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Abstract: In this paper, we study the joint range and angle estimation problem based in monostatic
frequency diverse-array multiple-input multiple-output (FDA-MIMO) radar, and propose a method
for range and angle estimation base on compressed unitary parallel factor (PARAFAC). First, the re-
ceived complex signal matrix is stacked into a third-order complex signal tensor. Then, we can
transform the obtained third-order complex signal tensor into a third-order real-valued signal tensor
by employing forward–backward and unitary transformation techniques. Next, a smaller third-order
real-valued signal tensor is composed by using compressing the third-order real-valued signal tensor.
After that, PARAFAC decomposition is applied to obtain the direction matrix. Lastly, the angle and
range are estimated by employing the least square (LS) fitting. The estimation error of the proposed
method is about 10% lower than that of the traditional PARAFAC method under the low number
of snapshots. When the number of snapshots is high, the performance of the two methods is close.
Moreover, the computational complexity of the proposed method is nearly 96% less than those
of the traditional PARAFAC methods in the case of low snapshots, while the gap is larger in the case
of high snapshots. The superiority and effectiveness of the method are proved by complexity analysis
and simulation experiments.

Keywords: real-valued tensor; tensor compression; unitary transformation; FDA-MIMO radar;
PARAFAC decomposition; angle estimation; range estimation

1. Introduction

The main task of radar is of detect and locate targets. Under the condition of strong
interference, it is difficult for traditional radar of detect the target. In this case, the target can
only be detected by utilizing better target detection techniques such as constant false alarm rate
(CFAR) [1,2] technology. Compared with traditional radars, multiple-input multiple-output
(MIMO) radar [3,4] have stronger antijamming ability, higher measurement accuracy and better
resolution [5]. It is these advantages that make it of great significance in the field of radar.
Among them, MIMO’s target parameter estimation is a hot topic [6].

However, since both traditional radar and MIMO radar cannot achieve time and
phase synchronization, it is impossible to jointly estimate the range and angle of the target.
The frequency-diversity (FDA) radar [7] uses a small frequency offset in different transmit-
ting array elements to obtain the beam with range dependence. This makes it applicable
for joint angle and range estimation.

In 2014, Wen-Qin Wang [8] applied FDA technology to MIMO radar, which greatly
improved the accuracy of range and angle estimation. Henceforth, FDA-MIMO radar has
become a research hotspot. Hui Chen and HuaiZong Shao [9] estimated the angle and
range by using sparse reconstruction. In [10], an adaptive Doppler frequency-angle-range
processing method for FDA-MIMO radar was proposed by Jingwei Xu. In [11], Jian Xu
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proposed a joint Doppler frequency, range and angle estimation method for FDA-MIMO
radar, which uses the principle of extended invariance of reduce complexity.

Parallel factor (PARAFAC) is a multidimensional data-processing method. In the field
of signal processing, the method based on PARAFAC can obtain the required informa-
tion by fitting multidimensional data [12]. This is the reason why the method based
on PARAFAC shows good performance. In [13], Zhang X.F. proposed angle estimation
based on PARAFAC decomposition in bistatic MIMO radar. The traditional PARAFAC de-
composition algorithm requires a huge amount of calculation. Therefore, the key to the ap-
plication of PARAFAC technology is to reduce the computation complexity. At present,
the methods that can reduce the complexity of PARAFAC include unitary transforma-
tion [14–16], compressed sensing [17–19], and so on. The key problem of compressed sens-
ing is to obtain a compressed matrix that retains most of the information from the original
signal. This compressed matrix in compressed sensing needs to meet the restricted isometry
property (RIP) [20] condition. The matrices that satisfy the RIP condition include Bernoulli
matrix, random Gaussian matrix, matrix obtained by TUCKER3 decomposition [21], and
so on. After TUCKER3 decomposition, the matrix can retain most of the information
of the tensor, so the compressed matrix used in tensor compression is usually the matrix
obtained by TUCKER3 decomposition.

In the paper, we combine unitary transformation and compression technology of pro-
pose a compressed unitary PARAFAC algorithm, which greatly reduces the complexity
of PARAFAC decomposition. Firstly, we establish a third-order tensor with signal data.
Then, the obtained third-order complex tensor is transformed into a third-order real-
valued signal tensor through forward–backward and unitary transformation techniques.
Next, the compressed sensing technology is applied of compress the real-valued tensor.
Finally, the range and angle are estimated using the direction matrix acquired by PARAFAC
decomposition. Experimental simulation shows that performance of the proposed method
are more excellent than the traditional estimation of signal parameters via rotational in-
variance technology (ESPRIT) method [22], the traditional PARAFAC method [23], and
the Unitary ESPRIT method [24], and is near of the unitary PARAFAC method. That is,
it has a higher detection success probability and a lower estimation error. In the mean
time, the complexity of this method is lower than both the traditional PARAFAC and
the unitary PARAFAC method. In the following section of this paper, CUP (compressed
unitary PARAFAC) represents our proposed algorithm.

Table 1 defines the symbols in this paper.

Table 1. Related notation.

Notations Definitions

(·)H conjugate-transpose
(·)T transpose
(·)∗ conjugate
(·)† pseudo-inverse
(·)−1 inverse
� Khatri–Rao product operator
⊗ Kronecker product operator
‖ · ‖ the Frobenius norm operator

Dn(A) the diagonal matrix composed of the n-th row of A.
Re(·) the real part operator
◦ identity matrix the vector outer product operator
IK K× K identity matrix

2. Tensor Data Model

Firstly, we introduce some operations about tensors [12].
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Tensor Operation 1: The mode-n unfolding X(n) of a tensor X is:

X(n) = (A(1) · · · �A(n−1) �A(n+1) · · · �A(N))(A(n))T (1)

where the size of X is I1 × I2 × · · · × IN , the size of X(n) is I1 I2 · · · In−1 In+1 · · · IN × In and
A(1), A(2), · · · , A(N) are the factor matrices of X , respectively.

Tensor Operation 2: The mode-n product of a tensor X and a matrix A is given by
the following formulas:

Y = X ×n A (2)

where the size of X is I1 × I2 × · · · × IN , the size of A is Jn · · · × In and the size of Y is
I1 × · · · × In−1 × In+1 × · · · × IN , [Y ]i1i2···in−1 jni(n+1)···iN

= ∑In
in=1[X ]i1i2···iN [A]jn ,in .

Tensor Operation 3: The concatenation between tensor X ∈ CI1×I2×···×IN and tensor
Y ∈ CI1×I2×···×IN along the n-th mode is defined as:

Z = [X tn Y ] (3)

where the size of Z is I1 × I2 × · · · × 2In × · · · IN .
Figure 1 displays the model of a monostatic FDA-MIMO radar. We set the receiving

array and the transmitting array of this radar to be uniform linear arrays. We assume that
K targets from afar receive and reflect the signals from the radar. DOD and DOA are equal,
as the receiving and the transmitting array are placed in the same location. The transmitting
and the receiving array contain M and N antennas, respectively, with spacing d between
adjacent antennas. In general, the spacing is equal of half wavelength of the impinging sig-
nal. The frequency increase is set of ∆ f between adjacent antennas and the first antenna f0
of the transmitting array is the reference frequency, ∆ f 6 f0. Then the frequency of the m-th
antenna of the transmitting array is:

fm = f0 + (m− 1)∆ f , m = 1, 2, · · · , m (4)

The received data after matched filter is:

x(t) = [ar(θ1)⊗ at(θ1, r1), · · · , ar(θK)⊗ at(θK, rK)]s(t) + n(t) (5)

where ar(θk) denotes the receiving steering vector and at(θk, rk) denotes the transmitting
steering vector, where rk and θk denotes the range and angle of the k-th targets, respectively.
n(t) stands for the Gaussian white noise vector. s(t) is signal vector, with s(t) = αkej2π fkt,
where fk is Doppler phase shift and αk is the reflection coefficient. N is the number
of antennas in the receiving array and M is the number of antennas in the transmitting
array. This article assumes that both N and M are odd numbers.

Figure 1. monostatic FDA-MIMO radar model.

The middle antenna of receiving array is used as the reference, the receiving vector is:

ar(θk) = [e−jπ(N−1) d
λ sin θk , · · · , 1, · · · , ejπ(N−1) d

λ sin θk ]T (6)
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Similarly, the transmitting vector can be expressed as:

at(θk, rk) = [e−jπ(M−1) d
λ (sin θk−

4∆ f rk
c ), · · · , 1, · · · , ejπ(M−1) d

λ (sin θk−
4∆ f rk

c )]T (7)

The received signal matrix with the number of snapshots J can be expressed as:

X =


X1
X2
...

XN

 =


ATD1(AR)
ATD2(AR)

...
ATD3(AR)

ST +


Nx1
Nx2

...
NxN

 = [AR �AT ]ST + Nx (8)

where AT = [at(θ1, r1), at(θ2, r2), · · · , at(θK, rK)] ∈ CM×K is the transmit steering matrix,
AR = [ar(θ1), ar(θ2), · · · , ar(θK)] ∈ CN×K is the receive steering matrix, and
S = [s(t1), s(t2), · · · , s(tJ)] ∈ CK×J . The trilinear model of the received signal is:

X n,m,j =
K

∑
k=1

AR(n, k) ◦AT(m, k) ◦ S(j, k) + Nn,m,j

n = 1, · · · , N, m = 1, · · · , M, j = 1, · · · , J

(9)

where AR(n, k) and AT(m, k) are the (n, k) element of the receive steering matrix AR and
the (m, k) element of the transmitt steering matrix AT , respectively. X is Mode-3 unfolding
of the third-order complex signal tensor Xm,n,j.

3. Compressed Unitary PARAFAC Algorithm
3.1. The Real-Valued Signal Tensor

In this section, we transform the third-order complex-valued tensor signal data ob-
tained from Equation (10) into a third-order real-valued signal tensor by forward–backward
technology and unitary transformation [14,15,25,26].

First, we construct the centro-Hermitian tensor Z as follows:

Z = [X t3 X ×1 ΠN ×2 ΠM ×3 ΠJ ] (10)

where Πn ∈ Cn×n is:

Πn =


1

1

. .
.

1

 (11)

Then, we transform the third-order complex-valued signal tensor into the third-order
real-valued signal tensor by employing unitary transformation. The transformation process is:

Z̄ = Z ×1 UH
N ×2 UH

M ×3 UH
2J (12)

where the unitary matrix U is:

U2n =
1√
2

[
In jIn

Πn −jΠn

]
(13)

U2n+1 =
1√
2

 In 0 jIn
0
√

2 0
Πn 0 −jΠn

 (14)
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The trilinear model of the real-valued tensor Z̄ is:

Z̄n,m,j =
K

∑
k=1

ÃR(n, k) ◦ ÃT(m, k) ◦ S̃(j′, k) + Ñn,m,j′

n = 1, · · · , N, m = 1, · · · , M, j′ = 1, · · · , 2J

(15)

where S̃ = UH
2J [S

T, (ΠJS∗)T]T, ÃT = UH
M AT and ÃR = UH

N AR.

3.2. Tensor Model Compression

In the previous part, a large tensor data is obtained by forward–backward techniques.
In practical applications, large tensors not only have high complexity but also require large
capacity for data storage. Therefore, for the sake of reducing the algorithm complexity
and capacity for data storage, we compress the tensor obtained in the previous part into
a smaller tensor [17].

In the process of tensor compression, it is important to obtain a suitable compression
matrix. This compression matrix can retain most of the information of the signal, and
keep the compressed tensor as small as possible. Principal component analysis (PCA)
can retain most of the signal information. Tucker3 decomposition is a higher-order form
of PCA [12,27]. The rank of the tensor we obtained is K, K < 2J, most of the signal
information is retained in the first K left singular value vectors. Therefore, the compression
matrix can be obtained by truncating Tucker3 decomposition. The tensor compression
process is shown in Figure 2, where W takes the first K left singular value vectors after
singular value decomposition of Mode-3 unfolding of the tensor Z̄ . The following is
of introduce the details of the compression process:

Figure 2. Tensor compression process.

Firstly, the mode-3 unfolding of the real-valued tensor Z̄ is:

[Z̄ (3)] =


[Z̄ (3)]1
[Z̄ (3)]2

...
[Z̄ (3)]N

 =


ÃT D1(ÃR)
ÃT D2(ÃR)

...
ÃT DN(ÃR)

S̃T
+


Ñz1
Ñz2

...
ÑzN

 = [ÃR � ÃT ]S̃
T
+ Ñ[Z̄ (3) ]

(16)

Then, the compression matrix in the compression process W can be obtained by
tucker3 decomposition. The compressed real signal can be expressed as:

[Z̄ ′(3)] = [Z̄ (3)] ∗W = [ÃR � ÃT ]S̃
T ∗W + Ñ[Z̄(3) ]

∗W = [ÃR � ÃT ]S̃′
T
+ Ñ′[Z̄ ′(3) ] (17)

where W ∈ C2J×K.
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According of the obtained the real-value signal data obtained from Equation (17),
the trilinear model can be constructed as follows:

Z̄ ′ =
K

∑
k=1

ÃR(n, k) ◦ ÃT(m, k) ◦ S̃′(j, k) + Ñ′n,m,j

n = 1, · · · , N, m = 1, · · · , M, j = 1, · · · , K

(18)

The mode-2 unfolding of the real-valued tensor Z̄ ′ is:

[Z̄ ′(2)] = [ÃT � S̃′]ÃT
R + Ñ′[Z̄ ′(2) ] (19)

The mode-1 unfolding of the real-valued tensor Z̄ ′ is:

[Z̄ ′(1)] = [S̃′ � ÃR]Ã
T
T + Ñ′[Z̄ ′(1) ] (20)

3.3. Trilinear Decomposition

In this section, we estimate the direction matrixs by using the trilinear alternating least
square(TALS) method [13].

The LS fitting of Equation (17) is:

min
ÃR ,ÃT ,S̃′

‖[Z̄ ′(3)]− [ÃR � ÃT ]S̃
′T‖F (21)

The LS update of S̃′ can be structured as:

ˆ̃S′T = [ ˆ̃AR � ˆ̃AT ]
†[Z̄ ′(3)] (22)

where ˆ̃AT is the estimate of ÃT and ˆ̃AR is the estimate of ÃR.
The LS fitting of Equation (19) is:

min
ÃR ,ÃT ,S̃′

‖[Z̄ ′(2)]− [ÃT � S̃′]ÃT
R‖F (23)

The LS update of ÃR is:
ˆ̃AT

R = [ ˆ̃AT � ˆ̃S′]†[Z̄ ′(2)] (24)

where ˆ̃S′ is the estimate of S̃′ and ˆ̃AT is the estimate of ÃT .
The least square (LS) fitting of Equation (20) is:

min
ÃR ,ÃT ,S̃′

‖[Z̄ ′(1)]− [S̃′ � ÃR]Ã
T
T‖F (25)

The LS update of ÃT is:
ˆ̃AT

T = [ ˆ̃S′ � ˆ̃AR]
†[Z̄ ′(1)] (26)

where ˆ̃AR is the estimate of ÃR and ˆ̃S′ is the estimate of S̃′.
According to Equations (22), (24) and (26), the matrices ÃT, S̃′ and ÃR are updated cyclically

until convergence, where the convergence condition is ‖[Z̄ ′(3)]− [ ˆ̃AR � ˆ̃AT]
ˆ̃S′T‖2

F � 10−10.
After trilinear decomposition, the estimation of the three factor matrices satisfies:

ˆ̃AR = ÃRΓ∆1 +N1, ˆ̃AT = ÃTΓ∆2 +N2, ˆ̃S′ = S̃′Γ∆3 +N3. Where Γ stand for a permutation
matrix, N1, N2, N3 are estimation errors, ∆1, ∆2, ∆3 denote the diagonal scaling matrices,
and the product of these three matrices satisfies ∆1∆2∆3 = I.
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3.4. Range and Angle Estimation

In the previous section, the estimation of the direction matrices ˆ̃AT and ˆ̃AR has been
obtained by the LS method. According to UNUH

N = I and UMUH
M = I, we obtain the fol-

lowing formula:

hr = angle(UNÃR) = [1,
2d
λ

π sin θk, · · · , (N − 1)
2d
λ

π sin θk]
T (27)

ht = angle(UMÃT) = [1,
2d
λ

π(sin θk −
4∆ f rk

c
), · · · ,

(M− 1)
2d
λ

π(sin θk −
4∆ f rk

c
)]T

(28)

Define

Gr =


1 0
1 2 d

λ π
...

...
1 2(N − 1) d

λ π

 (29)

Gt =


1 0
1 2 d

λ π
...

...
1 2(M− 1) d

λ π

 (30)

Then, the estimation of sin θk and (sin θk −
4∆ f rk

c ) can be obtained by using LS method.
LS fitting can be constructed as:

Grvr = hr (31)

Gtvt = ht (32)

where vr ∈ C2×1 and vt ∈ C2×1 are the estimated vectors.
The LS solutions of vr and vt are:

v̂r = (GT
r Gr)

−1GT
r ĥr (33)

v̂t = (GT
t Gt)

−1GT
t ĥt (34)

The estimation of angle can be obtained from the following formula:

θ̂k = arcsin(v̂r(2)) (35)

where v̂r(2) stand for the second element of vector v̂r.
The estimation of range can be obtained from the following formula:

r̂k =
v̂r(2)− v̂t(2)

4∆ f
× c (36)

where v̂t(2) stand for the second element of vector v̂t.

3.5. Complexity Analysis and Cramer-Rao Bound

In the paper, the total complexity of the forward–backward process and unitary
transformation process in the CUP is O(8MKN2 + 8M2KN + 20MK2N). The complex-
ity of the compression process in the CUP is O(4MNJK). The complexity of each iter-
ation process of TALS in the CUP, the traditional PARAFAC method and the unitary
PARAFAC method are O(2K2(MN + MK + NK) + 3K2MN + 3K3), O(8K2(MN + MJ +
NJ) + 12KMNJ + 12K3) and O(2K2(MN + 2MJ + 2NJ) + 6KMNJ + 12K3), respectively.
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Therefore, the complexity of the CUP is O(8MKN2 + 8M2KN + 20MK2N + 4MNJK +
n1(2K2(MN + MK + NK) + 3K2MN + 3K2)), the complexity of the traditional PARAFAC
method is O(n2(8K2(MN + MJ + NJ) + 12KMNJ + 12K3)), the complexity of the unitary
PARAFAC method is O(8MKN2 + 8M2KN + 20MK2N + n3(2K2(MN + 2MJ + 2NJ) +
6KMNJ + 3K3)), where n1n2 and n3 are the number of the CUP, the traditional PARAFAC
method and the unitary PARAFAC method, respectively. In order to more clearly compare
the complexity of the three methods and the relationship between their computational com-
plexity and the number of snapshots, we assume M = 5, N = 7, K = 3, n1 = n2 = n3 = 30.
From Figure 3, with the increase of the number of snapshots, the difference of the com-
plexity of the three methods becomes more and more obvious. Then, we also analyze
the relationship between the complexity of the three methods and the number of iterations.
We set M = 5, N = 7, K = 3, J = 50. It can be easily found from Figure 4 that the increase
of the number of iterations will increase the complexity gap between the three algorithms.
Through complexity analysis, it can be concluded that the complexity of the PARAFAC-
based method is hugely reduced after the real value transformation and compression
of the tensor.

According to [28], the Cramer–Rao Bound (CRB) for FDA-MIMO range and angle
estimation is as follows:

CRB =
σ2

2J
{Re[DH B 1

A
D⊕ PT ]}−1 (37)

where D = [((∂a(θ1, r1))/∂θ1), · · · , ((∂a(θ1, r1))/∂r1), · · · ], B 1
A
= IMN − A(AH A)−1 AH ,

P = [P1P1; P1P1], where P1 = SSH/J.
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Figure 3. Complexity comparison and snapshots.
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Figure 4. Complexity comparison and iterations.

4. Simulation Results

In this section, we conducted several experiments to verify the superiority and effec-
tiveness of the CUP. At the same time, we compared the CUP with the ESPRIT method [22],
the unitary ESPRIT method [24], the traditional PARAFAC method [23], the unitary
PARAFAC method. In the following experiment, the total number of transmitting ar-
rays of FDA-MIMO is M = 5, and the total number of receiving arrays is N = 7. The total
number of uncorrelated targets is K = 3 in the following simulation experiment. The an-
gle and range of these targets are: (θ1, r1) = (−5◦, 10 km), (θ2, r2) = (10◦, 60 km), and
(θ3, r3) = (35◦, 80 km). The number of Monte Carlo in the simulation experiment is set
of Q = 500. This paper used the Root Square Mean Error (RMSE) compare the performance
of these algorithms. The RMSE of the range estimate and angle estimate are:

RMSEr =

√√√√ 1
K

1
Q

K

∑
k=1

Q

∑
q=1

(r̂k,q − rk)2 (38)

RMSEθ =

√√√√ 1
K

1
Q

K

∑
k=1

Q

∑
q=1

(θ̂k,q − θk)2 (39)

where r̂k,q and θ̂k,q are the estimated range and angle of k-th target in q-th Monte Carlo
experiment, respectively.

We assume that the estimation error of all angles is less than 0.1◦, this time the angle
estimation can be considered successful, and the range estimation can only be considered
successful when all the range estimation errors are less than 0.2 km. The expression
of the probability of the successful detection (PSD) is:

PSDr =
Dr

Q
× 100% (40)

PSDθ =
Dθ

Q
× 100% (41)

where Dr and Dθ are the number of successful estimates of range and angle, respectively.
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4.1. Stability Simulation

In this experiment, the signal-to-noise ratio (SNR) is SNR = 20, the total number
of snapshots is J = 50. It can be easily seen from Figure 5 that the estimated range and
angle values in the 20 experiments are all around the set values. Additionally, the errors
that can be found in Table 2 are all between±0.2 km and±0.1◦, which proves that the angle
and range of the target are accurately estimated by the CUP. This experiment reflects
the effectiveness and stability of the CUP.

0 10 20 30 40

DOA(°)

0

1

2

3

4

5

6

7

8

9

R
a

n
g

e
(/

m
)

×104

The setting targets
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Figure 5. The estimated result of the method with SNR = 20 dB, J = 50.

Table 2. Stability Simulation.

Time
Targets −5◦ 10 km 10◦ 60 km 35◦ 80 km

1 −4.9914◦ 9.9723 km 10.0366◦ 59.9731 km 35.0131◦ 80.0439 km

2 −5.0199◦ 9.9351 km 10.0096◦ 60.0551 km 34.9797◦ 79.8586 km

3 −4.9731◦ 9.9519 km 10.0136◦ 60.0696 km 35.0297◦ 80.0381 km

4 −4.9662◦ 10.0124 km 9.9996◦ 60.0360 km 35.0163◦ 80.0233 km

5 −4.9796◦ 10.0312 km 9.9729◦ 59.9638 km 35.0041◦ 79.9552 km

6 −5.0081◦ 10.0845 km 10.0213◦ 60.0429 km 35.0121◦ 80.0241 km

7 −4.9525◦ 10.0540 km 9.9736◦ 59.9131 km 35.0021◦ 80.0894 km

8 −5.0093◦ 9.9456 km 10.0001◦ 59.9563 km 35.0174◦ 80.0051 km

9 −5.0098◦ 9.9662 km 9.9714◦ 59.9421 km 35.0456◦ 80.0094 km

10 −5.0138◦ 10.0045 km 9.9844◦ 59.9912 km 35.0175◦ 79.9996 km

11 −4.9733◦ 10.0388 km 10.0153◦ 60.0276 km 35.0032◦ 79.9188 km

12 −4.9965◦ 9.9522 km 9.9881◦ 60.0585 km 35.0089◦ 79, 9730 km

13 −4.9902◦ 9.9782 km 9.9800◦ 59.9519 km 34.9850◦ 80.0346 km

14 −5.0038◦ 9.9585 km 10.0074◦ 60.1063 km 34.9486◦ 79.9092 km
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Table 2. Cont.

Time
Targets −5◦ 10 km 10◦ 60 km 35◦ 80 km

15 −5.0055◦ 9.9592 km 9.9813◦ 60.0371 km 35.0352◦ 80.0866 km

16 −4.9601◦ 10.0271 km 10.0366◦ 60.0561 km 35.0168◦ 80.0513 km

17 −5.0313◦ 9.9330 km 9.9364◦ 59.8802 km 35.0000◦ 79.9561 km

18 −5.0045◦ 10.0191 km 10.0133◦ 59.9373 km 35.0717◦ 79.9803 km

19 −5.0149◦ 9.9883 km 10.0226◦ 60.0302 km 35.0415◦ 80.0243 km

20 −5.0107◦ 10.0541 km 10.0449◦ 60.0603 km 34.9914◦ 80.9997 km

4.2. Simulation of Algorithm Performance with RMSE Changing with SNR

In this experiment, the total number of snapshots is J = 50. Figures 6 and 7 show that
the RMSE curves of the CUP are consistently lower than those of the traditional PARAFAC
method [23], the unitary ESPRIT method [24], and the ESPRIT method [22], and are close to those
of the unitary PARAFAC method. Moreover, these curves fall as SNR rises. More specifically,
as shown in Tables 3 and 4, the RMSE values of the CUP are smaller than those of the ESPRIT
method, the unitary ESPRIT method, and the traditional PARAFAC method; the RMSE values
of the CUP are almost close to the RMSE values of the unitary PARAFAC method, in which
the differences of the angle RMSE value of the two algorithms do not exceed 0.0005◦ and
the differences of the range RMSE values of the two algorithms do not exceed 0.0004 km.
Furthermore, the RMSE values decrease with increasing SNR. The smaller the RMSE, the better
the estimated performance. Therefore, from these figures and tables, we find that the estimation
performance of the CUP outperforms the ESPRIT method, the unitary ESPRIT method, and
the traditional PARAFAC method, and is close to the unitary PARAFAC method. The reason for
why the performance of the CUP is close to the unitary PARAFAC method is that the compres-
sion matrix obtained by TUCKER3 decomposition during tensor compression contains most
of the information of the signal. Moreover, we can also find that the estimation performance
of these algorithms improves as the SNR increases.
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Figure 6. RMSE of angle estimation versus SNR.
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Figure 7. RMSE of range estimation versus SNR.

Table 3. RSME of angle estimation versus SNR.

Algorithm SNR = 0 SNR = 5 SNR = 10 SNR = 15 SNR = 20 SNR = 25

CRB 0.1664◦ 0.0936◦ 0.0526◦ 0.0296◦ 0.0166◦ 0.0094◦

CUP 0.2984◦ 0.1620◦ 0.0929◦ 0.0528◦ 0.0289◦ 0.0162◦

unitary CP 0.2979◦ 0.1619◦ 0.0929◦ 0.0528◦ 0.0289◦ 0.0162◦

tensor CP 0.3312◦ 0.1761◦ 0.1022◦ 0.0572◦ 0.0318◦ 0.0179◦

unitary ESPRIT 0.3789◦ 0.1960◦ 0.1098◦ 0.0614◦ 0.0355◦ 0.0194◦

ESPRIT 0.5202◦ 0.2444◦ 0.1329◦ 0.0736◦ 0.0426◦ 0.0231◦

Table 4. RSME of range estimation versus SNR.

Algorithm (km) SNR = 0 SNR = 5 SNR = 10 SNR = 15 SNR = 20 SNR = 25

CRB (km) 0.3495 0.1965 0.1105 0.0621 0.0349 0.0197

CUP (km) 0.6365 0.3559 0.1992 0.1140 0.0612 0.0348

unitary CP (km) 0.6361 0.3559 0.1992 0.1140 0.0612 0.0348

tensor CP (km) 0.7113 0.3973 0.2205 0.1216 0.0663 0.0379

unitary ESPRIT (km) 0.7249 0.4091 0.2251 0.1270 0.0714 0.0393

ESPRIT (km) 1.0331 0.5196 0.2680 0.1544 0.0853 0.0489

4.3. Simulation of Algorithm Performance with RMSE Changing with Snapshots

In this experiment, the SNR is 20. It can be seen from Figures 8 and 9 that the RMSE
curves of the CUP are lower than those of the traditional PARAFAC method when the num-
ber of snapshots is less than 80 and coincides with those of the traditional PARAFAC
method when the number of snapshots is more than 80; the RMSE curves of the CUP are
always lower than those of the ESPRIT method, the unitary ESPRIT method, and always
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coincides with the RMSE curve of the unitary PARAFAC method. Furthermore, the RMSE
curves of these algorithms all decrease as the number of snapshots increases. More obvi-
ously, it can be found from Tables 5 and 6 that when the number of snapshots is less than 80,
the RMSE values of the CUP are lower than those of the traditional PARAFAC method, and
when the number of snapshots is greater than 80, they are equal of those of the traditional
PARAFAC; the RMSE values of the CUP are always less than those of the ESPRIT method,
the unitary ESPRIT method, and are always the same as those of the unitary PARAFAC
method. Furthermore, the RMSE values of these algorithms reduce with the increase
of the number of snapshots. Consequently, from these figures and tables, we find that
the estimated performance of the algorithm improves as the number of snapshots increases,
and the CUP performance is better than the traditional PARAFAC algorithm in the case
of low snapshots. The reason for this is that the CUP increases the number of virtual
snapshots of the algorithm by the forwards–backwards technique.
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Table 5. RSME of angle estimation versus Snapshots.

Algorithm J = 40 J = 50 J = 60 J = 70 J = 80 J = 90 J = 100

CRB 0.0190◦ 0.0166◦ 0.0152◦ 0.0143◦ 0.0133◦ 0.0125◦ 0.0118◦

CUP 0.0335◦ 0.0281◦ 0.0258◦ 0.0247◦ 0.0230◦ 0.0211◦ 0.0200◦

unitary CP 0.0335◦ 0.0281◦ 0.0258◦ 0.0247◦ 0.0230◦ 0.0211◦ 0.0200◦

tensor CP 0.0404◦ 0.0306◦ 0.0269◦ 0.0251◦ 0.0230◦ 0.0211◦ 0.0200◦

unitary ESPRIT 0.0410◦ 0.0335◦ 0.0313◦ 0.0297◦ 0.0284◦ 0.0260◦ 0.0241◦

ESPRIT 0.0589◦ 0.0398◦ 0.0346◦ 0.0311◦ 0.0286◦ 0.0260◦ 0.0242◦

Table 6. RSME of range estimation versus Snapshots.

Algorithm J = 40 J = 50 J = 60 J = 70 J = 80 J = 90 J = 100

CRB (km) 0.0398 0.0349 0.0320 0.0300 0.0280 0.0262 0.0248

CUP (km) 0.0717 0.0613 0.0552 0.0529 0.0513 0.0475 0.0439

unitary CP (km) 0.0717 0.0613 0.0552 0.0529 0.0513 0.0475 0.0439

tensor CP (km) 0.0860 0.0662 0.0573 0.0543 0.0515 0.0473 0.0440

unitary ESPRIT (km) 0.0818 0.0690 0.0624 0.0624 0.0604 0.0544 0.0501

ESPRIT (km) 0.1238 0.0828 0.0696 0.0657 0.0610 0.0545 0.0502

4.4. Simulation of Algorithm Performance with PSD Changing with SNR

In this experiment, the total number of snapshots is J = 50. From Figures 10 and 11,
we find that the PSD curves of the CUP are higher than those of the traditional PARAFAC
method [23], the unitary ESPRIT method [24], and the ESPRIT method [22]; the PSD curves
of the CUP are close of those of the unitary PARAFAC method. Additionally, these PSD
curves rise with the increase of SNR and finally reach PSD = 1. More clearly, it can be seen
from Tables 7 and 8 that the PSD values of the CUP and the unitary PARAFAC method
are close, and the differences between the PSD values of the two methods are no more
than 0.5%; The PSD values of the CUP are higher than those of the traditional PARAFAC
method, the ESPRIT method, and the unitary ESPRIT method. Moreover, the PSD values
of all algorithms increase with the rise of SNR, and the final PSD values reach 100%.
The angle PSD value of the CUP reaches 100% when the SNR is 20, that of the unitary
ESPRIT method and the traditional PARAFAC method reaches 100% when the SNR is 25,
and that of the ESPRIT method reaches 100% when the SNR is 30. The higher the PSD
value, the better the estimation performance of the algorithm. Thus, in these figures and
tables, we find that the estimation performance of the CUP is better than the ESPRIT
method, the unitary ESPRIT method, and the traditional PARAFAC method and is close
to the unitary PARAFAC method.

Table 7. PSD of angle estimation versus SNR.

Algorithm SNR = 0 SNR = 5 SNR = 10 SNR = 15 SNR = 20 SNR = 25 SNR = 30

CUP 20.2% 40.6% 63.2% 92.3% 100% 100% 100%

unitary CP 20.6% 41.0% 63.4% 92.4% 100% 100% 100%

tensor CP 18.6% 34.8% 59.0% 90.6% 99.6% 100% 100%

unitary ESPRIT 16.6% 30.2% 55.0% 83.8% 99.0% 100% 100%

ESPRIT 13.8% 25.0% 45.6% 75.4% 96.8% 99.8% 100%
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Figure 10. PSD of angle estimation versus SNR.
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Figure 11. PSD of range estimation versus SNR.

Table 8. PSD of range estimation versus SNR.

Algorithm SNR = 0 SNR = 5 SNR = 10 SNR = 15 SNR = 20 SNR = 25 SNR = 30

CUP 18.0% 38.6% 56.4% 88.8% 99.8% 100% 100%

unitary CP 17.8% 38.6% 56.4% 88.8% 99.8% 100% 100%

tensor CP 14.2% 33.0% 52.8% 87.6% 98.8% 100% 100%

unitary ESPRIT 15.4% 33.0% 49.8% 83.0% 99.0% 100% 100%

ESPRIT 14.0% 26.0% 44.2% 73.6% 96.6% 100% 100%

4.5. Simulation of Algorithm Performance with PSD Changing with Snapshots

In this experiment, the SNR is 10. It can be seen from Figures 12 and 13 that
the PSD curves of the CUP are significantly higher than those of the traditional PARAFAC
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method [23] when the number of snapshots is 50 and are close to those of the traditional
PARAFAC method when the number of snapshots is greater than 100; the PSD curves
of the CUP are higher than the ESPRIT method [22] and the unitary ESPRIT method [24] and
coincide with the PSD curves of the unitary PARAFAC method. These PSD curves increase
with the increase of the number of snapshots. More obviously, as shown in Tables 9 and 10,
the PSD values of the CUP are higher than those of the ESPRIT method and the unitary
ESPRIT method; the PSD values of the CUP are close to those of the unitary PARAFAC
method, and the differences of the PSD values of the two methods are no more than 0.4%;
when the number of snapshots is 50, the angle PSD values of the CUP are 4.8% higher
than that of the traditional PARAFAC method and the range PSD value of the CUP is 3%
higher than that of the traditional PARAFAC method; the difference between the PSD value
of the CUP and the traditional PARAFAC method does not exceed 0.6% when the number
of snapshots exceeds 100. The PSD values of these algorithms increase with the improve-
ment of the number of snapshots. Therefore, we can find from these figures and tables that
the CUP has better performance than the traditional PARAFAC method when the number
of snapshots is low and a close performance when the number of snapshots is high.
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Figure 12. PSD of angle estimation versus Snapshots.

Table 9. PSD of angle estimation versus Snapshots.

Algorithm J = 50 J = 100 J = 150 J = 200 J = 250 J = 300

CUP 67.8% 84.2% 88.2% 95.6% 97.6% 98.8%

unitary CP 67.4% 84.2% 88.2% 95.6% 97.6% 98.8%

tensor CP 63.0% 84.0% 88.4% 95.6% 97.8% 98.6%

unitary ESPRIT 56.6% 71.8% 82.2% 88.8% 93.0% 97.6%

ESPRIT 47.4% 71.8% 80.6% 87.6% 91.8% 97.6%
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Figure 13. PSD of range estimation versus Snapshots.

Table 10. PSD of range estimation versus Snapshots.

Algorithm J = 50 J = 100 J = 150 J = 200 J = 250 J = 300

CUP 63.0% 79.8% 88.0% 94.4% 96.2% 98.4%

unitary CP 63.0% 79.8% 88.0% 94.4% 96.2% 98.4%

tensor CP 60.0% 80.0% 87.4% 95.0% 96.0% 98.4%

unitary ESPRIT 54.8% 72.8% 82.0% 87.8% 92.8% 96.4%

ESPRIT 49.4% 72.6% 80.2% 87.6% 92.8% 96.4%

5. Conclusions

In the paper, a joint range and angle estimation method based on compressed uni-
tary PARAFAC decomposition in monostatic FDA-MIMO radar was proposed. In CUP,
a third-order real-valued signal tensor with twice the number of samples is constructed by
utilizing a forward–backward technique and unitary transformation technique. Afterward,
the compression matrix is used to compress the third-order real-valued signal tensor to form
a smaller third-order real-valued signal tensor. This compressed matrix is obtained by
truncated TUCKER3 decomposition. Next, we estimate the direction matrices by the TALS
method. Finally, the estimated range and angle are obtained by extracting the range and
angle information in the direction matrix. The CUP uses forward–backward technology
of improve the number of samples. Compared with the traditional PARAFAC method,
the CUP can estimate more accurate angles and ranges when the number of snapshots is
small, especially when the SNR is low. For example, when the SNR is 0 and the number
of snapshots is 50, the angle error and range error of the CUP are 9.9% and 10.5% lower than
those of the traditional PARAFAC algorithm, respectively. Furthermore, the third-order
real-valued tensor and compression technology are constructed by unitary transformation
of reduce the complexity of the method. When the number of snapshots is as low as 50
and the number of iterations is 30, the complexity of the CUP is 96.7% lower than that
of the traditional PARAFAC algorithm. The difference between the complexity of the two
algorithms is more pronounced at higher snapshots and more iterations.



Remote Sens. 2022, 14, 1398 18 of 19

Author Contributions: Conceptualization, W.W. and X.W.; methodology, W.W. and X.W.; writing—
original draft preparation, W.W.; writing—review and editing, X.W. and X.L.; supervision, X.W.;
funding acquisition, X.W. and J.S. All authors have read and agreed of the published version
of the manuscript.

Funding: This work was supported by Key Research and Development Program of Hainan Province
(No. ZDYF2020019), the National Natural Science Foundation of China (No.61861015, 61961013,
62101165), National Key Research and Development Program of China(No. 2019CXTD400, No.
SQ2020YFF0405680), Young Elite Scientists Sponsorship Program by CAST (No.2018QNRC001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Coluccia, A.; Fascista, A.; Ricci, G. CFAR feature plane: A novel framework for the analysis and design of radar detectors.

IEEE Trans. Signal Process. 2020, 68, 3903–3916. [CrossRef]
2. Cao, Z.; Fang, W.; Song, Y.; He, L.; Song, C.; Xu, Z. DNN-Based Peak Sequence Classification CFAR Detection Algorithm

for High-Resolution FMCW Radar. IEEE Trans. Geosci. Remote. Sens. 2021, 60, 1–15. [CrossRef]
3. Rabideau, D.J.; Parker, P. Ubiquitous MIMO multifunction digital array radar. In Proceedings of the Thrity-Seventh Asilomar

Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003; pp. 1057–1064.
4. Fishler, E.; Haimovich, A.; Blum, R.; Chizhik, D.; Cimini, L.; Valenzuela, R. MIMO radar: An idea whose time has come. In Proceedings

of the 2004 IEEE Radar Conference (IEEE Cat. No. 04CH37509), Philadelphia, PA, USA, 29–29 April 2004; pp. 71–78.
5. Bliss, D.W.; Forsythe, K.W. Multiple-input multiple-output (MIMO) radar and imaging: Degrees of freedom and resolution.

In Proceedings of the Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA,
9–12 November 2003; pp. 54–59.

6. Wang, X.; Yang, L.T.; Meng, D.; Dong, M.; Ota, K.; Wang, H. Multi-UAV cooperative localization for marine targets based
on weighted subspace fitting in SAGIN environment. IEEE Internet Things J. 2021, in press. [CrossRef]

7. Antonik, P.; Wicks, M.C.; Griffiths, H.D.; Baker, C.J. Frequency diverse array radars. In Proceedings of the 2006 IEEE Conference
on Radar, Verona, NY, USA, 24–27 April 2006; p. 3.

8. Wang, W.Q. Subarray-based frequency diverse array radar for target range-angle estimation. IEEE Trans. Aerosp. Electron. Syst.
2014, 50, 3057–3067. [CrossRef]

9. Chen, H.; Shao, H.Z. Sparse reconstruction based target localization with frequency diverse array MIMO radar. In Proceedings
of the 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), Chengdu, China,
12–15 July 2015; pp. 94–98.

10. Xu, J.; Liao, G.; Zhang, Y.; Ji, H.; Huang, L. An adaptive range-angle-Doppler processing approach for FDA-MIMO radar using
three-dimensional localization. IEEE J. Sel. Top. Signal Process 2016, 11, 309–320. [CrossRef]

11. Xu, J.; Wang, W.Q.; Cui, C.; Gui, R. Joint range, angle and doppler estimation for FDA-MIMO radar. In Proceedings of the 2018
IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), Sheffield, UK, 8–11 July 2018; pp. 499–503.

12. Kolda, T.G.; Bader, B.W. Tensor decompositions and applications. SIAM Rev. 2009, 51, 455–500. [CrossRef]
13. Zhang, X.; Xu, Z.; Xu, L.; Xu, D. Trilinear decomposition-based transmit angle and receive angle estimation for multiple-input

multiple-output radar. IET Radar Sonar Navig. 2011, 5, 626–631. [CrossRef]
14. Xu, B.; Zhao, Y.; Cheng, Z.; Li, H. A novel unitary PARAFAC method for DOD and DOA estimation in bistatic MIMO radar.

Signal Process. 2017, 138, 273–279. [CrossRef]
15. Xu, L.; Wen, F.; Zhangm, X. A novel unitary PARAFAC algorithm for joint DOA and frequency estimation. IEEE Commun. Lett.

2019, 23, 660–663. [CrossRef]
16. Xu, B.; Zhao, Y. Transmit beamspace-based unitary parallel factor method for DOD and DOA estimation in bistatic MIMO radar.

IEEE Access 2018, 6, 65573–65581. [CrossRef]
17. Xu, L.; Wu, R.; Zhang, X.; Shi, Z. Joint two-dimensional DOA and frequency estimation for L-shaped array via compressed

sensing PARAFAC method. IEEE Access 2018, 6, 37204–37213. [CrossRef]
18. Li, S.; Sun, Z.; Zhang, X.; Chen, W.; Xu, D. Joint DOA and frequency estimation for linear array with compressed sensing

PARAFAC framework. J. Circuits Syst. Comput. 2017, 26, 1750136. [CrossRef]
19. Cao, R.; Zhang, X.; Chen, W. Compressed sensing parallel factor analysis-based joint angle and Doppler frequency estimation

for monostatic multiple-input–multiple-output radar. IET Radar Sonar Navig. 2014, 8, 597–606. [CrossRef]
20. Li, S.; Zhang, X.F. Study on the compressed matrices in compressed sensing trilinear model. Appl. Mech. Mater. 2014, 556, 3380–3383.

[CrossRef]

http://doi.org/10.1109/TSP.2020.3000952
http://dx.doi.org/10.1109/TGRS.2021.3113302
http://dx.doi.org/10.1109/JIOT.2021.3066504
http://dx.doi.org/10.1109/TAES.2014.120804
http://dx.doi.org/10.1109/JSTSP.2016.2615269
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1049/iet-rsn.2010.0265
http://dx.doi.org/10.1016/j.sigpro.2017.03.016
http://dx.doi.org/10.1109/LCOMM.2019.2896593
http://dx.doi.org/10.1109/ACCESS.2018.2878743
http://dx.doi.org/10.1109/ACCESS.2018.2850307
http://dx.doi.org/10.1142/S0218126617501365
http://dx.doi.org/10.1049/iet-rsn.2013.0242
http://dx.doi.org/10.4028/www.scientific.net/AMM.556-562.3380


Remote Sens. 2022, 14, 1398 19 of 19

21. Sidiropoulos, N.D.; Kyrillidis, A. Multi-way compressed sensing for sparse low-rank tensors. IEEE Signal Process. Lett. 2012, 19, 757–760.
[CrossRef]

22. Li, B.; Bai, W.; Zheng, G. Successive ESPRIT algorithm for joint DOA-range-polarization estimation with polarization sensitive
FDA-MIMO radar. IEEE Access 2018, 6, 36376–36382. [CrossRef]

23. Xu, T.; Yang, Y.; Huang, M.; Wang, H.; Wu, D.; Yi, Q. Tensor-based angle and range estimation method in monostatic FDA-MIMO
radar. Math. Probl. Eng. 2020, 2020, 5720189. [CrossRef]

24. Liu, F.; Wang, X.; Huang, M.; Wan, L.; Wang, H.; Zhang, B. A novel unitary ESPRIT algorithm for monostatic FDA-MIMO radar.
Sensors 2020, 20, 827. [CrossRef]

25. Haardt, M.; Roemer, F.; Del Galdo, G. Higher-order SVD-based subspace estimation of improve the parameter estimation accuracy
in multidimensional harmonic retrieval problems. IEEE Trans. Signal Process. 2008, 56, 3198–3213. [CrossRef]

26. Wang, X.; Wang, W.; Liu, J.; Liu, Q.; Wang, B. Tensor-based real-valued subspace approach for angle estimation in bistatic MIMO
radar with unknown mutual coupling. Signal Process. 2015, 116, 152–158. [CrossRef]

27. Andersson, C.A.; Bro, R. Improving the speed of multi-way algorithms: Part I. Tucker3. Chemom. Intell. Lab. Syst. 1998, 42, 93–103.
[CrossRef]

28. Xiong, J.; Wang, W.Q.; Gao, K. FDA-MIMO radar range-angle estimation: CRLB, MSE, and resolution analysis. IEEE Trans. Aerosp.
Electron. Syst. 2017, 54, 284–294. [CrossRef]

http://dx.doi.org/10.1109/LSP.2012.2210872
http://dx.doi.org/10.1109/ACCESS.2018.2844948
http://dx.doi.org/10.1155/2020/5720189
http://dx.doi.org/10.3390/s20030827
http://dx.doi.org/10.1109/TSP.2008.917929
http://dx.doi.org/10.1016/j.sigpro.2015.03.020
http://dx.doi.org/10.1016/S0169-7439(98)00010-0
http://dx.doi.org/10.1109/TAES.2017.2756498

	Introduction
	Tensor Data Model
	Compressed Unitary PARAFAC Algorithm
	The Real-Valued Signal Tensor
	Tensor Model Compression
	Trilinear Decomposition
	Range and Angle Estimation
	Complexity Analysis and Cramer-Rao Bound

	Simulation Results
	Stability Simulation
	Simulation of Algorithm Performance with RMSE Changing with SNR
	Simulation of Algorithm Performance with RMSE Changing with Snapshots
	Simulation of Algorithm Performance with PSD Changing with SNR
	Simulation of Algorithm Performance with PSD Changing with Snapshots

	Conclusions
	References

