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Abstract: High-resolution wind vector is important to investigate local winds’ variability over
the global ocean. Quad-polarization Synthetic Aperture Radar (SAR) can provide wind vector
independently without any external wind direction inputs. Although quad-polarization SAR wind
retrieval algorithms have been widely studied, improvements are still required. The amplitude and
phase imbalance of polarization channel cannot be neglected for improving the wind vector retrieval
precision. In this study, rainforest was performed to remove the amplitude and phase imbalance
of polarization channel of GF-3 SAR. To explore the applicability of this method for sea surface
measurement, the influence of residual amplitude and phase error for GF-3 quad-polarization SAR
on wind vector retrieval was assessed. Variation of amplitude and phase imbalance of sea surface
for transmit and receive channel were assessed against collocated wind speed and incidence angle.
Considering the polarization difference of VV channel relative to HH channel, the residual amplitude
and phase error was found to be closely related to wind speed and polarization isolation. Correction
of residual amplitude and phase error were employed to improve the retrieval precision of wind
vector. It is revealed that the wind speed retrieval precision of VV polarization improved with
correction of residual amplitude error. In addition, the influence of residual amplitude and phase
error on wind direction retrieval can be neglected. Thus, it is concluded that correction of amplitude
and phase error has the potential to improve wind vector retrievals from GF-3 quad-polarization SAR.

Keywords: GF-3 quad-polarization SAR; wind vector; residual amplitude and phase error

1. Introduction

Observation of wind vectors is important to explore the mechanism of ocean sur-
face dynamics circumstance and air-sea interaction effect. Of which, Synthetic Aperture
Radar (SAR) performs great capabilities of wind vector retrieval, as remote sensing radars,
due to its characteristic of high-resolution, not affected by clouds, can work all day and
night [1–3]. To acquire precise wind field information, an empirical relationship between
radar backscatter and wind vector was iteratively optimized by a large accumulation of
Normalized Radar Cross Section (NRCS) and collocated wind vectors at 10 m above sea
surface U_10. The semi-empirical geophysical model functions (GMF), namely CMOD,
works well for C band spaceborne scatterometer and SAR [4,5]. However, SAR operates in
a fixed azimuth direction, which results that wind speed and direction cannot be acquired
simultaneously from single SAR imagery [6,7]. To inverse wind speed from SAR imagery,
the matched wind direction needs to be provided for removal of azimuth ambiguity. Recent
study revealed the capability of quad-polarization SAR for wind speed and wind direction
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retrieval. It is validated that the C-2PO model was used to acquire wind speed, and wind
speed was substituted into CMOD5.N to obtain uncertainty wind direction, and polar-
ization correlation coefficient was used to eliminate the ambiguity of wind direction [8].
However, few studies focused on this issue due to the lack of enough quad-polarization
SAR data and the unsatisfying precision of wind direction retrieval, which has instead
deteriorated the retrieval precision of wind speed [9–11].

Since August 2016, GaoFen-3 (GF-3) was launched and operated to acquire scenes
of ocean surface with 12 types of observation modes. Comparing with other orbited C
band SAR sensors, such as RADARSAT-2, Sentinel, etc., the GF-3 wave mode works with
quad-polarization mode, which provides great convenience for wind vectors’ retrieval. In
previous study, empirical methods for wind speed retrieval were explored using GF-3 SAR
imagery [12–14]. It is validated that the acquisition of GF-3 SAR can be well applied for
wind speed retrieval. Although it is claimed that the GF-3 SAR has been well calibrated by
field active calibrator, the existence of GF-3 SAR error sources still affect the quantitative
application of wind field retrieval. For GF-3 polarization SAR system, the error sources
which affect the precise scattering measurement of radar echo can be concluded as five
parts: (1) amplitude and phase imbalance introduced by transmit channel and receive
channel respectively; (2) sampling time delay difference caused by transmission channel
and reception channel delay; (3) crosstalk and amplitude phase imbalance of antenna;
(4) polarization deflection angle introduced by satellite attitude; (5) faraday rotation angle
introduced by ionosphere. Recent study revealed that the error sources of GF-3 polarization
SAR were important and the influence of each part on signal propagation was given [15,16].
Some studies proposed the effect of GF-3 SAR system errors on polarization decomposition
and further imagery classification [17–19]. It is found that the influence of amplitude and
phase error can be neglected when in terms of GF-3 quad-polarization SAR classification
and mapping. However, few studies have focused on its influence on quantitative remote
sensing inversion. Among all five mainly error sources, the amplitude and phase imbalance
were dominated in total polarization SAR errors. In consideration of target backscattering
characteristics, it is important to assess the influence of residual amplitude and phase error
from amplitude and phase imbalance for further remote sensing application, especially for
wind vector retrieval. Therefore, the calibration and the correction of the residual amplitude
and phase error is very important to acquire precise NRCS from ocean surface.

Generally, collocation of active radar calibrator and corner reflector was recognized
as an effective way of SAR calibration [20]. Until now, it is also revealed that the methods
using natural scene (rainforest etc.) works well to calibrate the precise NRCS of single
polarization SAR, especially for qualitatively ocean remote sensing [13,21]. Meanwhile,
the quad-polarization channel error also can be removed using polarization distortion
matrix extracted from SAR imagery of rainforest. However, the bias caused by residual
amplitude and phase error of quad-polarization SAR channel is still in doubt, especially
for qualitatively ocean remote sensing application. Few studies focused on the qualitative
assessment of residual amplitude and phase error on wind vector retrieval. To perform
high-precision wind vector retrieval, it is worthwhile to investigate the influence of residual
amplitude and phase error on ocean surface wind vector retrieval.

In this paper, the qualitative assessment of influence of residual amplitude and phase
error on wind vector retrieval was proposed. The method of amplitude and phase correction
using matched rainforest dataset is presented in Section 2. A brief illustration of potential
of sea surface for SAR amplitude and phase correction was also presented. In Section 3, the
SAR amplitude and phase imbalance of sea surface relative to wind speed and incidence
angle was proposed. Considering sea surface scattering in a different polarization channel,
the residual amplitude and phase error was present. In addition, the influence of residual
amplitude error on wind vector retrieval was proposed and validated. In Section 4, the
influence of residual phase on wind direction retrieval was discussed.4. The conclusions
are given in Section 5.
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2. Materials and Methods
2.1. Materials

The GF-3 SAR wave mode imagery from August 2018 to November 2019 were acquired
and collocated with European Centre for Medium-range Weather Forecasting (ECMWF)
data. ECMWF provides meteorology and oceanography data assimilation results, with
a spatial resolution of 0.125◦ and temporal resolution of 6 h. The wind speed above
10 m height from sea surface U_10 was provided as on-site measurement. Considering the
mismatch of spatial and temporal resolution for used datasets, interpolation was performed
for acquisition in the same scale. Pixel spacing of 1 km was performed to collect GF-3
SAR imagery for retrieval precision. Time interval between SAR imaging and on-site
measurement less than 30 min was taken as a valid dataset. The parameters of used GF-3
SAR wave mode imagery were listed in Table 1. It is noticed that the coverage of GF-3 SAR
wave mode imagery can provide 5 km × 5 km swath width for every 50 km along the orbit
direction. The collected GF-3 data were matched with ECMWF data. The map of collected
GF-3 SAR wave mode imagery location is shown in Figure 1.

Table 1. Parameters of used datasets in this study.

Parameters Values

Frequency 5.4 Ghz

Incidence angle 36.1◦/22.1◦/39.6◦

Polarization HH/HV/VH/VV

Resolution 10 m

Swath 5 km

Number of data 2300

Acquision time 2018,9–2019,9

U10 0–20 m/s, provided by ECMWF
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Figure 1. Map of collected GF-3 SAR wave mode imagery.

2.2. Methods

Theoretically, the H-polarization and V-polarization electromagnetic waves are trans-
mitted through two different channels, which perform the same effects on amplitude and
phase of radar echo. However, due to the achievement of hardware equipment, the effect of
channel on H-polarization and V-polarization radar echo was not the same, and so are the
receive channels of H-polarization and V-polarization electromagnetic waves. This makes
the amplitude and phase imbalance between the transmit channel and receive channel
of V-polarization electromagnetic waves relative to the transmit and receive channel of
H-polarization electromagnetic wave, resulting in distortion of polarization measurement.
To remove the effect of crosstalk and amplitude phase imbalance on quad-polarization
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SAR imagery, the quad-polarization calibration method was usually performed, which was
followed as:[

MHH MHV
MVH MVV

]
= Aejθ RTST = Aejθ

[
1 δ1
δ2 fr

][
SHH SHV
SVH SVV

][
1 δ3
δ4 ft

]
(1)

where, A and θ are the absolute amplitude and phase factors of the system, M represents
the ground object polarization scattering matrix measured by multi-polarization radar,
Mij represents the echo transmitted by j polarization and received by i polarization, R is
the receive distortion matrix and T is the transmit distortion matrix, S represents the real
scattering matrix of ground object target.

To calibrate the quad-polarization SAR, the scattering matrix of the ground object is
acquired on the basics of some artificial point targets in our field calibration process. Regular
geometry with simple known scattering mechanisms can be used to acquire the polarization
distortion. Generally, the polarization active radar calibrators (PARC) method is widely
used to solve the matrix of crosstalk and amplitude-phase imbalance [22]. However, the
performance of natural ground and artificial point targets were significantly different in
SAR scattering, which caused scattering errors in SAR calibration. It was proven that
natural ground targets behaved much better for quantitative remote sensing application.

(1) Rainforest

Recent study revealed that the natural distributed ground targets can be performed
to calibrate the GF-3 quad-polarization SAR. Assuming that the scattering of rainforest
follows the reciprocity and reflection symmetry theory, the phase error between different
polarization channels and crosstalk were calibrated using four polarization SAR imagery
of rainforest.

phase
(
S∗HVSVH

)
= 0

phase(S∗HHSVV) = 0
(2)

Then the relative amplitude and phase between different polarization channels can be
calibrated. Following the reciprocity of system, the δ1 = δ4, δ2 = δ3, fr = ft = f , then the
Equation (1) can be simplified as:[

MHH MHV
MVH MVV

]
= Aejθ

[
1 δ1/ f
δ2 1

][
1 0
0 f

][
SHH SHV
SVH SVV

][
1 0
0 f

][
1 δ2

δ1/ f f

]
(3)

Using matrix [Y] : [
YHH YHV
YVH YVV

]
= Aejθ

[
SHH f SHV
f SVH f 2SVV

]
(4)

[
MHH MHV
MVH MVV

]
=

[
1 δ1/ f
δ2 1

][
YHH YHV
YVH YVV

][
1 δ2

δ1/ f f

]
(5)

Considering the reflection symmetry theory, the relationship between scattering mea-
surement matrix [M] and matrix [Y] can be shown as:

〈MHH M∗HH〉 ≈ 〈YHHY∗HH〉, 〈MVV M∗VV〉 ≈ 〈YVVY∗VV〉

〈MHV M∗HH〉 ≈ 〈YHVY∗HH〉+ δ2〈YHVY∗HH〉+ δ1
f 〈YVVY∗HH〉+ 2

(
δ1
f

)∗
〈YHVY∗HV〉

〈MHV M∗VV〉 ≈ 〈YHVY∗VV〉+ δ2〈YHHY∗VV〉+ δ1
f 〈YVVY∗VV〉+ 2δ∗2 〈YHVY∗HV〉

(6)

The Amazon rainforest is used to observe the variation of backscattering during the
mission life. For the C-band radar, this target could be considered as a stable rough surface,
which equally scatters the incident radar electromagnetic waves in all directions. With
use of quad-polarization SAR imagery of rainforest, the polarization distortion matrix can
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be acquired and the crosstalk and amplitude-phase imbalance can be removed [23–25].
Although the natural distributed ground targets of Amazon rainforest can be well applied
for removal of crosstalk and amplitude-phase imbalance, it is significant to assess the
residual amplitude and phase error. When only amplitude imbalance is considered, the
Equation (1) can be simplified as:[

MHH MHV
MVH MVV

]
= Aejθ

[
1 0
0 fr

][
SHH SHV
SVH SVV

][
1 0
0 ft

]
(7)

and by average:
〈|MHH |2〉 = A2〈|SHH |2〉
〈|MHV |2〉 = A2〈|SHV |2〉
〈|MVH |2〉 = A2〈|SVH |2〉
〈|MVV |2〉 = A2〈|SVV |2〉

(8)

Taking the log of both sides of Equation (8), expression can be transformed to:

|MHH |L = |A|L + |SHH |L
|MHV |L = |A|L + | fr|L + |SHV |L
|MVH |L = |A|L + | ft|L + |SVH |L

|MVV |L = |A|L ++| fr|L + | ft|L|SVV |L

(9)

Then the amplitude imbalance can be expressed as:

| fr|L = 1
2
(
∆ fα − ∆ fβ

)
+ 1

2 (|MVV |L − |MHH |L + |MHV |L − |MVH |L)
| ft|L = 1

2
(
∆ fα + ∆ fβ

)
+ 1

2 (|MVV |L − |MHH |L + |MHV |L − |MVH |L)
(10)

where:
∆ fα = |SHH |L − |SVV |L∆ fβ = |SHV |L − |SVH |L (11)

∆ fα and ∆ fβ were related with the scattering amplitude characteristics of ground targets.
Similarly, by solving the cross-polarization and co-polarization of the measurement

matrix, the phase imbalance can be expressed as:

θr =
1
2
(
∆θα − ∆θβ

)
+ 1

2
(

Phase
(
〈MHV M∗VH〉

)
− Phase

(
〈MHH M∗VV〉

))
θt =

1
2
(
∆θα + ∆θβ

)
− 1

2
(

Phase
(
〈MHV M∗VH〉

)
+ Phase

(
〈MHH M∗VV〉

)) (12)

where:
∆θα = Phase

(
〈SHHS∗VV〉

)
∆θβ = Phase

(
〈SHVS∗VH〉

) (13)

∆θα and ∆θβ were related with the scattering phase characteristics of ground targets.
Theoretically, the amplitude and phase imbalance can be well removed. Due to the

system measurement errors, some residual amplitude and phase error still affects the
imagery quality. It is also very important to assess the influence of residual amplitude and
phase error for GF-3 quad-polarization SAR. Series of quad-polarization SAR imagery of
rainforest were performed to amplitude and phase imbalance removal. Quad-polarization
SAR sub-imagery of Amazon rainforest were shown in Figure 2. The details of used
Amazon rainforest of GF-3 SAR imagery was listed in Table 2. For the C-band radar,
Amazon rainforest could be considered as a rough surface, which equally scatters the
incident radar electromagnetic waves in all directions.
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HH, HV, VH, VV polarization, respectively.

Table 2. Parameters of used datasets in this study.

Sensor Wave Code Incident
Angle Latitude Longitude Acquisition

Time

GF-3 SAR 191 23.81–26.48◦ –2.86◦ –66.75◦ 7 December
2019, 10:17:18

GF-3 SAR 189 19.95–22.75◦ 0.71◦ –67.56◦ 21 October
2021, 22:43:35

GF-3 SAR 203 39.51–40.76◦ 0.77◦ –68.22◦ 2 November
2021, 10:17:41

(2) Ocean

Ocean surface is a perfect naturally homogeneous scene for SAR calibration. The scat-
tering characteristics of ocean surface in SAR imagery totally attributes to surface scattering.
It is different from rainforest, where there is sum of surface scattering, secondary scattering
and volume scattering. The scattering mechanism difference also affects the performance
of SAR imagery calibration for different measurement scenes. Moreover, numerous acquisi-
tions over open ocean are therefore advantageous for operational application. For retrieval
of wind and waves, it is revealed that the performance of ocean surface calibration method
was more effective than other methods [26]. Bragg scattering model, two scale model
(TSM), three scale model (MSM), small slope approximation (SSA) and integral expansion
method (IEM), etc., are proposed to analyze the scattering characteristic for difference radar
incidence angle and sea state. For now, ocean surface calibration method was focused, and
relevant study shows the feasibility and capability of ocean surface calibration method for
SAR imagery [27–29].
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3. Results
3.1. Assessment of Amplitude and Phase Imbalance

It should be noted that the amplitude and phase imbalance can be well removed using
GF-3 SAR imagery of rainforest for validation. For wind speed retrieval, the response of
amplitude and phase imbalance to sea state and radar parameters is still in doubt. By
collocating with ECMWF wind vector, scenes of GF-3 SAR wave mode imagery were
collected among the amplitude and phase imbalance of the whole channel representing
the amplitude and phase error of VV channel relative to HH channel, which are shown
in Figure 3. For GF-3 SAR wave mode imagery, the amplitude imbalance variation of
receive channel was basically consistent with corresponding transmit channel in Figure 3.
Additionally, the phase imbalance variation of receive channel causes much deviation
between receive and transmit channel in Figure 3. Moreover, the phase imbalance of receive
channel can reach 20◦, instead, the phase imbalance of transmit channel settles in 0◦.
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Figure 3. Series of amplitude imbalance (a) and phase imbalance (b) for receive and transmit channel
from GF-3 SAR imagery of sea surface observation.

Figure 4a,b represent the amplitude and phase imbalance relative to wind speed
for both transmit and receive channel, respectively. It can be found that the amplitude
imbalance is negatively proportional to wind speed for both transmit and receive channel.
Obviously, the amplitude imbalance can reach to (1.2 ± 0.7) dB in low wind speed zone,
and decreased to (0.6 ± 0.4) dB in medium-high wind speed zone. Moreover, the phase
imbalance of receive channel settled in (19.7 ± 9.7)◦ in low-medium wind speed zone and
decreased to (11.7 ± 7.7)◦ in high wind speed zone. Unlike receive channel, the phase
imbalance of transmit channel settled in (1.9 ± 5.6)◦ in low-medium wind speed zone and
deteriorated to (–2.6 ± 2.8)◦ in high wind speed zone.
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Figure 4. (a,b) The amplitude and phase imbalance of GF-3 SAR imagery of sea surface observation
for receive and transmit channel. Upper row represents the amplitude imbalance variation relative to
wind speed, and down row represents the phase imbalance variation relative to wind speed.

Besides wind speed, the radar parameter of incidence angle was also worthwhile to
investigate. Figure 5 presents the amplitude and phase imbalance relative incidence angle
for both transmit and receive channel, respectively. It can be seen that the amplitude of
transmitting channel is slightly larger than that of receiving channel. Moreover, the phase
deviation of the transmitting channel is smaller than that of the receiving channel.
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Figure 5. The amplitude and phase imbalance variation relative to incidence angle. Same with
Figure 4.
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Actually, the total amplitude and phase imbalance can be attributed to the sum of
transmit and receive channel. With combination of transmit and receive channel, the
amplitude and phase imbalance relative to wind speed were shown in Figure 6. Slopes of
linear regression are 0.07298 for amplitude imbalance and –0.09144 for phase imbalance,
respectively. Since wind speed increases, the amplitude imbalance decreases proportionally,
and the minimum value was still greater than 1 dB and phase imbalance was constant
as 20◦.
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In SAR observation of sea surface, the phase distribution of sea surface waves was re-
garded as random. It should be noted that the imagery amplitude of sea surface was highly
related with wind speed using CMOD model. So the influence of amplitude imbalance on
wind speed retrieval was aimed to assess in this paper. The use of phase imbalance was also
revealed to acquire sea surface current for GF-3 multi-channel SAR measurement, which is
quietly different with quad-polarization SAR [30]. For wind field inversion, it is interesting
to assess influence of amplitude and phase imbalance on wind direction retrieval.

3.2. Influence of Residual Amplitude Error on Wind Speed Retrieval

In fact, the polarization difference of sea surface scattering was confused in the total
amplitude and phase imbalance. In order to explore the residual amplitude and phase
error from channel imbalance, the theory bias caused by co-polarization difference of sea
surface scattering deserve to be removed. To assess the influence of residual amplitude
error on wind speed retrieval, the scattering characteristics of sea surface for HH and
VV polarization need to be removed firstly. Using CMOD5.N model, the response of
polarization NRCS relative to incidence angle and wind speed was present. It is noted that
the polarization ratio was re-fitted using GF-3 SAR wave mode imagery. Figure 7a shows
the NRCS of HH and VV polarization increased with increase of wind speed at incidence
angles of 30◦, 40◦, 50◦, respectively. In addition, the NRCS of HH and VV polarization
varied with increase of relative wind direction at wind speed 5 m/s, 10 m/s, 15 m/s in
Figure 7b, respectively.

Taking sea surface scattering characteristics of CMOD5.N as theoretical value, the
influence of polarization difference was removed from total amplitude and phase error for
both transmit and receive channel. For wind speed, the NRCS was mainly input in retrieval
model once incidence angle and wind direction were confirmed. So the residual amplitude
error was mainly focused in this section. After the co-polarization response difference
removal, the residual amplitude was proposed. The co-polarization difference from SAR
was compared with CMOD5.N in Figure 8. For VV polarization, the correlation between
co-polarization difference from GF-3 SAR and CMOD5.N increased from 0.67 to 0.76, with
use of residual amplitude correction.
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Figure 7. (a,b) The NRCS of sea surface variation relative to wind speed and relative wind direction.
Wind speed ranges from 2 m/s to 20 m/s and relative wind direction ranges from 0◦ to 350◦. Upper
row presents NRCS variation at relative wind direction 0◦, lower row presents NRCS variation at
incidence 40◦.
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Figure 8. The comparison between co-polarization difference from CMOD5.N and GF-3 SAR. Left
column presents the original SAR measurement; right column presents the compensated SAR mea-
surement with removal of residual amplitude error.

As known, the wind speed was highly related with sea surface microwave scattering
caused by wind-driven sea surface roughness. The backscatter amplitude presents the
sea surface NRCS, which affects the wind speed retrieval. Moreover, the phase was not
directly applied to wind speed retrieval and usually neglected in ocean SAR application.
To explore the influence of residual amplitude and phase error on wind speed retrieval,
CMOD5.N model was proposed to derive wind speed firstly. It is noted that CMOD5.N
was well applied for VV polarization SAR imagery. To acquire the wind speed using HH
polarization, the Polarization Ratio (PR) model was combined with CMOD5.N model.

PR =
σVV

0

σHH
0

(14)
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It is noted that the σVV
0 represents the NRCS of sea surface in VV polarization; σHH

0
represents the NRCS of sea surface in HH polarization. Several PR models were proposed
in recent studies [31,32]. The PR model can be acquired with the following:

PR(θ, φ) = C0(θ) + C1(θ)cosφ + C2(θ)cos2φ (15)

C0(θ) =
PR(θ, 0) + PR(θ, π) + 2PR(θ, π/2)

4
(16)

C1(θ) =
PR(θ, 0)− PR(θ, π)

2
(17)

C2(θ) =
PR(θ, 0) + PR(θ, π)− 2PR(θ, π/2)

4
(18)

Zhang [32] proposed a novel PR model with RADATSAT-2 quad-polarization data.
It is also proven that the model was validated for wind speed from HH polarization SAR
imagery. In this study, we take Zhang’s PR model as reference for wind speed retrieval of
GF-3 HH polarization SAR, which is shown in Figure 9.
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Figure 9. The PR model refitted from GF-3 SAR imagery: (a) Represents the PR variation relative to
incidence angle; (b) Represents the PR variation relative to relative wind direction.

As shown in Figure 10, the SAR-derived wind speed retrieval precision was compared
with on-site wind speed provided by ECMWF. To assess the fitting performance, the
correlation coefficient (Cor), root mean square error (RMSE), Bias, and Scattering index
(SI) were selected as features. The performance of SAR wind speed retrieval was fitted
with a Cor of 0.82, RMSE of 1.86 and a Cor of 0.86; RMSE of 1.71 for both of VV and HH
polarization, respectively.
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Figure 10. Wind speed retrieval precision for GF-3 SAR HH and VV polarization. The SAR-derived
wind speed was compared with on-site wind speed provided by ECMWF: (a) CMOD5.N+PR;
(b) CMOD5.N. The color represents the density of scatter points.
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To assess the influence of residual amplitude error on wind speed retrieval, it is
important to quantify the residual amplitude error as variables of wind speed. Figure 11
established the empirical fitting results between residual amplitude error and wind speed.
It can be seen that the residual amplitude error represents weakly correlation relative to
wind speed. The residual amplitude error performed as random. However, it cannot be
neglected for the purpose to develop the retrieval precision of wind speed. Moreover, the
relationship between polarization isolation and residual amplitude error was also explored.
It is founded that the slopes of linear regression was −0.113. The polarization isolation of
GF-3 SAR was designed as −35 dB.
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Figure 11. The residual amplitude error variation relative to wind speed and polarization isolation.

According to the empirical relationship from Figure 11, the NRCS derived from SAR
was compared with CMOD5.N model with correction of residual amplitude error as shown
in Figure 12. It can be seen that the corrected NRCS was highly related with CMOD5.N.
To further explore the influence of residual amplitude error, the wind speed was retrieved
from corrected NRCS, with Cor of 0.86, RMSE of 1.64. Comparing with original retrieval
results of Figure 10b, the correction of residual amplitude error will improve the retrieval
precision of VV polarization GF-3 SAR.
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Figure 12. Performance of corrected NRCS on wind speed retrieval: (a) NRCS derived from SAR
variation relative to CMOD5.N model; (b) The SAR-derived wind speed variation relative to ECMWF
wind speed.

The performance of residual amplitude error correction on wind speed retrieval is
listed in Table 3. Using correction of residual amplitude error of GF-3 SAR imagery
for sea surface, the retrieval precision of wind speed improved, with an increase of Cor
from 0.82 to 0.86. Moreover, the RMSE, Bias, and SI decreased from 0.86 to 1.64, from
−0.21 to −0.28 and from 0.18 to 0.14, respectively. Various indicators of assessment result
precision shows remarkable improvement.
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Table 3. Performance of residual amplitude error correction on wind speed retrieval.

Cor RMSE Bias SI

No correction 0.82 1.86 −0.21 0.18
Correction 0.86 1.64 −0.28 0.14

3.3. Influence of Residual Amplitude and Phase Error on Wind Direction Retrieval

Few studies focused on the wind direction retrieval directly from quad-polarization
SAR instead of external on-site wind direction. A method was proposed to inverse wind
direction from Radasat-2 quad-polarization SAR by establishing the discriminant rule
from polarization correlation coefficient to wind direction [8]. As shown in Figure 13, the
performance of polarization correlation coefficient ρ was presented as a Sine curve. The
correlation coefficient ρHHHV and ρVVHV were denoted as:

ρ
PPHV=

〈SPP∆S∗HV〉√
〈|SPP |

2〉〈|SHV |
2〉

(19)
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Figure 13. Performance of polarization correlation coefficient ρ variation relative to relative wind
direction: (a) Real part of ρHHHV ; (b) Real part of ρVVHV ; (c) Imaginary part of ρHHHV ; (d) Imaginary
part of ρVVHV .

The S present the polarization scattering matrix, the pp represent the polarization
channel; HH and VV polarization were selected in this paper, the < > present the average
operation. Comparing the fitting performance of ρHHHV and ρVVHV , it is revealed that the
ρVVHV was prior to facilitate the selection of the relative wind direction.

In study [8], the odd symmetry characteristic of polarization correlation coefficient ρ
was applied to acquire the selection of the relative wind direction among the four relative
wind direction solutions. The criteria are as follows:

From Table 4, it is concluded that the wind direction was not directly derived from
SAR imagery, but confirmed the selection range of wind direction from CMOD5.N model.
Although the ρ error was attributed to residual amplitude and phase error can be assessed,
the influence of residual amplitude and phase error on selection of wind direction from
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Table 4 can be neglected. It is noted that the wind speed is highly related with NRCS, which
can be attributed to the imagery amplitude. Moreover, the imagery phase of sea surface is
regarded as random from –pi to pi. This is why few studies focused on the application of
imagery phase. This can also explain why rainforest can be used for sea surface imagery
calibration in this study. It is because wind speed mainly depended on the imagery intensity,
not imagery phase. However, for wind direction retrieval, the applicability of rainforest
needs to be discussed, because the reflection symmetry theory was not satisfied for the
sea surface. As survey and statistics show, few studies try to propose the wind direction
retrieval algorithm using imagery phase, and the retrieval precision was not satisfying at
all. It can be explained that the scattering of rainforest follows the reciprocity and reflection
symmetry theory; the phase error between different polarization channels and crosstalk
were calibrated using four polarization SAR imagery of rainforest. However, reflection
symmetry theory was not satisfied for the sea surface, which caused a large bias in wind
direction retrieval.

Table 4. Discriminant rule from polarization correlation coefficient to wind direction.

Real Part of ρ Imagery Part of ρ Relative Wind Direction

<0 >0 −180◦ < Φ < −90◦

>0 >0 −90◦ < Φ < 0◦

<0 <0 0◦ < Φ < 90◦

>0 <0 90◦ < Φ < 180◦

4. Discussion

For now, the calibration of GF-3 SAR imagery for sea surface observation has been
focused. Several studies aimed to recalibrate the NRCS using rainforest or sea surface.
However, the error source of NRCS was neglected. The usability of these methods was also
not discussed yet. In this paper, we aimed to analyze the residual amplitude and phase
error for sea surface when using rainforest as calibration target. Moreover, the influence
of residual amplitude and phase error on NRCS was quantitatively assessed. It is verified
that with correction of residual amplitude and phase error, the retrieval precision of wind
speed using GF-3 SAR imagery was improved remarkably. For wind speed retrieval, the
CMOD model was widely used:

U10 = CMOD(Nrcs, inc, phi) (20)

It is noted that the Nrcs represents the observed value from SAR imagery, inc repre-
sents the radar incidence angle, and the phi represents the relative wind direction relative
to antenna look angle. Obviously, the NRCS bias caused by residual amplitude and phase
error has not been taken into consideration yet. It is suggested to take it as one of the key
parameters in CMOD for future study.

5. Conclusions

GF-3 quad-polarization SAR was widely used for wind speed retrieval. This requires
a precise NRCS from SAR imagery. SAR backscattering variation is subject to various
radar loading state, atmospheric phenomena, and sea surface dynamics characteristics.
To acquire the precise NRCS from SAR imagery, the active calibrator was usually used
for calibration. However, it is questionable that this calibration method was well applied
for high Signal Noise Ratio (SNR) condition. To develop the calibration precision of SAR,
the rainforest was almost used for NRCS calibration instead of active calibrator or corner
reflector. However, the applicability of rainforest calibration was not widely assessed,
especially for ocean quantitative remote sensing application.

In this paper, the amplitude and phase imbalance were selected to characterize the
calibration error of GF-3 quad-polarization SAR. Variation of amplitude and phase imbal-
ance for transmit and receive channel were assessed against collocated wind speed and
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incidence angle. Considering the polarization difference of VV channel relative to HH
channel, the residual amplitude and phase error was found to be closely related to wind
speed and polarization isolation. Correction of residual amplitude and phase error were
employed to improve the retrieval precision of wind vector. It is revealed that the wind
speed retrieval precision of VV polarization improved with correction of residual amplitude
error. In addition, the influence of residual amplitude and phase error on wind direction
retrieval can be neglected. Thus, it is concluded that correction of amplitude and phase
error has the potential to improve wind vector retrievals from quad-polarization SAR.
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