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Abstract: Multiple landslide events are common around the globe. They can cause severe damage
to both human lives and infrastructures. Although a huge quantity of research has been shaped
to address rapid mapping of landslides by optical Earth Observation (EO) data, various gaps and
uncertainties are still present when dealing with cloud obscuration and 24/7 operativity. To address
the issue, we explore the usage of SAR data over the eastern Iburi sub-prefecture of Hokkaido, Japan.
In the area, about 8000 co-seismic landslides were triggered by an Mw 6.6 earthquake on 6 September
2018, at 03.08 local time (JST). In the following study, we modify a Deep Learning (DL) convolutional
neural network (CNN) architecture suited for pixel-based classification purposes, the so-called
Attention U-Net (Attn-U-Net) and we employ it to evaluate the potential of bi- and tri-temporal
SAR amplitude data from the Sentinel-1 satellite and slope angle to map landslides even under thick
cloud cover. Four different datasets, composed of two different band combinations per two satellite
orbits (ascending and descending) are analyzed. Moreover, the impact of augmentations is evaluated
independently for each dataset. The models’ predictions are compared against an accurate landslide
inventory obtained by manual mapping on pre-and post-event PlanetScope imagery through F1-score
and other common metrics. The best result was yielded by the augmented ascending tri-temporal
SAR composite image (61% F1-score). Augmentations have a positive impact on the ascending
Sentinel-1 orbit, while metrics decrease when augmentations are applied on descending path. Our
findings demonstrate that combining SAR data with other data sources may help to map landslides
quickly, even during storms and under deep cloud cover. However, further investigations and
improvements are still needed, this being one of the first attempts in which the combination of SAR
data and DL algorithms are employed for landslide mapping purposes.

Keywords: landslides; SAR; sentinel-1; deep learning; convolutional neural network; U-Net

1. Introduction

Landslides are one of the most commonly occurring natural phenomena in mountain-
ous areas globally that can cause severe damage to both human lives and infrastructures [1].
There are several triggering factors of landslide occurrences such as earthquake events [2–6],
heavy rainfall, and anthropogenic activities or the combination of the aforementioned fac-
tors [7,8]. The detection of landslides to generate landslide inventories [9,10] is the basis for
modeling the landslide susceptibility and hazard scenarios. The past landslide conditions
are the key to predicting future landslide events, both spatially and temporally [11,12].
Moreover, landslide modeling and forecasting are heavily affected by limited or incomplete
landslide inventories, which affect both calibration and validation processes [13].

A great deal of research has gone into developing and employing methods for de-
tecting landslides. Field surveys with the Global Satellite Navigation System (GNSS) may
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create a landslide inventory dataset, which includes accurate limits, spatial positions, and
distributions, but this is an expensive and, in certain cases, risky technique because of
the rugged topography and slope instabilities [14,15]. As a result, satellite products are
regarded as a low-cost and valuable data source for the creation of landslide inventory
datasets [16]. In the remote sensing field, the analysis and categorization of Earth ob-
servation (EO) imagery have been widely explored to extract ground displacements and
landslides. The categorization and extraction of information from satellite imagery may be
divided into two approaches: object-based and pixel-based. Object-based image analysis is
becoming more common [17], although pixel-based techniques remain dominant. Those
approaches have both been combined with other Machine Learning (ML) approaches and
used in a variety of applications [18].

Deep-learning (DL) algorithms, particularly convolutional neural networks (CNNs),
have lately shown promising results in a variety of image processing applications in
computer vision [19]. As for their employment in landslide investigation, the methodology
potential has been just partially uncovered. Researchers are exploring the potential of
CNNs in various landslide detection tasks (object-based, pixel-based), achieving even
higher results than with the classical ML approaches. Chen et al. [20] employed CNNs
for automated landslide detection on multi-temporal satellite-based data. Ghorbanzadeh
et al. [21] evaluated various ML algorithms, such as support vector machines (SVMs),
random forest (RF), artificial neural networks (ANNs), CNNs, and deep convolutional
neural networks (D-CNN) on high-resolution Rapid Eye imagery to this end, achieving the
highest performances with CNNs. Catani [22] evaluated various CNNs for crowdsourced
landslide imagery classification. Meena et al. [23] achieved a mean accuracy of 78% by
employing the combination of optical PlanetScope imagery and slope angle and CNNs
for rainfall-induced landslide mapping. Further studies evaluated the impact of various
morphological factors in combination with satellite data for DL-based landslide detection
approaches [24–26]. Lastly, Prakash et al. [27] propose a method for landslide mapping
across four different regions and landslide events by using CNNs and images from different
optical sensors.

However, with time as a key factor in rapidly mapping landslides for effective disaster
planning [28], using optical images may have certain limitations like obscuration due to
thick cloud cover. The last is recurrent in various tropical countries and everywhere present
in the case of storm-induced landslide activations [29]. Moreover, many are the cases in
which, after earthquakes triggered multiple landslide events, the first optical cloud-free
image was acquirable more than a month later [30]. Synthetic Aperture Radar (SAR) images
are a good solution to such cloud obscuration and the emphasis of employing state-of-
the-art techniques in detecting landslides can potentially alleviate the problems in rapid
landslide mapping. Various SAR-based approaches have been explored for landslide detec-
tion purposes deepening the potential of both phase and amplitude for this task [31–34].
However, as stated by Mondini et al. [35] SAR amplitude images for landslide recognition
and mapping are not widespread. This is due to the data pre-processing complexity [34,36],
as well as the numerous distortions due to the acquisition geometry in high slope areas,
which are the most prone to landslide occurrence. Nonetheless, a further cross-site study
by Mondini et al. [37] showed that in 84% of the cases, changes of amplitude were caused
by the occurrence of landslides.

This literature review shows that with the availability of SAR data and the progress
in the development of image processing techniques, it has been possible to rapidly obtain
information on potential sources of slope instabilities over large areas. Automated methods
are being developed to exploit the use of the increasingly available data and with that,
recent ML and DL models have created a new paradigm in detecting landslides through
their advanced and complex algorithms. Researchers have put their efforts into mapping
known event landslides using numerous semi-automated approaches on optical imagery
(see Table 1). However, the combination of SAR and DL for pixel-based landslide mapping
has not been explored yet.
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In the remainder of this paper, we investigate and introduce the possibility of using
an improved U-Net version and SAR data for landslide mapping. Multiple landslides
can be triggered in cloud obscuration situations in a variety of ways, as stated above. To
investigate this possibility, we chose the Iburi co-seismic landslides of Hokkaido, Japan,
which occurred on 6 September 2018 as a study case. In the area, the first cloud-free
Sentinel-2 image was available more than one month after the event. For the study, we use
a modified version of the well-known U-Net, called Attn-U-Net from Abraham et al. [38].
We apply the Attn-U-Net on various combinations of pre-and post-event ground range
detected (GRD) Sentinel-1 amplitude data, using the results of Nava et al. [39] as a starting
point, which explored various combinations of SAR amplitude and topographical factors
for DL object-based landslide detection, showing comparable results to that of studies done
with optical datasets.

Table 1. Recently published studies on landslide detection, classification, and mapping using Deep
Learning approaches.

Study Main Objective Algorithm Data Used

Chen et al. [20] Automated landslide detection
for mountain cities D-CNN 1 Multispectral, slope

Ghorbanzadeh et al. [21] Comparison between ML and DL
for landslide mapping

CNN 2, D-CNN 1, SVM 3,
RM 4, ANN 5

Multispectral, plan curvature,
slope aspect, slope

Catani [22] Automated landslide
classification CNN 2 Crowdsourced optical

imagery

Meena et al. [23] Automated rainfall-induced
landslide mapping CNN 2 Multispectral, slope

Sameen et al. [24] Landslide detection by residual
networks ResNet 7, CNN 2 RGB, elevation, slope, slope

aspect, curvature

Ghorbanzadeh et al. [25]
Evaluation of the impact of

conditioning factors for
automated landslide mapping

CNN 2 Multispectral, elevation, slope,
slope aspect, plan curvature

Liu et al. [26] Co-seismic automated landslide
mapping Liu et al. [26] 6 Co-seismic automated

landslide mapping

Prakash et al. [27] Generalized, cross-site landslide
automated mapping Deep supervised CNN 2 Multispectral, hillshade, slope

Nava et al. [39] Co-seismic automated landslide
detection CNN 2 SAR amplitude, elevation,

slope
1 Deep Convolutional Neural Network. 2 Convolutional Neural Network. 3 Support Vector Machine. 4 Random
Forest. 5 Artificial Neural Network. 6 Residual U-Net. 7 Residual Network.

2. Study Area and Materials
2.1. Study Area

The research area is in Hokkaido, Japan’s Iburi sub-prefecture (see Figure 1). Mukawa,
Abira Atsuma, and Atsuma are three of the towns in the area. They have a population of
over 10,000 people and a low density of 17 people per square kilometer. A hilly morphology
dominates the landscape. With a maximum altitude of over 800 m, the average elevation is
160 m The basement complex is mostly made up of Neogene tertiary sedimentary rocks
such as sandstone and mudstone layers, conglomerate, sandstone, and diatomaceous silt-
stone [40,41]. Small rivers in the research area are utilized for irrigation systems discharge,
with upstream reservoirs and rainfall as their sources [42].
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September 2018, with a magnitude of 6.56 (HEIE). With a focal depth of 37 km, the epi-
center is at 42.690°N 142.007°E. The activation is linked to a blind fault with low activity 
[43]. There were 44 fatalities and more than 660 injured in the 700 km2 region devastated 
by induced land sliding. It is worth noting that co-seismic landslides were responsible for 
even more than 80% of the victims. A total of 7837 co-seismic shallow landslides were 
counted, with planar and spoon types being the most common. The majority of the slides 
occurred on air-fall pumice and ash deposits [44], at elevations less than 300 m [6]. The 
overall thickness of the superficial strata within the epicenter region is approximately 4–
5 m. This stratified soil is not particularly stable, and small landslides have happened on 
a regular basis, mainly when the water concentration is high [44]. 

2.2. Materials 
We downloaded Sentinel-1 imagery from Copernicus Open Access Hub [45]. The ac-

quired products are Level-1 Ground Range Detected (GRD) mode, VV polarization, and 
Interferometric Wide (IW) acquisition mode. GRD products are focused on SAR data that 
have been detected, multi-looked, and projected to ground range into a regular 10 m grid 
using an Earth ellipsoid model [46]. Nava et al. [39] evaluated the influence of the VH 
polarization by testing it alone as well as in combination with the VV polarization. How-
ever, when using the VH, results were far less accurate than those obtained by just using 
the VV. Therefore, in this manuscript, VH polarization was discarded. For both ascending 
and descending orbits, images were collected on three distinct days (see Table 2). Changes 
in roughness and moisture content in the land cover are caused by landslide occurrence 
and captured by SAR amplitude data [35]. Those changes, on the other hand, can be in-
duced also by human activity such as flatland farming. Slope angle revealed itself to be 
very helpful in distinguishing landslide areas from flat areas [23]. Moreover, in hilly and 
mountainous places, surface topography has a significant influence on landslide occur-
rence. Above all, the slope angle is a crucial component for slope stability analysis. Fur-
thermore, in the study area, most of the landslides occurred in a slope range of 25–30°. 
Given the abovementioned reasons, we used the 30 m resolution 1 Arc-Second Global 

Figure 1. Geographic location of the study area in Hokkaido, Japan, and landslides identified by
Wang et al. [6].

The Hokkaido Eastern Iburi Earthquake struck the area at 03.08 local time (JST) on
September 2018, with a magnitude of 6.56 (HEIE). With a focal depth of 37 km, the epicenter
is at 42.690◦N 142.007◦E. The activation is linked to a blind fault with low activity [43].
There were 44 fatalities and more than 660 injured in the 700 km2 region devastated by
induced land sliding. It is worth noting that co-seismic landslides were responsible for even
more than 80% of the victims. A total of 7837 co-seismic shallow landslides were counted,
with planar and spoon types being the most common. The majority of the slides occurred
on air-fall pumice and ash deposits [44], at elevations less than 300 m [6]. The overall
thickness of the superficial strata within the epicenter region is approximately 4–5 m. This
stratified soil is not particularly stable, and small landslides have happened on a regular
basis, mainly when the water concentration is high [44].

2.2. Materials

We downloaded Sentinel-1 imagery from Copernicus Open Access Hub [45]. The
acquired products are Level-1 Ground Range Detected (GRD) mode, VV polarization,
and Interferometric Wide (IW) acquisition mode. GRD products are focused on SAR data
that have been detected, multi-looked, and projected to ground range into a regular 10 m
grid using an Earth ellipsoid model [46]. Nava et al. [39] evaluated the influence of the
VH polarization by testing it alone as well as in combination with the VV polarization.
However, when using the VH, results were far less accurate than those obtained by just
using the VV. Therefore, in this manuscript, VH polarization was discarded. For both
ascending and descending orbits, images were collected on three distinct days (see Table 2).
Changes in roughness and moisture content in the land cover are caused by landslide
occurrence and captured by SAR amplitude data [35]. Those changes, on the other hand,
can be induced also by human activity such as flatland farming. Slope angle revealed
itself to be very helpful in distinguishing landslide areas from flat areas [23]. Moreover, in
hilly and mountainous places, surface topography has a significant influence on landslide
occurrence. Above all, the slope angle is a crucial component for slope stability analysis.
Furthermore, in the study area, most of the landslides occurred in a slope range of 25–30◦.
Given the abovementioned reasons, we used the 30 m resolution 1 Arc-Second Global DEM
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downloaded from USGS Earth Explorer [47] from the Shuttle Radar Topography Mission
(SRTM)for the derivation of the slope angle.

Table 2. Dates of acquisition of Sentinel-1 data for both descending and ascending orbits.

Orbit Date Details

Descending
1 September 2018 Pre-event

13 September 2018 Post-event
25 September 2018 Post-event

Ascending
05 September 2018 Pre-event
17 September 2018 Post-event
29 September 2018 Post-event

We utilized a detailed inventory of 7837 co-seismic landslides based on visual inter-
pretation of PlanetScope images by Wang et al. [6] as the basis for our ground truth. The
inventory includes the co-seismic landslides generated by the HEIE, which were manually
digitized by cross-checking pre-and post-event imagery.

3. Methodology

The SAR multi-temporal information from Sentinel-1 was exploited in combination
with slope angle to map the landslides in presence of cloud cover. A modified version of
the state-of-art segmentation model U-Net was evaluated to tackle the task. We adopted
various image bands combinations, starting from the results of Nava et al. [39], in which
the best accuracy was given by the Sentinel-1 based BAA dataset (VV amplitude pre-event,
VV amplitude post-event, VV amplitude post-event). Moreover, various strategies, such as
hyperparameter tuning and data augmentations were explored to increase the accuracy
of the final mapping, as well as to understand the influence of augmented datasets when
dealing with SAR data. Lastly, we evaluated and compared the detection performances of
both ascending and descending orbits for the study area. A well-known study area was
chosen to accurately evaluate the performance of the methodology proposed.

3.1. Dataset Preparation
3.1.1. Data Processing

Sentinel-1 GRD images are re-projected to the ground using the SRTM 1 Arc-Second
30 m DEM to reduce the geometric shifts between SAR amplitude imagery and the optically
derived landslide inventory. Given the different acquisition orientations between the
two satellite overpasses, ascending and descending orbits were parted and treated as
complementary data. Due to the geometric distortions caused by SAR systems’ side-looking
geometry, comparable acquisition geometries for SAR images are essential for change-
detection-based approaches [35], such as the one we are describing in the manuscript. In
fact, change-detection-based approaches carried out with images acquired with different
acquisition angles result in highly distorted results.

The slope angle map is resampled in a GIS environment to the resolution of the
SAR imagery (10 m), using ‘Cubic polynomial’ as an interpolation operator. Unlike the
nearest neighborhood interpolation operator, which is useful for categorical data, cubic
interpolation generates a smoothened output and is more useful for non-categorical data
such as in the case of continuous slope values. The choice of the cubic interpolation operator
was made to avoid sudden jumps in the pixel values that would have otherwise occurred
while using a nearest neighborhood interpolation operator. Furthermore, the usage of
slope is only as a support to the optimal interpretation of SAR data and a smoothed value
averaged over the Sentinel-1 pixel is preferable to a value that emphasizes the local changes.
VV amplitude images and the slope angle map, at 10 m resolution, are then combined
using ‘Composite Bands’ to create two band combinations visible in Table 2. Since the
purpose of the research is to investigate and propose an as rapid as possible method for
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landslide detection on SAR data, we created the BAA_S and BA_S datasets, which use
two and one VV amplitude post-event, respectively (see Figure 2). In the first case, for the
ascending path, the last image was acquired 19 days after the multiple landslide event,
while in the second, just 7 days. As for the descending orbit, the last image was acquired
23 days after the multiple landslide event, while in the second, 11 days. As a comparison,
the first cloud-free Sentinel-2 optical image was available almost one month and a half after
the HEIE.
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The landslide shapefile was converted to raster and resampled to the resolution of the
SAR images, using this time, ‘Nearest’ as interpolation operator, to keep the original spatial
distribution of the landslide pixels and to avoid the creation of floating values between 0
and 1 in the ground truth masks.

3.1.2. Dataset Creation

To create the datasets, we extracted a big tile of the entire study area, one for each
composite image, orbit, and mask. The size of the tile was composed of 2346 × 3842 pixels,
which correspond to 90,133 square km, and 3 or 4 bands, depending on the type of bands
combination. The count of the pixels in the study area shows 8,397,776 pixels belonging
to the non-landslide class and 615,556 landslides, with a rate of 1.36. The tile, along with
the mask, was divided into 64 × 64 pixels patches without overlap, for a total of 2010
images, of which we kept just the 941 that contained at least one landslide pixel. This
strategy was chosen to mitigate the imbalance between classes, but at the same time, to
feed a consistent number of non-landslide pixels, which have the highest spatial variability.
Of those 941 patches, we used 80% for training, and 20% for the test set. 20% of the training
dataset is used as a validation dataset. Before the subdivision into training, validation, and
test sets, the patches were randomly shuffled, to increase the variance of all the sets. Since
there was no overlap between patches, both validation and test sets were unseen by the
network. For each patch, we normalized the maximum and minimum pixel values between
0 and 1.

As stated above, we strategized the training in four groupings of SAR orbital paths
and bands combinations, described in Table 3. Figure 3 shows the differences between a
Sentinel-2 optical image and the D_BAA_S composite.
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Table 3. Name and characteristics of the composite images created.

Name Orbit Band1 Band2 Band3 Band4

D_BA_S Descending VV pre-event VV post-event Slope
A_BA_S Ascending VV pre-event VV post-event Slope

D_BAA_S Descending VV pre-event VV post-event VV post-event Slope
A_BAA_S Ascending VV pre-event VV post-event VV post-event Slope

3.2. Attention U-Net

A CNN can learn hierarchical feature representations of images to perform classifi-
cation tasks such as identifying landslide footprints through the low-level and high-level
features of the satellite images [48]. However, to properly delineate and segment the pix-
els for identifying locations of landslides, especially when dealing with SAR data, more
complex models are required. For this study, we modified a version of U-Net called Attn-
U-Net, to classify each pixel of the image into a binary class. One of the reasons why the
Attn-U-Net is well suited for this task is because it follows the classical U-Net encoder-
decoder structure with skip connections, which allows the preservation of the structural
integrity of the image to reduce the distortions that come with just convolution operations.
Moreover, Attn-U-Nets have additional layers, such as soft attention gates [38], which
allow the network to identify relevant spatial information also from low-level feature maps.
The information is then propagated to the decoding phase. It is composed of two vector
inputs x and g, where g comes from the lowest layer of the network (containing smaller
dimensions and better feature representation), and X goes through a stridden convolution
that is later summed up leading to an increase in the size of the aligned weights. The
attention gates are implemented on the skip connections that actively suppress activations
in irrelevant regions, thus reducing the number of redundant features. A scheme of the
attention gates is visible in Figure 4.
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3.3. Supervised Pixel-Based Classification

In the context of pixel-based classification and employing deep learning models like
Attn-U-Nets, we utilized the concept of semantic segmentation, briefly described as a
common computer vision task in which masking out regions of interest [49]. Semantic
segmentation illustrates the association of pixels to class labels, in this case, landslides
and non-landslides. With the help of Attn-U-Nets, we used an encoder-decoder network
structure that allows the classification of each pixel into their expected prediction classes
and obtaining the final output image with the same size as the input. Thus, an input image
of size 64× 64 pixels would be output as 64× 64 using such network architectures and thus
allow pixel-by-pixel manner segmentation of the image. We select this image size as the best
since neither increasing it to 128× 128 nor decreasing it to 32× 32 increased the accuracy of
the models. As training labels are important, it is also crucial to maintain a balance between
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the landslide and non-landslide classes. Otherwise, there can be instances of increased
false negatives (actual landslides being missed out). Therefore, employing techniques like
data augmentation can be very helpful in this context. However, labels could be in areas
with no useful landslide-significant SAR amplitude information, therefore augmentations,
here, could also be detrimental, since they could increase the number of geometrically
distorted pixels in the dataset. We discuss this more in-depth in the discussion section.
Nonetheless, we chose vertical and horizontal random flip augmenters considering that
flipping a satellite landslide image results in newer landslide images exhibiting different
landslide orientations without generating significant distortion.

The entire process was written in Python, with GIS processing handled by ArcMap
and machine learning handled by TensorFlow [50]. We used Dice Loss [51] as the loss
function for training the deep learning model:

Dice Loss = ∑
c

1− ∑N
i=1 picgic+ ∈

∑N
i=1 pic + gic+ ∈

(1)

Equation (1) represents a 2-class Dice score coefficient (DSC) variation for class c, where
gic ∈ [0, 1] and pic ∈ [0, 1] represent the ground truth and predicted labels, respectively.
Furthermore, to avoid division by zero, the ∈ ensures numerical stability, while N denotes
the total number of image pixels. We employed a stochastic gradient descent approach
based on an adaptive estimate of first- and second-order moments (Adam) as the loss
function optimizer, which is useful in tasks in which data are noisy and/or present sparse
gradients [52]. Lastly, training such deep learning models requires the right combinations
of hyper-parameters to optimize the model to achieve the best possible results. Therefore,
we trained the model with a series of hyper-parameter combinations iteratively, namely,
the number of filters (2, 4, 8, 16, 32) and batch size (2, 4, 8, 16, 32).

3.4. Accuracy Assessment

Standard accuracy metrics Precision, Recall, F1-score, and Intersection Over-Union
(IOU) were derived for the results using true positives (TP), true negatives (TN), false posi-
tives (FP), and false negatives (FN). The fraction of landslide pixels accurately recognized
by the model was shown by precision (2) [53]. Recall (3) is the proportion of landslides in
the labeled data that are accurately detected by the model [26], and the F1-score (4) is the
balance between the Precision and the Recall metrics. The Intersection over Union (IoU) (5)
approaches towards the overlap between the predictions and the ground truth.

Precision : p =
TP

(TP + FP)
(2)

Recall : r =
TP

(TP + FN)
(3)

F1− score : f = 2
(p · r)
(p + r)

(4)

IoU : i =
TP

(TP + FP + FN)
(5)

4. Results

In this section, we show the results on the employment of the Attn-U-Net model for
detecting landslides on SAR imagery. Other versions of U-Net were considered in the
research, such as the classical U-Net structure as well as a U-Net version with three dropout
layers. To be clearer and more concise we decided to show here just the results of the
Attn-U-Net configuration, which achieved the highest performances. We apply the model
on two different band combinations per two Sentinel-1 orbits and evaluate the effect of
augmentations for all the combinations. For each combination, hyperparameters are tuned
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to achieve the best possible results. As described earlier, the research aims to investigate
and analyze the possibility of performing a landslide mapping task, just with SAR data
and topographical factors, to set the bases for an automated all-time all-weather landslide
mapping method.

Landslide Automated Mapping

The models calibrated on composites based on images from the Sentinel-1 ascending
path always achieve the highest performances (see Tables 4 and 5). As shown in Table 5,
the augmented A_BAA_S dataset, achieved the best overall metrics, with the higher recall
(71.60%), F1-score (61.15), and IoU score (44.13%). The higher precision is achieved by the
A_BA_S without augmentations, with a value of 57.16%. In all the cases, the best learning
rate is 0.001 and the optimal number of filters for the first layer is always 32. As visible
in Tables 4 and 5, the best batch size changes almost randomly, with a slight tendency to
increase accordingly to the number of training samples. Therefore, a tendency to prefer
bigger batch sizes after applying augmentations is noticeable. For all the datasets, the
recall is higher than the precision. The worst performances are displayed by both the
D_BA_S datasets and by the augmented D_BAA_S. Qualitatively, Figure 5a–c depicts the
best predictions result in relation to the manually digitized landslides. This strategy is
able to identify most of all of the landslides. However, some small landslides are missed
and some non-landslide areas are categorized as landslides. The vegetation changes that
occurred between the two SAR collections might have resulted in considerable alterations
to the ground surface. As a result, further effort must be made to reduce the uncertainty
induced by vegetation changes. The model spent around 7 mins carrying out predictions
on the entire study area. All studies were carried out on a Mac-OS machine equipped with
a 2.2 GHz Intel Core i7 processor with 6 cores, a 256-GB SSD, and 16 GB of RAM.

Table 4. Performances and best hyperparameters for Attn-U-Net and BA_S datasets, with and
without augmentations.

Name Augmentations Batch
Size

Learning
Rate

Filters
First Layer

Precision
(%)

Recall
(%)

F1-Score
(%)

IoU
(%)

D_BA_S 1
Horizontal and Vertical flip 4 0.001 32 42.79 60.96 50.17 33.52

None 4 0.001 32 44.66 66.53 53.37 36.43

A_BA_S 2
Horizontal and Vertical flip 16 0.001 32 55.21 66.26 60.02 42.93

None 4 0.001 32 57.16 62.86 59.68 42.58
1 Descending orbit: VV amplitude pre-event, VV amplitude post-event, Slope angle. 2 Ascending orbit: VV
amplitude pre-event, VV amplitude post-event, Slope angle.

Table 5. Performances and best hyperparameters for Attn-U-Net and BAA_S datasets, with and
without augmentations.

Name Augmentations Batch
Size

Learning
Rate

Filters
First Layer

Precision
(%)

Recall
(%)

F1-Score
(%)

IoU
(%)

D_BAA_S 1
Horizontal and Vertical flip 16 0.001 32 49.63 59.09 53.77 36.95

None 8 0.001 32 48.43 64.23 55.15 38.13

A_BAA_S 2
Horizontal and Vertical flip 8 0.001 32 53.59 71.60 61.15 44.13

None 8 0.001 32 53.07 66.33 58.91 42.00
1 Descending orbit: VV amplitude pre-event, VV amplitude post-event, VV amplitude post-event, Slope angle.
2 Ascending orbit: VV amplitude pre-event, VV amplitude post-event, VV amplitude post-event, Slope angle.
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Figure 5. Mapping performances in the study area on the A_BAA_S dataset, where (a) shows the true
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negative, true positive, false negative, and false positive predictions of the landslides produced by
the model for the study area; (b) shows the landslides detected by the model versus the manual
inventory for a zoomed area; and (c) shows the true negative, true positive, false negative, and false
positive predictions of the landslides produced by the model for a zoomed area.

5. Discussion

Results show the potential of SAR amplitude data employed in combination with an
advanced version of U-Net to detect landslides in the presence of cloud cover.

Prediction scores in Tables 4 and 5 illustrate how, for the study area, the acquisition
geometry of the ascending orbit can acquire more landslide-related information than the
descending. Moreover, when using two backscatter acquisitions after the event (BAA_S
datasets), we notice an increase in recall and a decrease in precision. Considering the
ascending orbit, while the F1-score of the A_BAA_S is 1.13% higher than the A_BA_S,
the latter shows higher precision, with a difference of 1.62%. Thus, more landslide pixels
are correctly classified with the A_BAA_S since this composite map, being composed by
three Sentinel-1 acquisitions carries more landslide-related information than the A_BA_S
(two Sentinel-1 acquisitions). At the same time, the increase of false positives is related
to minor changes in the background when considering a longer period, which are then
wrongly classified as landslides by the model. However, with time as a key factor in rapidly
mapping landslides in emergency scenarios, the employment of the BA_S dataset structure
would be preferable since it requires just one post-event backscatter acquisition. In fact, for
the study case, the first Sentinel-1 SAR image available for the ascending orbit was acquired
just seven days after the event (13 September 2018), while the second was acquired 19 days
after the event (25 September 2018).

The differences in the performance of ascending and descending orbits with and
without augmentations on the training data are worthy of note. As cited above, the lower
metrics are generally related to the descending path, and for this orbit, they always decrease
after applying augmentations. On the other hand, when dealing with ascending orbit data,
the model performance benefits when training data are augmented. This peculiar behavior
is due to the intrinsic characteristics of the SAR backscatter data, which is known for
presenting distorted pixels due to the interaction between the acquisition geometry and the
topography [35]. Thus, by assuming equality in terms of physical soil properties, the main
reason for different results between ascending and descending is due to the orientation of
the slopes, which, in the specific case study, favors the ascending orbit acquisition geometry.
In the study area, the descending path seems to carry less landslide-related information for
the study case. Thus, when using augmentations, we enhance the number of inconsistent
data, leading the model towards worse performances [54].

From a qualitative evaluation of the predictions, we can confirm a tendency of the
models to overpredict the landslide class, while very few landslides are completely missed
(see Figure 5). Moreover, it is noticeable how false positives are all localized around true
landslides objects, and rarely scattered far from them. The explanation for this phenomenon
could be found again in the peculiar characteristics of the SAR data, which may present
distortions in correspondence of the actual landslides due to the landslide scars and slope
geometries. Lastly, as stated above, the inventory is shaped through manual interpretation
of 3 m resolution optical PlanetScope imagery. Therefore, differences both in terms of
sensors and image resolution surely slightly influence the final mapping performances and
validation of the models.

Furthermore, recently Aimaiti et al. [55] carried out an interesting analysis by em-
ploying pre-and post-event backscatter intensity Advanced Land Observation Satellite 2
Phased Array L-band Synthetic Aperture Radar 2 (ALOS-2 PALSAR-2) images acquired
from both descending and ascending orbits. Although the data’s different resolutions
and sensor wavelengths might have a significant impact on the results, false positives in
correspondence of vegetation changes are found in both investigations and successfully
minimized by adding slope angle. However, our research shows that training a model
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using data from the less suitable Sentinel-1 orbit (in this case Descending) might confuse
the model by providing inconsistent data. In this scenario, combining the predictions of
both orbits yields worse results than utilizing only the best-fitting orbit results (in this case
Ascending). Moreover, a comparison with the results obtained by Nava et al. [39] is inter-
esting, where the best performances were yielded by the tri-temporal SAR composite BAA
(VV pre-event; VV post-event; VV post-event) and the bi-temporal plus slope composite
BAS (VV pre-event; VV post-event; Slope angle) datasets. Consistency with the results of
this study is discovered since the BAA S composite is nothing more than a ‘fusion’ of those
two composites, resulting in a tri-temporal plus slope composite.

6. Conclusions

This study analyzed and discussed various Sentinel-1 SAR amplitude combinations
and orbits to investigate and propose a rapid cross-cloud landslide detection approach.
Our experiments provide encouraging results and prove the combination of Deep Learning
and Sentinel-1 SAR amplitude data as a reliable method to map landslides in any weather
conditions. The quantitative comparison findings revealed that the ascending intensity-
based landslide predictions had the highest accuracy, for this specific case study. Not all
features of the landscape were assessed due to the intricacy of forested mountain terrain
and the side-looking nature of SAR sensors. Therefore, results are not as accurate as those
obtainable by an optical-based DL model. Moreover, because SAR exhibits numerous
distortions owing to acquisition geometry in high slope locations, which are the most
prone to landslide occurrence, the approach may exhibit limits due to specific topographic
characteristics of the research area. However, SAR data have the considerable advantage
of collecting information regarding landslides when optical imagery is not usable or not
available because of cloud cover or during night hours. Moreover, almost all the targets are
detected from the automated mapping of the entire Hokkaido area, although with some
shape imprecisions. In the study area, the first cloud-free Sentinel-2 image was available
more than a month after the multiple landslide event, excluding the possibility of an optical-
based rapid automated mapping. This study shows the possibility of performing a reliable
landslide emergency rapid mapping within seven days after the event, independently from
the presence of cloud cover. Thus, the approach may have relevant benefits in emergency
management and civil protection operations by decreasing the time delay for the emergency
response by improving the quality and frequency of hazard mapping and risk assessments.

Nevertheless, various improvements can be achieved, this being the first research
proposing a DL-based segmentation approach for landslide mapping on SAR data with the
help of slope as a topographical factor. For instance, numerous SAR sensors and derivates
still need to be investigated, as well as the impact of different wavelengths in different
environments. Moreover, in the existing literature, investigations on the combination of
phase, intensity, and coherence data with DL-based approaches are still lacking. Thus,
although SAR data potential is manifest, the effectiveness of such combination for landslide
mapping purposes is still unknown.
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