraint method with LUSD generated high F1 scores in Jingzhou,
resulting in comparable area estimates with the statistical data. For Huanggang and
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Xiaogan, the cotton area estimates were 21–41% higher than the statistical data, which
means that other categories were misclassified as cotton.

The Huangmei county with more area error was selected as the test area. A non-object
sample augmentation was performed based on LUSD categories (e.g., water, building,
forest, shrub, and bare land), and the LUSD samples were evenly distributed throughout
the study area. The classes of cotton and other crops used samples collected in the field.
The classification results are shown in Figure 12. Although the F1 score of the sample
augmentation method was slightly lower than that of the mask method, the cotton area
estimate was closer to the statistical values, with a difference of 0.49 kha (see Table 6).
The SVM algorithm created a serious salt-and-pepper phenomenon in the segmentation
images, especially at the object boundaries [44]. The small number of sample types resulted
in more noise in the cotton category. Although post-processing of classified images by
morphological methods can reduce noise, these were not suitable for this study due to the
small size of cotton plots in the research area, which may be regarded as noise. Therefore,
given the small cotton field and limited samples available in this study, the sample types
can be increased using LUSD to reduce the pixels of cotton misclassification to ensure the
F1 scores of the cotton and reduce the area errors compared with statistical data.
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Table 6. Accuracy evaluation of cotton extraction in Huangmei county using LUSD as a mask or
data augmentation.

Evaluation Index LUSD for Mask LUSD for Sample Augmentation

Producer’s accuracy 86.43% 80.80%
User’s accuracy 73.19% 76.68%
F1 79.26% 78.69%
OA 75.58% 83.80%
kappa 0.65 0.80
Area error 58.51% 7.01%

6. Conclusions

This study used the spatial constraint method and a multi-feature combination based
on the SVM algorithm to extract cotton-cultivated areas in Hubei. The present work
demonstrates a promising method for cotton extraction for areas with small plots and
limited field samples. In this paper, the main contributions are as follows:

1. Through the establishment of seven kinds of feature combination schemes, the
optimal scheme was selected for cotton extraction;

2. Further, the CSSDI was established to improve the extraction accuracy of cotton,
considering the phenomenon of cotton and soybean mixture;

3. Using LUSD for spatial constraints in this study serves two purposes: (a) LUSD
can provide accurate land type information to reduce the influence of non-crop on cot-
ton; (b) non-object sample augmentation is carried out to solve the problem of a small
sample number.

For the multi-feature combination, the scheme with VI and spectral features produced
the optimal extraction accuracy, with F1 scores of 86.93%, 80.11%, and 71.58% for Jingzhou,
Xiaogan, and Huanggang. In addition, the CSSDI was used to further differentiate cotton
and soybean, increasing the F1 score in Huanggang to 79.33%. The spatial constraint
method using LUSD can effectively reduce area errors for cotton extraction. The relative
error for the cotton areas in Jingzhou was 13.89%; however, there were relatively more
area errors in the other two regions. An alternative approach (i.e., non-object sample
augmentation) was discussed for Huangmei county, and the area error was from 58.51%
to 7.01%.

The CSSDI proposed in this paper is only for mixed planting of cotton and soybean
in Huanggang. However, in the field investigation, we found mixed planting of cotton
with other crops (e.g., watermelon, sesame, and peanut). Therefore, other index model sets
need to be constructed in the next stage of research. Moreover, in the follow-up study, we
will consider adding auxiliary data with social attribute information to further synthesize
the cotton area extraction method. At the same time, we will collect more samples and
optimize the feature combination strategy to improve the model and achieve higher crop
classification accuracy.
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Appendix A

Table A1. Eighteen vegetation indices and their calculation formulas.

No. Vegetation Index Abbreviation Formula Reference

1 Excess green index ExG 2 × g − r − b [45]
2 Excess red index ExR 1.4 × r − g [46]
3 Excess green–Excess red ExG–ExR ExG − ExR [46]
4 Color index of vegetation CIVE R × 0.441 − g × 0.881 + b × 0.385 + 18.78745 [47]
5 Normalized difference index NDI (g − r)/(g + r) [48]
6 RGB vegetation index RGBVI (g2 − b × r)/(g2 + b × r) [49]
7 Normalized difference vegetation index NDVI (nir − r)/(nir + r) [50]
8 Difference vegetation index DVI nir − r [51]

9 Renormalized difference
vegetation index RDVI

√
(NDVI × DVI) [52]

10 Ratio vegetation index RVI nir/r [53]

11 Modified chlorophyll absorption in
reflectance index MCARI2d

(((nir − r) × 2.5 − (nir − g) × 1.3) × 1.5)/
√

((2 ×
nir + 1) × (2 × nir + 1) − (6 × nir − 5 ×√

(r)) − 0.5)
[54]

12 Modified Soil Adjusted Vegetation Index MSAVI2d (2 × nir + 1−
√

((2 × nir + 1) × (2 × nir + 1) −
8 × (nir − r))) × 0.5 [55]

13 Modified Triangular Vegetation Index MTVI2d ((nir − g) × 1.2 − (r − g) × 2.5) × 1.5/
√

((2 × nir
+ 1) × (2 × nir + 1) − (6 × nir − 5 ×

√
(r)) − 0.5) [56]

14 Square root of (IR/R) SQRT(IR/R)
√

(nir/r) [57]
15 Soil adjusted vegetation index SAVI ((nir − r) × 1.5)/(nir + r + 0.5) [58]

16 Transformed normalized difference
vegetation index TNDVI

√
((nir − r)/(nir + r) + 0.5) [59]

17 Enhanced vegetation index EVI 2.5 × (nir − r)/(nir + 6 × r − 7.5 × b + 1) [60]
18 Normalized difference water index NDWI (g − nir)/(g + nir) [61]

Note: b, g, r, and nir were the visible blue (Band 2), green (Band 3), red (Band 4), and near-infrared (Band 8) of
Sentinel-2, respectively.

Appendix B

The confusion matrices in Tables A3–A6 were the results of five-fold cross validation.

Table A2. F1 results of five-fold cross-validation.

Jingzhou Xiaogan Huanggang
(without CSSDI)

Huanggang
(with CSSDI)

1 87.15% 78.76% 70.97% 78.69%
2 87.43% 79.46% 71.13% 75.46%
3 85.07% 84.99% 71.18% 79.12%
4 87.04% 75.21% 77.57% 81.26%
5 87.96% 82.13% 66.03% 82.11%
Average F1 86.93% 80.11% 71.58% 79.33%

Table A3. Confusion matrix of Spectral + VI in Jingzhou.

Reference Data (Pixel)

Cotton Soybean Corn Other Crop Total

Classified data
(pixel)

Cotton 156 11 20 3 190
Soybean 3 173 8 41 225
Corn 1 36 81 7 125
Other crop 8 35 18 113 174
Total 168 255 127 164 714
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Table A4. Confusion matrix of Spectral + VI in Xiaogan.

Reference Data (Pixel)

Cotton Soybean Corn Other Crop Total

Classified data
(pixel)

Cotton 469 45 57 94 665
Soybean 19 108 9 16 152
Corn 27 34 182 27 270
Other crop 11 29 14 168 222
Total 526 216 262 305 1309

Table A5. Confusion matrix of Spectral + VI in Huanggang without CSSDI.

Reference Data (Pixel)

Cotton Soybean Corn Other Crop Total

Classified data
(pixel)

Cotton 88 46 1 2 137
Soybean 20 124 0 0 144
Corn 0 0 251 89 340
Other crop 3 0 22 83 108
Total 111 170 274 174 729

Table A6. Confusion matrix of Spectral + VI in Huanggang using CSSDI.

Reference Data (Pixel)

Cotton Soybean Corn Other Crop Total

Classified data
(pixel)

Cotton 96 36 1 0 133
Soybean 12 134 0 2 148
Corn 0 0 251 89 340
Other crop 3 0 22 83 108
Total 111 170 274 174 729
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