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Abstract: Discriminative feature learning is the key to remote sensing scene classification. Previous
research has found that most of the existing convolutional neural networks (CNN) focus on the global
semantic features and ignore shallower features (low-level and middle-level features). This study
proposes a novel Lie Group deep learning model for remote sensing scene classification to solve
the above-mentioned challenges. Firstly, we extract shallower and higher-level features from images
based on Lie Group machine learning (LGML) and deep learning to improve the feature representa-
tion ability of the model. In addition, a parallel dilated convolution, a kernel decomposition, and a Lie
Group kernel function are adopted to reduce the model’s parameters to prevent model degradation
and over-fitting caused by the deepening of the model. Then, the spatial attention mechanism can en-
hance local semantic features and suppress irrelevant feature information. Finally, feature-level fusion
is adopted to reduce redundant features and improve computational performance, and cross-entropy
loss function based on label smoothing is used to improve the classification accuracy of the model.
Comparative experiments on three public and challenging large-scale remote-sensing datasets show
that our model improves the discriminative ability of features and achieves competitive accuracy
against other state-of-the-art methods.

Keywords: deep learning; feature representation; Lie Group machine learning; remote sensing
scene classification

1. Introduction

Remote sensing images are a valuable data source and the basis for Earth exploration
and observation [1]. With the rapid development of remote sensing satellites and technolo-
gies, a large number of spectral- and spatial-information-rich Earth observation images can
be obtained by airborne or spaceborne sensors, namely, high-resolution remote-sensing im-
ages (HRRSI). These HRRSIs can help us better observe and measure the detailed structure
of Earth’s surface. It is particularly urgent to make full use of the ever-increasing HRRSIs
for intelligent Earth observation [2]; therefore, it is extremely important to effectively
interpret the large and complex HRRSI.

As one of the most representative research areas in HRRSI interpretation, the scene
classification of remote sensing images is also an active research field. Scene classification
of remote sensing images aims to classify HRRSI into various semantic categories [1].
In recent years, it has attracted a lot of attention [3], and is widely used in geospatial
target detection [4,5], natural hazards detection [6], urban planning [7], and especially
remote-sensing image interpretation [1].

Compared to ground-scene target classification, the scene classification of remote
sensing images is still a challenging research topic due to the following characteristics:

1. Large variance in object/scene scales: In remote sensing imaging, different sen-
sors in different platforms work at different altitudes. However, different sensors
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on the same platform work at the same altitude [8]. With the examples illustrated
in Figure 1a, the scenes of airplanes, airports, and thermal power stations have huge
scale differences at different imaging altitudes and contain a lot of useless background
information. Previous research has shown that deeper network models can be used
to extract more valuable feature information [9];

2. The complex spatial arrangement, object distribution, and the coexistence of multiple
ground objects: As the spatial distribution and arrangement of ground objects are
complex and diverse, and remote sensing imaging equipment has a wide bird-eye
perspective, it is quite common to include multiple ground objects in HRRSIs. HRRSIs
are filled with many key objects, which makes it even more difficult to classify sce-
narios. As shown in Figure 1b, the scenes of freeways contain trees, cars, bridges, etc.
The scenes of ground track fields include roads, swimming pools, and trees. Pos-
sible solutions include enhanced local semantic representation of scenarios [9] and
approaches that are robust to changes in direction are usually appropriate [10];

3. High interclass similarity. The existence of the same object between different scenarios
or the high semantic overlap between scene categories results in between-class similar-
ity, which can be extremely difficult to distinguish between these scenes. For example,
in Figure 1c, sparse residential, medium residential, and dense residential areas all
contain the same ground objects, namely, houses and trees. The bridge and overpass
scenarios also contain the same ground object, namely, bridges. Recent studies have
shown that although deep convolutional features are utilized for semantic feature
representation, the fusion of shallower (low-level and middle-level features) can make
features more discriminative [11,12].

With the rapid development of deep learning, scholars have proposed many convo-
lutional neural network models (CNN), such as LGRIN [12]. Some improved networks
have also achieved state-of-the-art performance [10,12,13]. The success of CNN models
demonstrates that high-level features can be used to describe scenes better than low-level
and middle-level features [14,15]. Nevertheless, the following problems remain:

1. Loss of shallower features (low-level and middle-level features): Commonly used
CNN models cannot preserve shallower features during the training process [8].
In addition, when CNN models go deeper, models tend to lose shallower features [16].
However, these shallower features help to enhance the ability of scene representation
and improve the accuracy of classification. Some recently proposed approaches
for preserving shallower features are not end-to-end [15,17], as it is difficult to adapt
to different application scenarios;

2. Lack of local semantic features: Since most CNN models utilize the last connection
layer as the global feature representation to complete scene classification [18,19],
the local regional features of images are ignored. Two remote sensing images with
different global structures may belong to the same category because they contain
some obvious and same target objects [20]. However, some models only use global
semantics to discriminate, which will reduce the accuracy of classification [9];

3. Insufficient consideration is given to the correlation between features: Since a cer-
tain feature tends to represent the image from one aspect and ignores other feature
information, complementary features are usually used to make up for the missing
features [21–23]. However, how to select and represent features is still one of the main
research topics in the field of machine learning. Serial features and parallel features
are two typical methods [24]. However, these methods do not fully consider the cor-
relation between features, leading to feature redundancy, increasing the complexity
of calculation, and are not very effective for scene classification.
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(a)

(b)

(c)

Figure 1. Challenges of HRRSI: (a) large variance in object/scene scales; (b) complex spatial arrange-
ment, object distribution, and the coexistence of multiple ground objects; (c) high interclass similarity.
The images are from the NWPU dataset [25].

To address the above problems, in this study, we propose a novel Lie Group deep
learning model based on attention mechanisms. The goals include the following.

1. Preserve shallower features: Most CNN models cannot preserve shallower features. In
addition, the existing methods for preserving shallower features are not flexible end-
to-end frameworks [15,17]. Our model involves an end-to-end network to preserve
the features of different levels (low-level, middle-level, and high-level) and effectively
improve the classification accuracy of the model;

2. Enhance local semantic features: Most existing CNN models usually combine local
domain filters (average or maximum feature value), which limits the representation
of local semantics [25–27]. Our model should have the ability to improve the repre-
sentation of key features;
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3. Enhance feature representation and improve computing performance: Although some
methods utilize both local and global features as the final representation [10], they
do not consider the interrelation between different features in the HRRSIs. Therefore,
our model should consider the relationship between different features and reduce
the parameters of the model to improve the computational performance and ensure
effective HRRSI feature extraction.

The main contributions of this paper are as follows:

1. A novel efficient HRRSI scene classification model: The Lie Group deep learning
(LGDL) model based on an attention mechanism can effectively improve the ability
of scene feature representation, the accuracy of scene classification, and can better
classify complex scenes. Considering the characteristics of HRRSIs, LGDL utilizes Lie
Group machine learning (LGML) to preserve the shallower features (low-level and
middle-level features) of HRRSIs, such as scale-invariant feature transform (SIFT) [28]
and local binary patterns (LBP) [29]. In addition, deep learning is used to extract high-
level semantic features of HRRSI. Finally, automatic scene learning is implemented
based on the fused multi-source heterogeneous features;

2. The spatial attention mechanism is used to suppress the weight of irrelevant feature
information to improve the ability of local key semantic features. Compared with
the maximum pooling and mean operation used in the traditional model, our method
improves and enhances the ability of local semantic representation. To deal with
HRRSIs in complex scenes, we utilize parallel dilated convolution to enrich scale
feature information and utilize kernel decomposition to increase the number of skip
connections and reduce the difficulty of training deeper models;

3. The Lie Group covariance feature matrix is introduced to represent the extracted shal-
lower features. The feature matrix is a real symmetric matrix, which fully considers
the correlation between shallower features and has good computing performance and
anti-noise ability. Features of different levels (low-level, middle-level, and high-level)
and different spaces are integrated through efficient feature-level fusion. This method
fully considers the correlation between features of different layers, avoids feature re-
dundancy and reduces feature dimension, enhances the feature representation ability,
and maintains a good computing performance.

The rest of this paper is arranged as follows. Section 2 outlines the existing literature
related to scene classification, LGML, and the attention mechanism. Section 3 describes our
proposed model in detail. Section 4 evaluates the proposed model against various state-
of-the-art models on three public and challenging scene datasets and performs ablation
experiments. Finally, conclusions are provided in Section 5.

2. Related Work

In this section, we review some related works of scene classification, LGML, and
attention mechanisms.

2.1. Scene Classification Methods

From the perspective of feature extraction and learning, remote sensing scene classi-
fication methods are mainly divided into low-level, middle-level, and high-level feature
methods. It is worth noting that these three feature methods are not necessarily indepen-
dent of each other.

2.1.1. Methods Based on Low-Level Features

In the early stage of remote sensing scene classification, scholars extracted a series
of low-level features according to the characteristics of remote sensing images, such as
SIFT [28], LBP [29], and color histograms (CH) [30]. In fact, the above features are not
independent of each other, and the fusion of various features has achieved good results in re-
mote sensing scene classification [31]. However, the above features rely heavily on the prior
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knowledge of experts [20]. It is difficult for them to achieve optimum performance in com-
plex scenarios.

2.1.2. Methods Based on Middle-Level Features

To address the shortcomings of the low-level feature method, scholars have proposed
a method based on middle-level features, which encoded the above features to obtain
higher-order statistical mode, extract more important features in the image, and establish
global representation. Typical methods are bag-of-visual-words (BoVW) [32] and proba-
bilistic topic models (PTM) [33] (i.e., probabilistic latent semantic analysis (PLSA) [34] and
latent Dirichlet allocation (LDA) [33]). However, this method also has shortcomings: It
ignores the correlation between features [35,36], and the feature selection and design also
rely on expert domain knowledge, etc.

2.1.3. Methods Based on High-Level Features

In recent years, the deep learning model has profoundly improved the performance
of remote sensing scene classification [37–41]. Typical models include CNNs [42], genera-
tive adversarial networks (GAN) [43], and autoencoders [44]. Compared with the above
two methods, the deep learning model can extract more high-level features and obtain
better classification performance [12,45]. This kind of deep learning model usually adopts
an autonomous learning feature of a multi-layer network structure and regards the remote
sensing scene classification as an end-to-end problem [46].

2.2. Lie Group Machine Learning (LGML)

LGML is a novel branch of the machine learning knowledge system, which has
the advantage of a manifold structure and forms a new learning paradigm based on the idea
of Lie Groups [47]. Xu et al. [20] proposed a new algorithm based on Lie Group intrinsic
mean, deduced the Lie Group kernel function, which can be applied to both matrix and
vector data samples, and achieved good results in remote sensing scene datasets. Later, Xu
et al. [48] improved the algorithm to further improve the classification accuracy of the model
and reduce the number of parameters of the model. Xu et al. [12] proposed a novel scene
classification model jointly represented by Lie Group and CNN, which further improved
the accuracy of scene classification and the interpretability of the model from the perspective
of LGML. Compared with traditional methods, the LGML method does not lose too much
image information. Lin et al. [49] utilized the Lie Group Lie Algebra method in the affine
transformation process and verified the robustness of the LGML method to direction
change. In addition, the LGML method is also used in target recognition detection [50]
and pedestrian detection in the video [51], both of which have achieved good results.
Tran et al. [52] used automobile point cloud to construct Lie Group samples and used
principal geodesic analysis (PGA) [53] to design classifiers, whose classification effect is
significantly better than traditional linear methods [54]. Therefore, the LGML method has
good advantages in image affine transformation modeling, feature representation, and
classification.

2.3. Attention Mechanism

The attention module is designed to focus on the most important part of features.
It is inspired by the human perception process [55], and it is an algorithm that simu-
lates human understanding and the perception of images, and can effectively suppress
irrelevant feature information. Woo et al. [56] proposed a convolutional block attention
module (CBAM), which weighted attention in spatial and channel dimensions, enabling
the model to effectively learn key features in the image and improve the performance
of most models. Hu et al. [57] fused key points with salient regional features to complete
scene classification. Zhang et al. [58] used a significance sampling strategy to extract key
features in remote sensing images for classification. However, the above saliency detection
method based on texture feature information cannot effectively extract all key feature
information. Recently, an adaptive method for extracting key attention features has been
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proposed. Mnih et al. [59] combined the recurrent neural network model with the attention
mechanism to reduce the feature dimension. Haut et al. [60] used the generated attention
masks to multiply the corresponding regions to obtain attention features. Xu et al. [61]
proposed an image task model based on “soft“ and “hard“ attention, which is trained by
different propagation algorithms. Hu et al. [62] proposed a squeeze-and-excitation module,
which utilizes the global average pooling to abstract the internal features and calculates
the weight of each feature through nonlinear activation and linear combination.

3. Method

In this section, the LGDL model is carefully designed to improve the scene classifi-
cation performance of HRRSI. As shown in Figure 2, the model mainly consists of three
branches: LGML branch, deep learning branch, and feature-level fusion branch. For the
branch of LGML, the HRRSI extracts shallower features through LGML and implements
feature representation through the Lie Group feature covariance matrix. For the branch
of deep learning, this branch is divided into three parts: (1) Low flow, (2) Middle flow,
and (3) High flow. This branch is used to extract high-level features. Finally, the features
extracted from the above two branches are transferred to the feature-level fusion branch,
and the improved cross-entropy loss function is used to make the final prediction after
the feature-level fusion is completed. By combining the above branches, the feature dis-
crimination of our proposed model is enhanced, the parameters of the model are reduced,
and the computational performance of the model is improved. The three branches of our
model will be elaborated separately.
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Figure 2. Architecture of our proposed model. The model includes (1) LGML: used to extract
shallower features; (2) Deep learning branch: used to extract high-level features; (3) Feature-level
fusion branch: used to fuse features.

3.1. LGML Branch

In the task of pattern recognition, it is a key and significant step to extract the discrimi-
native features from data. Remote sensing scene classification is no exception.
During the past decade, scholars have been devoted to design discriminative features,
as it is critical for remote sensing scene classification, especially for some scenes that do
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not contain objects, such as forests, beaches, and deserts. For these scenarios, the low-level
and middle-level features are more discriminative than the high-level features. Inspired by
this, in this section, we extract the low-level and middle-level features of the scene and use
the Lie Group feature covariance matrix to represent them.

3.1.1. Sample Mapping

To make full use of the computational advantages and manifold space structure of Lie
Groups and Lie Algebras, firstly, we map the data samples to Lie Group manifold space:

Gij = log(aij) (1)

where aij represents the jth sample of the ith class in the dataset, and Gij represents the jth
sample of the ith class in the manifold space of the Lie Group. The following operations
are based on the Lie Group data sample Gij [12].

3.1.2. Lie Group Feature Covariance Matrix

According to the above analysis, to enhance the feature representation ability of differ-
ent scenes, the following features are utilized:

F(x, y) =
[

x, y, Y, Cb, Cr,
∣∣∣∣∂I(x, y)

∂x

∣∣∣∣, ∣∣∣∣∂I(x, y)
∂y

∣∣∣∣, ∣∣∣∣∂2 I(x, y)
∂x2

∣∣∣∣, ∣∣∣∣∂2 I(x, y)
∂y2

∣∣∣∣, (2)

Gabor(x, y), LBP(x, y), SIFT(x, y), HOG(x, y)
]T

where (x, y) represents the pixel position; (Y, Cb, Cr) represent the brightness, color differ-

ence, and saturation of space, respectively; and
∣∣∣ ∂I(x,y)

∂x

∣∣∣, ∣∣∣ ∂I(x,y)
∂y

∣∣∣, ∣∣∣ ∂2 I(x,y)
∂x2

∣∣∣, ∣∣∣ ∂2 I(x,y)
∂y2

∣∣∣ represent
the first-order gradient and the second-order gradient at the coordinate position (x, y), respec-
tively. The above three features are the most basic feature information of the target object.
The same scene contains similar target objects, although these target objects are different in size
and shape, their positions in the scene are similar, and the rate of change of pixels is similar.
Colors are extremely discriminating features, such as white clouds, blue oceans, and green
forests. However, it is not enough to utilize a single color feature. To enhance the robustness
and stability of the feature, we choose YCbCr. Experiments have proven that these features
have better robustness and stability to scene transformation [12,50,63].

Gabor(x, y) [64,65] represents the grayscale image of the scene, which can simu-
late the single-cell receptive field of the cerebral cortex to extract significant features.
LBP(x, y) [12,65] refers to the binarization operation of the surrounding pixels, which can
effectively extract the texture features of ground objects and is invariant to monotonous
illumination changes. SIFT(x, y) [28] represents gradient information in the image, which
is invariant to brightness, scale, and rotation changes. Histogram of Oriented Gradients
(HOG(x, y)) [45,66] represents the statistical feature of the gradient direction histogram
of the local area of the image, which has rotation invariance, scale invariance, and sparsity.

The feature covariance matrix of Lie Group is a real symmetric matrix, which rep-
resents the variance of features in the diagonal line and the relations between features
in the non-diagonal line. In addition, this matrix has a lower dimension, is not affected by
the size of HRRSI, has anti-noise ability, and has good computing performance. For other
detailed information about this feature matrix, please refer to [12,50].

3.2. Deep Learning Branch

In recent years, remote sensing scene classification methods have sprung up, especially
the model based on deep learning [1]. Generally, with the deepening of the network model
structure, the model can extract deeper features [1]. However, a very deep model is difficult
to train from the very beginning, and the model has the following risks [67]: (1) overfitting,
(2) model degradation, and (3) a large number of parameters and high computational
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complexity. To address the risks or problems mentioned above, we utilize parallel dilated
convolution, kernel decomposition, and pyramid residual connection operations, as shown
in Figure 2.

3.2.1. Batch Normalization (BN)

The goal of this layer is to standardize input sample information by reducing inter-
nal covariate shift [68]. Previous studies [68] showed that the BN layer inserted before
the convolutional layer could accelerate the convergence speed of the model and effectively
improve the structural capability of the model. Therefore, in this study, we adopt this
approach.

3.2.2. Parallel Dilated Convolution

According to the basis of previous research [12], the existing model adopts depth
separable convolutions (DepConv), mainly because the computation of DepConv is eight
to nine times less than that of standard convolutions [69], and it contains fewer parame-
ters. However, DepConv does not provide a large enough receptive field for large scenes.
Dilated convolution is an effective method to enlarge the receptive field and ensure that
large scenes are captured. However, previous studies show that dilated convolution is
a time-consuming operation [12,70]. An important goal of our model design is to guarantee
good classification accuracy while keeping good computational performance, that is, to ex-
pand the receptive field without increasing the computational complexity and the number
of parameters of the model.

To address the above problems, three parallel dilated convolution operations with
different dilation rates r ∈ {2, 4, 6} are adopted in this study, as shown in Figure 3.
To reduce parameters and make the model more slim, shared weights are adopted for par-
allel dilated convolution. Assume the feature map f p ∈ Rh×w×c and divide it into four
parts along the channel f pc1, f pc2, f pc3, f pc4 ∈ Rh×w× c

4 , as shown below:

f p2 = d f (con( f pc1, f pc2), sp, 2) (3)

f p4 = d f (con( f pc2, f pc3), sp, 4) (4)

f p6 = d f (con( f pc3, f pc4), sp, 6) (5)

Rt = con( f p, f p2, f p4, f p6) (6)

where f pi represents the dilated convolution using the dilation rate r ∈ {2, 4, 6}, sp rep-
resents the shared parameters, d f (·) represents the dilated convolution function, and Rt
represents the result of concatenating the output of the dilation convolution and the orig-
inal feature maps. Finally, a 1× 1 depthwise convolution is used to reduce the number
of channels:

Rt′ = DepConv1(Rt) (7)

where Rt′ represents the final output.
The above operation merges multi-scale features into Rt′. However, in the model,

extra features are not always helpful, sometimes increasing the computational complex-
ity of the model and even bringing unexpected consequences. This is another reason
why we utilize shared weights. Different dilation rates adopt one filter operation, which
is beneficial to the training of the filter and can avoid overfitting to a certain extent.
In addition, previous studies have verified that the impact of parallel dilated convolu-
tion on time cost is insignificant [70].

As shown in Table 1, the number of parameters of three parallel dilated convolution
and ordinary convolution is analyzed. From Table 1, we find that although the kernel
size is enlarged, its parameters are much less than those of the other two convolutions.
In addition, biases are not used in the module.
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DepConv 1×1

Figure 3. The principle of parallel dilated convolution. The dilation rates are 2, 4, and 6, respectively.

Table 1. The number of parameters of three parallel dilated convolution and ordinary convolution.

Methods Kernel
Size Input Channel Output Channel Layer Parameters Total (M)

Ordinary

3× 3 1024 1024
Conv1 1024× 1024× 3× 3 = 9, 437, 184

23,811,552 ≈ 28.3Conv2 1024× 1024× 3× 3 = 9, 437, 184
Conv3 1024× 1024× 3× 3 = 9,437,184

5× 5 1024 1024
Conv1 1024× 1024× 5× 5 = 26,214,400

78,643,200 ≈ 78.6Conv2 1024× 1024× 5× 5 = 26,214,400
Conv3 1024× 1024× 5× 5 = 26,214,400

Parrallel 5× 5 512 512
Conv1

512× 512× 5× 5 = 6,553,600 6,553,600 ≈ 6.55Conv2
Conv3

3.2.3. Lie Group Kernel Function

In the field of machine learning, a large part of training and test data samples are matrix
data samples forms other than the common vector data samples forms. In many existing
applications, a large number of matrices constitute Lie Groups [47]. Since the dot product
operation of vectors satisfies the commutative law, and matrix multiplication does not
satisfy the commutative law, therefore, the traditional kernel function based on the vector
cannot be applied to the data sample of the Lie Group matrix. According to the basis of pre-
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vious studies [20,48], after repeated experimental analysis, the Sigmoid kernel function
of Lie Group is adopted in this model:

k(x, y) =
1

1 + ec(tr(yH ·x)) (8)

where tr represents the trace calculation of the matrix; for other relevant parameters, please
refer to [20,48]. The Lie Group kernel function can satisfy both matrix data samples and
vector data samples, which enhances the universality and robustness of the model.

3.2.4. Kernel Decomposition

In the previous research, we found that the ResNet model introduced skip connec-
tion, which can reduce the training difficulty of the deeper deep learning model [67].
Later, in the Bi-Real-Net model, Liu et al. [71] enlarged the number of skip connections,
and the performance of the model was improved. Inspired by this, in this study, we also
adopted the method of adding skip connections to improve the performance of the model.
A common method is to decompose the original convolution filter into pointwise con-
volution and depthwise convolution [72]. However, the feature representation ability
of pointwise convolution in this method is limited after binarization, and there are only +1
or−1 states [73]. Therefore, we decompose the 5× 5 convolution kernel into 5× 1 and 1× 5
convolution filters to increase the number of skip connections, as shown in Figure 4. We de-
composed a large convolution kernel operation into a horizontal convolution and a vertical
convolution kernel in series. To enhance the performance of the model, skip connections
were also introduced. In the actual algorithm design, the convolution kernel that cannot
be decomposed is approximately decomposed. In the implementation of the algorithm,
separable convolution filters are used.

Kernel Decomposition

C
o
n

v

Conv

C
o
n

v

Conv

Figure 4. Principle of kernel decomposition.

3.2.5. Residual Connection Operation

To address the problems of model degradation and slow convergence speed, the residual
connection operation was adopted in this study [74]. As shown in Figure 2, the concatenate
operation is regarded as increasing the depth of the model to a certain extent and enhancing
the ability of the model to extract more abstract features, speed up training, and suppress
the network degradation. The residual connection operation we utilize is an optimization
of the above operation, providing better performance. Since Han et al. [74] demonstrated that
a large number of rectified linear units (ReLU) would degrade the performance of the model,
unnecessary ReLUs were removed from the residual connection operation. To ensure non-
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linearity, we adopt the sigmoid kernel function of the Lie Group, which is more robust and
universal. The mathematical meaning of residual unit is as follows:

rsi+1 = ru(rsi, wi) + rsi (9)

where rsi represents the input of the residual unit, rsi+1 represents the output of the residual
unit, and ru and ct represent residual operation and concatenate, respectively.

3.2.6. Spatial Attention Mechanism

In the above study, the residual connection operation is used to connect the features
from different layers, which may contain some redundant features. To remove redundant
features and enhance the ability of the model to extract key features [75], at the same time,
to preserve more discriminative features and highlight the local features matching the scene
category, in the last residual block of each flow, we add spatial attention mechanisms.

Suppose FM represents the feature maps output from maxpooling, FM(i, j) represents
the feature vector of a certain pixel (i, j) in FM, and the mathematical meaning of attention
weight wtij is as follows:

wtij = so f tmax(LGSigmoid(tw · FMT
ij + b)) (10)

where LGSigmoid represents Lie Group Sigmoid kernel function, so f tmax represents
so f tmax operation, tw represents the trainable weight parameter matrix, and b repre-
sents the bias matrix. Here, to improve the calculation speed, we utilize 1× 1 depthwise
separable convolution.

After classical mean pooling, the mathematical meaning of the gray value f m′ of the cor-
responding pixel is as follows:

f m′ =
∑ws

m=0,n=0 f m(i + m, j + n)
ws× ws

(11)

where f m(x, y) represents the gray value of pixel (i, j) from one of these convolutional
features, and ws represents the window size of the pooling operation.

After attention pooling, the mathematical meaning of f m′ is as follows:

f m′ =
∑ws

m=0,n=0 wti+m,j+n · f m(i + m, j + n)
ws× ws

(12)

After the above operation, the important local features can be weighted and the fea-
tures can be down-sampled. Figure 5 illustrates the working principle of attention weight
in our proposed model:

Attention maskFeature maps Feature maps
BN

Conv

1×1

LG Sigmoid
Position-

wise dot 

product

Softmax

Figure 5. Principle of spatial attention mechanism.

3.2.7. Bilinear Pooling

To enhance the representation of subtle features, we choose bilinear pooling instead
of average pooling. Suppose the output of the model is O ∈ Rnb×ch, Q = O, where nb and
ch represent the number and channels of features, respectively. The mathematical meaning
of the bilinear operation is as follows:

Rm = OTQ (13)
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where Rm represents the result of matrix multiplication for O and T. Following [76], l2
normalization and the signed square root are applied to the bilinear pooling result Rm.
Since its gradients are available, it can be integrated into an end-to-end model.

3.3. Feature-Level Fusion Branch

Previous studies have shown that different features have their meanings and contain
different attribute information [12]. Discriminant correlation analysis (DCA) is an optimiza-
tion method and improvement of canonical correlation analysis [77], which can effectively
reduce redundant features and maximize the pairwise correlation of different feature sets,
thus obtaining compact but discriminative features. Therefore, DCA was used for feature
fusion in this study.

3.3.1. Feature Fusion

Assume a heterogeneous feature set HF1, which contains n columns and C categories, and
ni represents the ith category. h fi,j represents the jth data sample of the ith category, which can
be a vector data sample or a matrix data sample. According to previous studies [20,48], firstly,
we utilize the Lie Group intrinsic mean to calculate the divergence between each category:

Sb =
C

∑
i=1

ni(h̄ f i − h̄ f )(h̄ f i − h̄ f )T = ΥxΥT
x (14)

where h̄ f i represents the intrinsic mean within the Lie Group of the ith category, and h̄ f
represents the intrinsic mean within the Lie Group of whole categories.

Then, by calculating the eigenvectors of ΥxΥT
x , the dimensions of HF1 can be reduced

and projected into the reduced space:

HF′1 = WT
b HF1 (15)

where Wb represents a transformation using Sb. In low-dimensional space, different cat-
egories can be distinguished. Similarly, given another heterogeneous feature set HF2, its
projection is obtained by the above steps.

The next step is to make one set of features have nonzero correlation only with
the corresponding features in another set. The transformation of HF′1 and HF′2 is as follows:

˜HF1 = WT
b1HF′1 (16)

˜HF2 = WT
b2HF′2 (17)

where Wb1 and Wb2 represent the transformation obtained by S′h f1h f2
= HF′1HF′T2 .

Finally, the transformation is carried out in the following way, and the final feature
representation is obtained:

Fus1,2 = ( ˜HF1, ˜HF2)
T (18)

Through the above operations, any heterogeneous features can be integrated. In addi-
tion, compared with the original heterogeneous features, the dimensionalities of the fused
features are greatly reduced.

3.3.2. Loss Function

Due to the high similarity of key features in different HRRSI, the deep learning model
may experience overfitting, resulting in the decline in classification accuracy.
Possible solutions include the cross-entropy loss functions, thus helping improve the clas-
sification accuracy for high similarity scene categories and enhancing the generalization
of the model.

According to the previous research, we found that the traditional cross-entropy loss
function mainly considers the model to learn from the direction of the largest difference,
and does not consider the loss of the wrong category. In practice, the remote sensing dataset
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contains a large number of similar scene categories. For example, the NWPU-RESISC45
dataset contains 45 categories and 31,500 images, among which only a few data samples can
be used for training, and the data samples are uneven. This can easily lead to overfitting and
inaccurate prediction of the model, and it is difficult to distinguish similar scene categories.
Therefore, the traditional cross-entropy loss function is not enough to address the features
of all data samples.

For further analysis, possible solutions include the use of a regularization strategy,
that is, label smoothing; the use of hyperparameter ζ to achieve a better trade-off between
positive samples and negative samples; and the use of soft-one hot to add noise and con-
strain the output loss function. The cross-entropy loss relationship between the corrected
real label yLSc and the corresponding probability pc is as follows:

yLSc = yc(1− ζ) + ζu(c) =

{
1− ζ + ζ

C , if c = h f
ζ
C , if c 6= h f

(19)

where C represents the total number of categories, c represents the index of a specific
category, and u(c) follows the uniform distribution of C categories. A new loss function
can be obtained:

Lossn = −
C

∑
c=1

yLSc logpc =

{
(1− ζ) · Loss, if c = h f
ζ · Loss, if c 6= h f

= −(1− ζ +
ζ

C
)logyh f −

ζ

C ∑
c 6=h f

logpc (20)

where:

Loss = −
C

∑
c=1

yclogpc (21)

where yc represents the actual category, and pc represents the corresponding probability.
yc = 1 indicates the correctly classified category, and yc = 0 indicates other categories.
The specific expression is as follows:

yc =

{
1, if c = h f
0, if c 6= h f

(22)

This function can satisfy the evaluation of the loss of the correct category and reduce
the difference between the wrong category. In particular, it can effectively improve the dif-
ference between different scenes in remote sensing datasets and enhance the generalization
of the model.

4. Experimental Results

In this section, we conduct a comprehensive experiment and analysis to evaluate
the feasibility and robustness of our proposed method. Firstly, three challenging datasets
used in the experiment are outlined. Secondly, the relevant settings of the experiment are
described. Finally, we compared and analyzed our method with some of the state-of-the-art
methods and performed ablation experiments on the modules in the model.

4.1. Experimental Datasets

In this section, we chose UC Merced [78], AID [79], and NWPU-RESISC45 [25], three
public and challenging datasets. The UC Merced dataset [78] contains 21 land-use scenes
with a total of 2100 images. The AID dataset [79] contains 30 scene types, each with 200
to 400 images. The NWPU-RESISC45 dataset [25], published by Northwestern Polytechnical
University, contains 45 scene classes with a total of 31,500 images. The above dataset has
the following characteristics: (1) They are the most influential of the remote sensing datasets,
which have been widely used in the classification and retrieval of remote sensing image
scenes; (2) the diversity of images, taking into account the different times, seasons, and
imaging conditions of the scene; (3) the image contains variations in spatial resolution,
viewpoint, occlusion, and background, which increase the challenge of classification; (4) the
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scale of the remote sensing scene dataset is significantly expanded, with large intraclass
differences and high interclass similarity. To prevent overfitting, data augmentations were
used to supplement the number of datasets during the experiment, including horizontal
and vertical flipping and rotation at different angles.

4.2. Experiment Setup

The model is implemented based on the deep learning platform of Tensorflow [80].
The model was optimized by stochastic gradient descent (SGD) algorithm. The experi-
mental environment settings are shown in Table 2. After the initial setting is completed,
the initial learning rate is reduced by 105 times while observing the validation loss decreas-
ing slowly.

To fairly compare with other experimental models, we stipulate that the ratio of the training
set and test set should be the same as that of most previous models [25]. The evaluation indica-
tors include the overall accuracy (OA), the Kappa coefficient (KC), and the confusion matrix.
To obtain reliable experimental results, we randomly divided three datasets according to the ra-
tio of training and test sets, repeated the experiment 10 times, and calculated the standard
deviation and average value to obtain the final experimental results.

Table 2. Experimental environment parameters.

Item Content

Processor Inter Core i7-4700 CPU with 2.70 GHz ×12
Memory 32 GB

Operating system CentOS 7.8 64 bit
Hard disk 1T

GPU Nvidia Titan-X ×2
Python 3.7.2
PyTorch 1.4.0
CUDA 10.0

Learning rate 10−3

Momentum 0.9
Weight decay 5× 10−4

Batch 16
Saturation 1.5

Subdivisions 64

4.3. Experimental Results

Previous studies have shown [25,79] that the model based on CNN far surpassed
the method based on shallower features. Therefore, in this experiment, we did not choose
to compare with the traditional method based on handcrafted features.

The experimental results are shown in Table 3, as follows:
The experimental results on the UCM dataset are listed below:

1. When the training ratio is 50%, the accuracy of our proposed model achieves 98.67%,
surpassing all the previous models. The experimental results indicate that the classifi-
cation accuracy can be improved effectively by adding shallower features (low-level
and middle-level features), parallel dilated convolution, Lie Group kernel function,
kernel decomposition, and skip connection. Shallower features and multidilation
pooling modules are used in LGRIN [12], but the classification accuracy of our model
is 0.06% higher than that of LGRIN [12]. Our model is 0.19% higher than CSCD [8],
0.1% higher than SEMDPMNet [81], and 5.91% higher than Xception [82]. When
the training ratio is 80%, our proposed model is 3.45% high than MobileNet V2 [81]
and 0.02% higher than SCC-CNN [37].

2. In addition, we also analyzed the Kappa coefficient corresponding to the above models.
When the training ratio is 50%, the Kappa coefficient of our model is 98.31%, which is
4.04% higher than that of APDC-NET [16] and 2.74% higher than that of LCPB [83].
When the training ratio is 80%, the Kappa coefficient of our model is 99.76%, which is
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0.01% higher than that of LCNN-GWHA [38] and 0.26% higher than that of LCNN-
CMGF [40]. The above experimental results verify the superiority of our model.

3. As shown in Figure 6, our proposed model fully recognized most of the scene cate-
gories, and the recognition rate of the medium residential and dense residential scene
is lower than that of other scenes. Therefore, we believe that there is a large confusion
between them, mainly because their distribution is quite similar, and the difference
between the extracted shallower features and the high-level features is small.

Figure 6. Confusion matrix of our proposed method with the UC Merced dataset.

Table 3. In the experimental results under three different datasets of UC Merced (UCM), AID, and
NWPU-RESISC45 (NWPU), we utilized 24 models to compare the overall accuracy (OA%) and Kappa
coefficient (KC) with our proposed model.

Models UCM (50%) UCM (80%) AID (20%) AID (50%) NWPU (10%) NWPU (20%)
OA
(%)

KC
(%)

OA
(%)

KC
(%)

OA
(%)

KC
(%)

OA
(%)

KC
(%)

OA
(%)

KC
(%)

OA
(%)

KC
(%)

CSCD
[8]

98.48±
0.21 98.28 99.52±

0.13 99.39 94.29±
0.35 93.39 96.70±

0.14 96.21 91.64±
0.16 91.43 93.59±

0.21 93.27

APDC-
Net
[16]

95.01±
0.43 94.27 97.05±

0.43 96.33 88.56±
0.29 87.37 92.15±

0.29 91.53 85.94±
0.22 84.36 87.84±

0.26 86.67

CNN +
GCN
[84]

- - - - 94.93±
0.31 92.75 96.89±

0.31 95.27 90.75±
0.21 89.62 92.87±

0.13 91.63

LCPB
[83]

96.66±
1.36 95.57 98.32±

1.03 97.75 87.68±
0.25 86.77 91.33±

0.36 90.65 - - - -

LCPP
[83]

97.54±
1.02 97.32 98.78±

1.12 97.73 90.96±
0.33 89.78 93.12±

0.28 92.66 - - - -

LG -
Sigmoid

[20]

98.32±
0.13 96.56 98.92±

0.35 97.63 93.25±
0.35 91.62 95.87±

0.16 94.57 90.19±
0.11 89.62 93.21±

0.12 92.96

LG -
RBF [48]

98.37±
0.15 97.66 98.95±

0.16 97.49 94.17±
0.25 93.43 96.19±

0.28 94.33 90.23±
0.13 89.17 93.25±

0.12 93.02
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Table 3. Cont.

Models UCM (50%) UCM (80%) AID (20%) AID (50%) NWPU (10%) NWPU (20%)
OA
(%)

KC
(%)

OA
(%)

KC
(%)

OA
(%)

KC
(%)

OA
(%)

KC
(%)

OA
(%)

KC(
%)

OA
(%)

KC
(%)

LGRIN
[12]

98.61±
0.22 97.65 98.97±

0.31 97.89 94.74±
0.23 93.56 97.65±

0.25 96.31 91.91±
0.15 91.53 94.43±

0.16 93.28

VGG19
[85] - - - - 87.73±

0.25 86.65 91.71±
0.42 90.06 81.34±

0.32 80.22 83.57±
0.37 82.17

Caffe -
Net [79]

93.98±
0.67 92.86 95.02±

0.81 94.33 86.86±
0.47 85.23 89.53±

0.31 88.36 - - - -

GoogLe -
Net [79]

92.70±
0.60 91.37 94.31±

0.89 92.26 83.44±
0.40 82.17 86.39±

0.55 85.27 82.46±
0.12 81.37 85.36±

0.17 83.36

Mobile-
Net V2

[81]

92.17±
0.13 91.06 96.33±

0.15 94.91 93.26±
0.25 92.19 96.95±

0.26 95.37 89.83±
0.16 87.65 92.16±

0.15 91.07

VGG-
VD-16

[79]

94.14±
0.69 93.52 95.21±

1.20 94.75 86.59±
0.29 85.37 89.64±

0.36 88.45 - - - -

ResNet50
[85] - - - - 92.39±

0.15 91.51 94.69±
0.19 93.47 86.23±

0.41 85.32 88.93±
0.12 87.61

SE - MD
PMNet
[81]

98.57±
0.11 97.36 98.95±

0.12 97.74 94.68±
0.17 93.22 97.14±

0.15 95.87 91.80±
0.07 90.79 94.11±

0.03 92.96

Contour-
let -

CNN [86]

- - 98.97±
0.21 97.81 - - 97.36±

0.45 96.19 85.93±
0.51 84.36 89.57±

0.45 88.35

Inception -
V3 [85]

- - - - 93.27±
0.17 92.11 95.07±

0.22 93.91 85.46±
0.33 84.62 87.75±

0.43 86.46

Xcep -
tion [82]

92.76±
0.31 91.41 94.40±

0.15 92.77 86.12±
0.28 85.73 90.14±

0.52 89.07 81.64±
0.32 80.52 84.79±

0.26 83.56

Efficient -
Net [87]

- - 94.37±
0.14 93.27 86.56±

0.17 85.32 88.35±
0.16 87.21 78.57±

0.15 77.26 81.83±
0.15 79.53

SCC-
CNN [37]

- - 99.76±
0.05 99.51 93.15±

0.25 92.06 97.31±
0.10 96.03 92.02±

0.50 90.57 94.39±
0.16 93.13

LCNN-
GWHA

[38]

- - 99.76±
0.25 99.75 93.85±

0.16 93.63 97.64±
0.28 97.55 92.24±

0.12 92.04 94.26±
0.25 94.13

RS-
DARTS

[39]

- - - - 88.34±
0.25 87.26 91.25±

0.23 90.37 85.73±
0.26 84.26 89.15±

0.36 88.06

LCNN-
CMGF

[40]

- - 99.52±
0.34 99.50 93.63±

0.10 93.51 97.54±
0.25 97.45 92.53±

0.56 92.17 94.18±
0.35 94.04

DF-
CNN [41]

- - 99.62±
0.13 99.53 94.63±

0.15 94.46 96.43±
0.26 95.83 89.88±

0.37 88.62 94.44±
0.35 94.23

Proposed 98.67±
0.25 98.31 99.78±

0.16 99.76 94.79±
0.28 94.57 97.72±

0.25 97.61 92.62±
0.15 92.25 94.49±

0.36 94.31

The experimental results on the AID dataset are presented below:

1. The AID dataset is different from UCM dataset. The AID dataset is multi-sourced:
It is collected from different regions of the world with different spatial resolutions
and times. In addition, these images are captured by different sensors, which makes
scene classification more difficult. When the training ratio is 20%, the accuracy of our
proposed model achieves 94.79%, 7.11% higher than LCPB [83], 3.83% higher than
LCPP [83], and 0.16% higher than DF-CNN [41]. When the training ratio is 50%, the ac-
curacy of our proposed model achieves 97.72%, 0.41% higher than SCC-CNN [37],
0.08% higher than LCNN-GWHA [38], and 3.03% higher than ResNet50 [85].
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2. When the training ratio is 20%, the Kappa coefficient our proposed achieves 94.57%,
which is 9.2% and 0.11% higher than VGG-VD-16 [79] and DF-CNN [41], respectively,
and 9.34% higher than CaffeNet [79]. When the training ratio is 50%, the Kappa coeffi-
cient our proposed achieves 97.61%, which is 0.16% higher than LCNN-CMGF [40],
0.06% higher than LCNN-GWHA [38], and 1.58% higher than SCC-CNN [37].

3. As for the confusion matrix shown in Figure 7, our model can achieve 96% in most
scenes, and 100% in some scenes, such as in parks and forests. However, the classi-
fication accuracy of some scenes is low. After further analysis, we found that their
structure and composition are highly similar, such as the shallower features of ponds
and buildings, so the classification accuracy is low.

Figure 7. Confusion matrix of our proposed method with the AID dataset.

The experimental results on the NWPU dataset are listed below:

1. The NWPU dataset is large in terms of the total number of categories of images and
scenes. In addition, the dataset has large intraclass differences and high interclass
similarity, and it contains variations in spatial resolution, viewpoint, illumination,
occlusion, and background, which represents a more challenging scene classifica-
tion task than the UCM and AID datasets. When the training ratio is 10%, the ac-
curacy of our proposed model achieves 92.62%, which is 0.09% higher than that
of LCNN-CMGF [38], 0.71% higher than that of LGRIN [12], and 0.38% higher than
that of LCNN-GWHA [38]. When the training ratio is 20%, the accuracy of our pro-
posed model achieves 94.49%, which is 0.9% higher than that of CSCD [8], 0.06%
higher than that of LGRIN [12], and 0.38% higher than that of SE-MDPMNET [81].

2. When the training ratio is 10%, the Kappa coefficient of our proposed model achieves
92.25%, which is 0.21% and 0.08% higher than LCNN-GWHA [38] and LCNN-CMGF [40],
respectively . When the training rate is 20%, the accuracy of our proposed model achieves
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94.31%, which is 0.08% higher than DF-CNN [41], 0.27% higher than LCNN-CMGF [40],
and 1.03% higher than LGRIN [12].

3. Confusion matrix as shown in Figure 8: Similar to the AID dataset, the classification
accuracy of our proposed model can achieve 92% in most scenarios. Due to the large
scale of NWPU datasets, large intraclass differences, and high interclass similarity,
none of the categories are completely correctly classified. Because churches and
palaces have similar physical structures and other characteristics, these two kinds
of scenes are easy to be confused.

Figure 8. Confusion matrix of our proposed method with the NWPU-RESISC45 dataset.

5. Discussion

The above results can be explained from the following aspects:

1. The existing CNNs model tends to retain the high-level features while ignoring
the shallower features in the image, resulting in the classification accuracy of the scene
being relatively low. However, the model of our proposed efficiently integrates
different features of multiple levels, especially the shallower features, providing more
features required by the model and effectively improves the classification accuracy
of the scene;

2. Our proposed model adopts a spatial attention mechanism, kernel decomposition,
and the method of increasing the number of skip connections. It can effectively extract
more important weight feature information in the image and preserve the feature
information of different levels, making the extracted feature more discriminative
to the scene;

3. Generally, deeper and wider models can extract more global features, but it is easy
to increase the complexity and number of parameters of the model, and it is also
easy to extract features through pure linear stacked convolution modules, thus af-
fecting the classification accuracy. In our model, skip connections, parallel dilated
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convolution, and expanded kernel size was used to expand the receptive field and
extract more global features, which effectively reduced the number of parameters and
complexity of the model and improved the classification accuracy;

4. The pyramid residual connection is adopted in our proposed model, which can not
only reduce the complexity of the model but also reuse parameters and features,
reduce the parameters of the model, enhance the feature learning ability of the model,
and establish connections with shallower features. In other words, the pyramid
residual connection further reduces the computational complexity and the number
of model parameters and ensures the ability of the model to extract deeper features.

5.1. Evaluation of Size of Models

In this experiment, we select 10 classical models to compare the size of the model, namely,
CaffeNet [79], GoogLeNet [79], MobileNet V2 [81], SE-MDPMNet [81], ResNet50 [85], VGG-
VD-16 [79], Inception V3 [85], LCNN-GWHA [38], SCC-CNN [8] and LGRIN [12], where
GMACs represent the complexity of computation. From Table 4, we found that compared with
SE-MDPMNet [81], our model has advantages in terms of parameter number and GMACs.
In addition, compared with lightweight models, GoogLeNet [79] and MobileNet [81], our model
achieves a better trade-off between OA, model parameters, and GMACs. Since parallel dilated
convolution is adopted in our model, compared with LCNN-GWHA [38], our model reduces
the number of parameters and further improves the computational performance of the model.
Our model has much fewer parameters, but the classification accuracy is still better than other
CNN models. In addition, the time complexity of the model is O(nlog2n) in the best case and
O(n2) in the worst case.

Table 4. Taking AID (50%) as an example, the size of the model is evaluated.

Models OA (%) Parameters (M) GMACs (G)

ResNet50 [85] 94.69 25.61 1.8555
CaffeNet [79] 89.53 60.97 3.6532

MobileNet V2 [81] 95.96 3.50 0.3451
GoogLeNet [79] 86.39 7.00 0.7500

SE-MDPMNet [81] 97.14 5.17 0.9843
VGG-VD-16 [79] 89.64 138.36 7.7500
Inception V3 [85] 95.07 45.37 2.4356

LGRIN [12] 97.65 4.63 0.4933
LCNN-GWHA [38] 97.64 0.3 0.0467

SCC-CNN [8] 97.31 0.49 0.0592
Proposed 97.72 0.28 0.0421

5.2. Comparison of Prediction Time

As shown in Table 5, the prediction time of a single HRRSI from each of the three
datasets is compared. The prediction time of our model is significantly reduced compared
with other models. The experimental results in Table 5 show that the reduction in the
parameters in the model is beneficial to improving the prediction time of the model. There
is little difference in the number of parameters between our proposed model and LCNN-
GWHA [38], but our prediction speed is 0.015S (on average) faster than LCNN-GWHA [38],
which shows that the kernel size and receptive field are increased in parallel dilated
convolution, and the computational performance of the model is not reduced.
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Table 5. Prediction times (S) of different models with three datesets.

Models UCM (80%) AID (50%) NWPU (20%)

MobileNet V2 [81] 0.076 0.089 0.095
GoogLeNet [79] 0.157 0.193 0.255

SE-MDPMNet [81] 0.512 0.737 0.973
VGG-VD-16 [79] 1.206 1.682 2.151
Inception V3 [85] 0.091 0.126 0.143

LGRIN [12] 0.082 0.095 0.137
LCNN-GWHA [38] 0.075 0.087 0.125

Proposed 0.070 0.081 0.091

5.3. Ablation Experiment

Taking the AID (50%) dataset as an example, we conducted a series of experiments
to analyze the effect of each module in the model. To ensure a fair comparison, all evaluated
are set with the same parameters.

5.3.1. Effects of LGML in the Model

To clarify the effect of LGML in the model, two different structures are designed based
on dense connected convolutional neural network (DCCNN) and LGML. DCCNN is a model
used to retain shallower features [88]. The experimental results are shown in Table 6: It has
been shown that the model based on LGML has good performance. The relative improvements
of each metric approximates 4% to 5%. The characterization method of the Lie Group feature
matrix in LGML adopts a real symmetric matrix. Compared with the DCCNN model, it has
fewer parameters, good computational performance, and an anti-noise ability. In addition, it can
better express features and their correlation between features, and improve the comprehensibility
of the model from the perspective of LGML.

Table 6. Influence of LGML.

Modulars OA (%) ↑ KC (50%) ↑ Parameters (M) ↓

DCCNN [88] 92.56 92.35 5.26
LGML 97.72 97.61 0.28

5.3.2. Effect of Spatial Attention Mechanism

To confirm the effect of spatial attention mechanism on the model, we compared our
classification results with the model without spatial attention mechanism, and the results
are shown in Table 7. Our proposed model achieves the highest classification accuracy, and
the spatial attention mechanism improves the classification accuracy of the model by 3.36%.
These experimental results indicate that the spatial attention mechanism in the model is
beneficial to scene classification.

Table 7. Influence of spatial attention mechanism.

Modulars OA (%) ↑

Without spatial attention 94.36
Ours 97.72

5.3.3. Influence of Different Distance Space Calculation Methods on Model Scene Classification

Since most of the existing CNN models utilize Euclidean space distance for calcu-
lation, in practical application scenarios, Euclidean space distance is mainly applicable
to vector space data samples, and there are limitations for non-Euclidean space samples.
As shown in Figure 9, Figure 9a is the distance calculated by using Lie Group manifold
distance, and Figure 9b is the distance directly calculated by using Euclidean space distance.
Obviously, the manifold space distance can better reflect the real distance between data
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samples. As shown in Table 8, the experimental results obtained by calculating Euclidean
space distance and manifold space distance are adopted, respectively. The experimental
results show that the manifold space distance can achieve higher classification accuracy.

(a) (b)X1

X2

X1

X2

D(X1,X2)

Figure 9. Difference of Manifold distance and Euclidean distance: (a) represents the distance between
the samples X1 and X2 on the manifold space of the Lie Group, and the distance is on the manifold space;
(b) is the distance obtained by directly using Euclidean distance to calculate samples X1 and X2.

Table 8. Influence of different distance space calculation methods.

Methods OA (%) ↑

Euclidean space distance 91.37
Ours 97.72

5.3.4. Contribution of Pyramid Residual Connection and Bilinear Pooling to the Model

To verify the effects of pyramid residual connection and bilinear pooling, we compare
our classification results (i.e., using pyramid residual connection and bilinear pooling,
PRC + BIP) with the following three situations, that is, using the residual connection and
global average pooling (RC + GAP), residual connection and bilinear pooling (RC + BIP),
pyramid residual connection and global average pooling (PRC + GAP). All experimental
results are listed in Table 9 and can also be found follows:

1. In all experiments, the proposed model achieves the highest classification accuracy,
while RC + GAP achieves the lowest classification accuracy;

2. Compared with PRU + GAP, our classification accuracy is improved by 4.31%, indi-
cating that the model based on bilinear pooling has better classification performance.
We can consider that this method can provide many subtle and discriminative features
for the model;

3. The experimental results indicate that both the pyramid residual connection and
bilinear pooling are beneficial to scene classification. In addition, as shown in Fig-
ure 1, the pyramid connecting is also beneficial to the convergence of the model and
improves the fitting effect of the model.

Table 9. Influence of pyramid residual connection and bilinear pooling to the model.

Methods OA (%) ↑

RC + GAP 91.26
RC + BIP 92.43

PRC + GAP 93.41
PRC + BIP 97.72

5.3.5. Influence of Cross-Entropy Loss Function on Model Scene Classification

To verify that the traditional cross-entropy loss function (CEL) and cross-entropy loss
function based on label smoothing (CELLS) influence scene classification, we compare
our classification results with the model using the traditional cross-entropy loss function.
The experimental results are shown in Table 10. The classification accuracy of CELLS is
2.34% higher than that of the CEL model, which shows that CELLS is more suitable for scene
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classification. Label smoothing corrects the loss function and improves the generalization
ability of the model.

Table 10. Influence of cross-entropy loss function on model scene classification.

Functions OA (%) ↑

CEL 95.38
CELLS 97.72

6. Conclusions

Intraclass diversity and interclass similarities are existing in HRRSIs, which have
complex spatial distributions and geometric structures. The traditional CNN model based
on linear superposition cannot extract key and discriminative features. Therefore, this study
proposes a novel Lie Group deep learning model to address the above problems. Firstly, by
combining LGML and deep learning, our proposed model jointly learns shallower features
(low-level and middle-level features) and high-level features (semantic features). In this
model, the parallel dilated convolution, Lie Group kernel function, kernel decomposi-
tion, and pyramid residual connection are adopted to expand the receptive field, reduce
the number of parameters and calculation, prevent model degradation and overfitting,
and effectively extract the key and discriminative features at different levels. Secondly,
the spatial attention mechanism in the model can effectively suppress irrelevant feature
information and enhance local semantic features. Finally, the feature-level fusion method is
adopted to avoid feature redundancy and reduce the dimension of feature, enhance the ca-
pability of feature representation and maintain good computing performance. In addition,
to reduce the influence of high similarity categories on scene classification, the model
adopts the cross-entropy loss function based on label smoothing. The proposed model
is performed on three public and challenging large-scale datasets, and the experimental
results verify that our method has better performance than other methods.
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Abbreviations

AID Aerial Image Dataset
BoVW Bag-of-Visual-Words
CBAM Convolutional Block Attention Module
CH Color Histogram
CNN Convolutinal Neural Network
DCA Discriminant Correlation Analysis
DCCNN Dense Connected Convolutional Neural Network
DepConv Depth separable Convolutions
F1 F1 score
GAN Generative Adversarial Network
HRRSI High-resolution Remote Sensing Images
KC Kappa Coefficient
LBP Local Binary Pattern
LDA Latent Dirichlet Allocation
LGDL Lie Group Deep Learning
LGML Lie Group Machine Learning
LGRIN Lie Group Regional Influence Network
OA Overall Accuracy
PGA Principal Geodesic Analysis
PLSA Probabilistic Latent Semantic Analysis
PTM Probabilistic Topic Models
ReLU Rectified Linear Units
SGD Stochastic Gradient Descent
SIFT Scale-invariant Feature Transform
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