Earth Observation Data Exploitation in Urban Surface Modelling: The Urban Energy Balance Response to a Suburban Park Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Requirements
2.3. Data Preparation Workflow
2.3.1. Model Runs
2.3.2. Uncertainty Analysis
3. Results
4. Discussion
5. Conclusions
- In areas where the bulk albedo decreases due to substitution of vegetation with paved surfaces, Q* tends to increase. However, in this case study, the maximum increase of mean Q* reaches only 1.4%, and is hence considered not to have any significant effect on the neighborhood climate.
- In areas where impervious materials substitute pervious surfaces, ΔQS increases. This means more energy is ‘stored’ during the daytime, and is released at nighttime, hence reducing the standard nighttime temperature decrease. This is expected to occur in the development park, as paved cover is increased across most grid cells, at a magnitude that will not significantly alter the thermal comfort of the residents.
- All differences observed in the surface fluxes due to changes in surface cover show peaks during daytime. Q* and ΔQS differences peak at midday, while QE differences peak early in the morning. QH differences simply follow the result of these changes.
- Although QE was not realistically modeled, the observed trends still stand. This means that the pattern of substituting grass surfaces with paved cover and trees tends to lower the overall evaporation capability of the area, hence reducing QE and allowing for an increase in QH. As this is a rapidly developing area and more buildings are likely to be built in the near future, this trend is expected to increase.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights (ST/ESA/SER.A/423); Statistical Papers—United Nations (Ser. A), Population and Vital Statistics Report; United Nations: New York, NY, USA, 2019.
- Meehl, G.A.; Tebaldi, C. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century; Science: New York, NY, USA, 2004; Volume 305, pp. 994–997. [Google Scholar] [CrossRef] [Green Version]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; UN Publishing: New York, NY, USA, 2015.
- Caprotti, F.C.R. The New Urban Agenda: Key Opportunities and Challenges for Policy and Practice. Urban Res. Pract. 2017, 10, 367–378. [Google Scholar] [CrossRef] [Green Version]
- Leichenko, R. Climate change and urban resilience. Curr. Opin. Environ. Sustain. 2011, 3, 164–168. [Google Scholar] [CrossRef]
- Georgescu, M.; Morefield, P.E.; Bierwagen, B.G.; Weaver, C.P. Urban adaptation can roll back warming of emerging megapolitan regions. Proc. Natl. Acad. Sci. USA 2014, 111, 2909–2914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Synnefa, A.; Dandou, A.; Santamouris, M.; Tombrou-Tzella, M.; Soulakellis, N. On the Use of Cool Materials as a Heat Island Mitigation Strategy. J. Appl. Meteorol. Clim. 2008, 47, 2846–2856. [Google Scholar] [CrossRef]
- Somarakis, G.; Stagakis, S.; Chrysoulakis, N. ThinkNature/Nature-Based Solutions Handbook; ThinkNature: Hague, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Marando, F.; Heris, M.P.; Zulian, G.; Udías, A.; Mentaschi, L.; Chrysoulakis, N.; Parastatidis, D.; Maes, J. Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustain. Cities Soc. 2021, 77, 103564. [Google Scholar] [CrossRef]
- Chrysoulakis, N.; Somarakis, G.; Stagakis, S.; Mitraka, Z.; Wong, M.-S.; Ho, H.-C. Monitoring and Evaluating Nature-Based Solutions Implementation in Urban Areas by Means of Earth Observation. Remote Sens. 2021, 13, 1503. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Oke, T.R. The urban energy balance. Prog. Phys. Geogr. 1988, 12, 471–508. [Google Scholar] [CrossRef]
- Chrysoulakis, N.; Grimmond, S.; Feigenwinter, C.; Lindberg, F.; Gastellu-Etchegorry, J.P.; Marconcini, M.; Mitraka, Z.; Stagakis, S.; Crawford, B.; Olofson, F.; et al. Urban energy exchanges monitoring from space. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Martins, T.A.; Adolphe, L.; Bonhomme, M.; Bonneaud, F.; Faraut, S.; Ginestet, S.; Michel, C.; Guyard, W. Impact of Urban Cool Island measures on outdoor climate and pedestrian comfort: Simulations for a new district of Toulouse, France. Sustain. Cities Soc. 2016, 26, 9–26. [Google Scholar] [CrossRef]
- Fahed, J.; Kinab, E.; Ginestet, S.; Adolphe, L. Impact of urban heat island mitigation measures on microclimate and pedestrian comfort in a dense urban district of Lebanon. Sustain. Cities Soc. 2020, 61, 102375. [Google Scholar] [CrossRef]
- Panagiotakis, E.; Kolokotsa, D.; Chrysoulakis, N. Evaluation of nature-based solutions implementation scenarios, using urban surface modelling. Green Energy Sustain. 2021, 1, 1–42. [Google Scholar] [CrossRef]
- Ward, H.; Grimmond, C. Assessing the impact of changes in surface cover, human behaviour and climate on energy partitioning across Greater London. Landsc. Urban Plan. 2017, 165, 142–161. [Google Scholar] [CrossRef]
- Ward, H.C.; Evans, J.G.; Grimmond, C.S.B. Multi-season eddy covariance observations of energy, water and carbon fluxes over a suburban area in Swindon, UK. Atmos. Chem. Phys. 2013, 13, 4645–4666. [Google Scholar] [CrossRef] [Green Version]
- Ao, X.; Grimmond, C.S.B.; Ward, H.C.; Gabey, A.M.; Tan, J.; Yang, X.; Liu, D.; Zhi, X.; Liu, H.; Zhang, N. Evaluation of the Surface Urban Energy and Water Balance Scheme (SUEWS) at a Dense Urban Site in Shanghai: Sensitivity to Anthropogenic Heat and Irrigation. J. Hydrometeorol. 2019, 19, 1983–2005. [Google Scholar] [CrossRef]
- Rafael, S.; Martins, H.; Marta-Almeida, M.; Sá, E.; Coelho, S.; Rocha, A.; Borrego, C.; Lopes, M. Quantification and mapping of urban fluxes under climate change: Application of WRF-SUEWS model to Greater Porto area (Portugal). Environ. Res. 2017, 155, 321–334. [Google Scholar] [CrossRef]
- Taubenböck, H.; Esch, T.; Wurm, M.; Heldens, W.; Dech, S.W. From Earth Observation to Urban Planning in Cities. In Proceedings of the PLUREL Conference, Copenhagen, Denmark, 19–22 October 2010; pp. 1–6. [Google Scholar]
- Xia, N.; Cheng, L.; Li, M. Mapping Urban Areas Using a Combination of Remote Sensing and Geolocation Data. Remote Sens. 2019, 11, 1470. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Zhou, W.; Dawa, Z.; Wang, J.; Qian, Y.; Wang, W. Quantifying Urban Vegetation Dynamics from a Process Perspective Using Temporally Dense Landsat Imagery. Remote Sens. 2021, 13, 3217. [Google Scholar] [CrossRef]
- Sun, T.; Järvi, L.; Omidvar, H.; Theewues, N.; Lindberg, F.; Li, Z.; Grimmond, S. Urban-Meteorology-Reading/SUEWS: 2020a Release (Version 2020a). Zenodo 2020. [Google Scholar] [CrossRef]
- Järvi, L.; Grimmond, C.; Christen, A. The Surface Urban Energy and Water Balance Scheme (SUEWS): Evaluation in Los Angeles and Vancouver. J. Hydrol. 2011, 411, 219–237. [Google Scholar] [CrossRef]
- Järvi, L.; Grimmond, C.S.B.; Taka, M.; Nordbo, A.; Setälä, H.; Strachan, I.B. Development of the Surface Urban Energy and Water Balance Scheme (SUEWS) for cold climate cities. Geosci. Model Dev. 2014, 7, 1691–1711. [Google Scholar] [CrossRef] [Green Version]
- Ward, H.; Järvi, L.; Onomura, S.; Lindberg, F.; Gabey, A.; Grimmond, S. SUEWS Manual V2016a; University of Reading: Reading, UK, 2016. [Google Scholar]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Routledge: Lodon, UK, 1987. [Google Scholar] [CrossRef]
- Grimmond, C.S.; Oke, T.R.; Steyn, D.G. Urban Water Balance: 1. A Model for Daily Totals. Water Resour. Res. 1986, 22, 1397–1403. [Google Scholar] [CrossRef] [Green Version]
- Offerle, B.; Grimmond, C.S.; Oke, T.R. Parameterization of Net All-Wave Radiation for Urban Areas. J. Appl. Meteorol. 2003, 42, 1157–1173. [Google Scholar] [CrossRef]
- Grimmond, S.; Cleugh, H.; Oke, T. An objective urban heat storage model and its comparison with other schemes. Atmos. Environ. Part B Urban Atmos. 1991, 25, 311–326. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Oke, T.R. An evapotranspiration-interception model for urban areas. Water Resour. Res. 1991, 27, 1739–1755. [Google Scholar] [CrossRef]
- Jarvis, P.G. The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field. Philos. Trans. R. Soc. B 1976, 273, 593–610. [Google Scholar]
- Ward, H.C.; Kotthaus, S.; Järvi, L.; Grimmond, C.S. Surface Urban Energy and Water Balance Scheme (SUEWS): Development and evaluation at two UK sites. Urban Clim. 2016, 18, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Alexander, P.; Bechtel, B.; Chow, W.; Fealy, R.; Mills, G. Linking urban climate classification with an urban energy and water budget model: Multi-site and multi-seasonal evaluation. Urban Clim. 2016, 17, 196–215. [Google Scholar] [CrossRef] [Green Version]
- Lanaras, C.; Bioucas-Dias, J.; Galliani, S.; Baltsavias, E.; Schindler, K. Super-resolution of Sentinel-2 images: Learning a globally applicable deep neural network. ISPRS J. Photogramm. Remote Sens. 2018, 146, 305–319. [Google Scholar] [CrossRef] [Green Version]
- Dave, C.P.; Joshi, R.R.; Srivastava, S. A Survey on Geometric Correction of Satellite Imagery. Int. J. Comput. Appl. 2015, 116, 24–27. [Google Scholar]
- Aguilar, M.A.; Saldaña, M.D.; Aguilar, F.J. Assessing geometric accuracy of the orthorectification process from GeoEye-1 and WorldView-2 panchromatic images. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 427–435. [Google Scholar] [CrossRef]
- Marconcini, M.; Heldens, W.; Del Frate, F.; Latini, D.; Mitraka, Z.; Lindberg, F. EO-based products in support of urban heat fluxes estimation. In Proceedings of the 2017 Joint Urban Remote Sensing Event (JURSE), Dubai, United Arab Emirates, 6–8 March 2017; pp. 1–4. [Google Scholar]
- Padwick, C.; Deskevich, M.; Pacifici, F.; Smallwood, S. Worldview-2 pan-sharping. In Proceedings of the2010 Conference of American Society for Photogrammetry and Remote Sensing, San Diego, CA, USA, 21 May 2010. [Google Scholar]
- QGIS.org. QGIS Geographic Information System. QGIS Association. 2022. Available online: http://www.qgis.org (accessed on 1 February 2022).
- Lantzanakis, G.; Mitraka, Z.; Chrysoulakis, N. X-SVM: An Extension of C-SVM Algorithm for Classification of High-Resolution Satellite Imagery. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3805–3815. [Google Scholar] [CrossRef]
- Hirayama, H.; Sharma, R.C.; Tomita, M.; Hara, K. Evaluating multiple classifier system for the reduction of salt-and-pepper noise in the classification of very-high-resolution satellite images. Int. J. Remote Sens. 2018, 40, 2542–2557. [Google Scholar] [CrossRef]
- Lindberg, F.; Grimmond, C.; Gabey, A.; Huang, B.; Kent, C.W.; Sun, T.; Theeuwes, N.E.; Järvi, L.; Ward, H.; Capel-Timms, I.; et al. Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based climate services. Environ. Model. Softw. 2018, 99, 70–87. [Google Scholar] [CrossRef]
- Stagakis, S.; Chrysoulakis, N.; Spyridakis, N.; Feigenwinter, C.; Vogt, R. Eddy Covariance measurements and source partitioning of CO2 emissions in an urban environment: Application for Heraklion, Greece. Atmos. Environ. 2019, 201, 278–292. [Google Scholar] [CrossRef]
- Mitraka, Z.; del Frate, F.; Chrysoulakis, N.; Gastellu-Etchegorry, J. Exploiting Earth Observation data products for mapping Local Climate Zones. Jt. Urban Remote Sens. Event (JURSE) 2015, 1–4. [Google Scholar] [CrossRef]
- Stewart, I.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bulletin of the American Meteorological Society 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Manoli, G.; Fatichi, S.; Bou-Zeid, E.; Katul, G.G. Seasonal hysteresis of surface urban heat islands. Proc. Natl. Acad. Sci. USA 2020, 117, 7082–7089. [Google Scholar] [CrossRef]
- Chrysoulakis, N.; Lopes, M.; San José, R.; Grimmond, C.S.B.; Jones, M.B.; Magliulo, V.; Klostermann, J.E.M.; Synnefa, A.; Mitraka, Z.; Castro, E.A.; et al. Sustainable urban metabolism as a link between bio-physical sciences and urban planning: The BRIDGE project. Landsc. Urban Plan. 2013, 112, 100–117. [Google Scholar] [CrossRef]
- IPCC. 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- ESA. WorldView-2. Available online: https://earth.esa.int/web/eoportal/satellite-missions/v-w-x-y-z/worldview-2 (accessed on 7 June 2021).
- ESA. Sentinel-2. Available online: https://earth.esa.int/web/eoportal/satellite-missions/c-missions/copernicus-sentinel-2 (accessed on 12 January 2021).
Surface Type | Albedo | Emissivity | Storage Cap (mm) |
---|---|---|---|
Paved | 0.12 | 0.95 | 0.48 |
Buildings | 0.15 | 0.91 | 0.25 |
Evergreen Trees | 0.1 | 0.98 | 1.3 |
Deciduous Trees | 0.12–0.18 | 0.98 | 0.3–0.8 |
Grass | 0.18–0.21 | 0.93 | 1.9 |
Bare Soil | 0.21 | 0.94 | 1 |
Water | 0.1 | 0.95 | 0.5 |
City | Site Description | Q* | QE | QH | Reference | |||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |||
Los Angeles (USA) | – | – | 164.2 (Ar93) | – | 53.6 (Ar94) | – | 83.1 (Ar94) | Järvi et al., 2011 [25] |
Vancouver (Canada) | – | 0.95 | 44.9 | 0.74 | 32.5 | 0.77 | 39.1 | Järvi et al., 2011 [25] |
London (UK) | dense urban | 0.988 | 17.76 | 0.245 | 24.66 | 0.528 | 47.1 | Ward et al., 2016 [34] |
Swindon (UK) | residential suburban | 0.995 | 13.85 | 0.721 | 22.62 | 0.789 | 28.21 | Ward et al., 2016 [34] |
Shanghai (China) | central business district | – | – | 0.19 (QF,S Irr) | 16.9 (QF,S Irr) | 0.57 (QF,0 Noirr) | 42.6 (QF,0 Noirr) | Ao et al., 2018 [19] |
Helsinki (Finland) | – | 0.74 (He2) | 29.3 (He2) | 0.48 (He2) | 4.1 (He2) | 0.74 (He1) | 28.2 (He1) | Järvi et al., 2014 [26] |
Basel (Switzerland) | – | 0.99 (BSPR) | 16.2 (BSPR) | −0.11 (BSPA) | 0.8 (BSPA) | 0.91 (BSPR) | 42.1 (BSPR) | Järvi et al., 2014 [26] |
Montreal (Canada) | – | 0.89 (PR) | 36.8 (PR) | 0.59 (RL) | 7.2 (RL) | 0.86 (PR) | 30.7 (PR) | Järvi et al., 2014 [26] |
Minneapolis-Saint Paul (USA) | – | 0.98 (SP2) | 36.1 (SP2) | 0.48 (SP2) | 3.7 (SP2) | 0.82 (SP1) | 28.2 (SP1) | Järvi et al., 2014 [26] |
Dublin (Ireland) | Mix of dense commercial units and residential apartments | – | – | 0.11 | 9.98 | 0.67 | 24.65 | Alexander et al., 2016 [35] |
Hamburg (Germany) | West: large warehousing Units East: green vegetation, trees and little building coverage | – | – | 0.45 | 37.72 | 0.56 | 32.07 | Alexander et al., 2016 [35] |
Melbourne (Australia) | Medium-density residential houses 5–8 m tall, open spacing and an ample amount of vegetation | – | – | 0.06 | 30.99 | 0.25 | 31.77 | Alexander et al., 2016 [35] |
Phoenix (USA) | Low-rise residential housing 5–8 m tall with dry xeric landscaping | – | – | 0.00 | 7.99 | 0.67 | 43.59 | Alexander et al., 2016 [35] |
Heraklion (Greece) | Commercial area: mix of low and mid-rise buildings | 0.99 | 54 | – | – | 0.85 | 61.36 | Panagiotakis et al., 2021 [16] |
Type | Definition | Reference/Comments |
---|---|---|
Building/Tree Morphology | ||
Mean height of building/trees | Mean height of objects (m above ground level (agl)). | [31] |
Frontal area index | Area of the front face of a roughness element exposed to the wind relative to the plan area. | [31] |
Plan area index | Area of the roughness elements relative to the total plan area. | [31] |
Land cover fraction | Should sum to 1 | |
Paved | Roads, sidewalks, parking lots, impervious surfaces that are not buildings. | - |
Buildings | Buildings. | Same as the plan area index of buildings in the morphology section. |
Evergreen trees | Trees/shrubs that retain their leaves/needles all year round. | Tree plan area index will be the sum of evergreen and deciduous area. Note: same as the plan area index of vegetation in the morphology section. |
Deciduous trees | Trees/shrubs that lose their leaves. | Same as above. |
Grass | Grass. | – |
Bare soil | Bare soil—non vegetated but water can infiltrate. | – |
Water | Rivers, lakes, ponds, swimming pools, fountains. | – |
Vegetation Type | NDVI min | NDVI max |
---|---|---|
Evergreen | 0.2 | 0.7 |
Deciduous | 0.45 | 0.9 |
Grid Cell | ΔQ* (W m−2) | ΔQF (W m−2) | Δ(ΔQS) (W m−2) | ΔQE (W m−2) | ΔQH (W m−2) |
---|---|---|---|---|---|
3 | 0.62 | 0.00 | 2.89 | 0.13 | 2.14 |
4 | 0.48 | 0.00 | 2.67 | 0.17 | 2.03 |
5 | 0.33 | 0.00 | 0.96 | 0.18 | 0.45 |
8 | 0.37 | 0.00 | 1.66 | 0.00 | 1.28 |
9 | 0.16 | 0.00 | 0.10 | 0.21 | 0.05 |
10 | 0.36 | 0.00 | 0.60 | 0.30 | 0.06 |
13 | 0.47 | 0.00 | 1.34 | 0.03 | 0.84 |
Cell 3 | Cell 4 | Cell 5 | Cell 8 | Cell 9 | Cell 10 | Cell 13 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cur | fut | cur | fut | cur | fut | cur | fut | cur | fut | cur | fut | cur | fut | |
Q* | ||||||||||||||
MM | 223.5 | 224.3 | 221.6 | 223.1 | 215.3 | 215.3 | 221.9 | 221.9 | 215.4 | 218.5 | 213.3 | 215.3 | 222.7 | 222.7 |
DM | 421.8 | 423.1 | 4186 | 421.2 | 407.7 | 407.6 | 418.9 | 419.0 | 408.0 | 413.3 | 404.4 | 407.9 | 420.4 | 420.4 |
NM | −44.7 | −44.8 | −44.8 | −44.9 | −44.8 | −44.8 | −44.6 | −44.6 | −45.0 | −45.1 | −45.2 | −45.2 | −39.9 | −39.9 |
QH | ||||||||||||||
MM | 150.0 | 150.0 | 151.4 | 149.6 | 175.2 | 175.9 | 156.8 | 157.2 | 170.4 | 164.7 | 174.9 | 175.1 | 159.5 | 160.2 |
DM | 238.2 | 238.1 | 241.2 | 237.2 | 291.2 | 292.7 | 251.6 | 252.4 | 281.1 | 269.2 | 289.0 | 290.0 | 257.8 | 259.1 |
NM | 28. 8 | 29.1 | 28.1 | 29.3 | 16.7 | 16.4 | 26.7 | 26.6 | 19.1 | 21.7 | 19.0 | 18.2 | 31.2 | 31.2 |
QE | ||||||||||||||
MM | 7. 9 | 7.4 | 7.6 | 7.07 | 4.3 | 4.2 | 6.9 | 6.7 | 4.4 | 5.0 | 3.0 | 3.0 | 7.2 | 6.6 |
DM | 11.4 | 10.5 | 10.8 | 10.0 | 5.5 | 5.2 | 9.7 | 9.4 | 5.5 | 6.6 | 3.2 | 3.2 | 10.3 | 9.3 |
NM | 3.3 | 3.2 | 3.3 | 3.2 | 2.7 | 2.7 | 3.1 | 3.1 | 2.8 | 2.8 | 2.6 | 2.5 | 3.1 | 3.0 |
ΔQS | ||||||||||||||
MM | 88.1 | 89.3 | 84.9 | 88.9 | 58.0 | 57.4 | 80.4 | 80.3 | 62.9 | 71.0 | 57.6 | 59.4 | 78.1 | 78.0 |
DM | 199.1 | 201.5 | 193.6 | 201.0 | 138.0 | 136.7 | 184.6 | 184.2 | 148.4 | 164.5 | 139.1 | 141.7 | 179.2 | 178.9 |
NM | −61.4 | −61.7 | −61.4 | −61.9 | −49.4 | −49.0 | −59.6 | −59.5 | −52.1 | −54.8 | −51.9 | −51.2 | −58.2 | −58.1 |
Q* | ΔQS | QE | QH | |
---|---|---|---|---|
Cell 3 | 0.3% | 1.4% | −6.6% | 0.1% |
Cell 4 | 0.7% | 4.7% | −6.7% | −1.2% |
Cell 5 | – | −1.1% | −3.7% | 0.4% |
Cell 8 | – | −0.2% | −3.2% | 0.3% |
Cell 9 | 1.4% | 12.1% | 13.1% | −3.4% |
Cell 10 | 0.9% | 3.1% | −1.6% | 0.1% |
Cell 13 | – | −0.1% | −8.9% | 0.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsirantonakis, D.; Chrysoulakis, N. Earth Observation Data Exploitation in Urban Surface Modelling: The Urban Energy Balance Response to a Suburban Park Development. Remote Sens. 2022, 14, 1473. https://doi.org/10.3390/rs14061473
Tsirantonakis D, Chrysoulakis N. Earth Observation Data Exploitation in Urban Surface Modelling: The Urban Energy Balance Response to a Suburban Park Development. Remote Sensing. 2022; 14(6):1473. https://doi.org/10.3390/rs14061473
Chicago/Turabian StyleTsirantonakis, Dimitris, and Nektarios Chrysoulakis. 2022. "Earth Observation Data Exploitation in Urban Surface Modelling: The Urban Energy Balance Response to a Suburban Park Development" Remote Sensing 14, no. 6: 1473. https://doi.org/10.3390/rs14061473
APA StyleTsirantonakis, D., & Chrysoulakis, N. (2022). Earth Observation Data Exploitation in Urban Surface Modelling: The Urban Energy Balance Response to a Suburban Park Development. Remote Sensing, 14(6), 1473. https://doi.org/10.3390/rs14061473