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Abstract: Cities are developing rapidly as an increasing percentage of the global population resides
in urban areas. In the face of climate change, the sustainable development of cities is crucial for
the well-being and safety of urban populations. The potential of planning interventions towards
improving of urban resilience can be evaluated based on methodological approaches used in the
domain of urban climate. In this study, we present how Earth Observation (EO) can be systematically
used to evaluate urban planning interventions, based on Urban Surface Models (USM) simulations.
More specifically, the impact of a suburban park development in Heraklion, Crete, was assessed
based on simulations of the USM SUEWS (Surface Urban Energy and Water Balance Scheme), which
was forced by EO data. Multi-source satellite data were analyzed to provide information on urban
form, highlighting the importance of EO data in evaluating the environmental sustainability potential
of urban planning interventions. The modifications caused by this planning intervention to surface
energy fluxes were simulated. The scale (102 m) and the type (no-use vegetated area changed to
recreational vegetated) of the intervention triggered minor responses in the Urban Energy Balance
(UEB) at neighborhood scale, since the change of the relevant surface fluxes was not greater than
10 W m−2, on average, assuming no irrigation and no important changes in soil moisture. However,
the planned substitution of grass and bare soil with paved surfaces and trees was found to increase
the overall net change in heat storage, therefore contributing to the urban heat island development.

Keywords: urban climate; Urban Energy Balance; Earth Observation; SUEWS model

1. Introduction

Intense urbanization poses one of the main challenges of the modern era. Approxi-
mately 50% of the global population currently resides in cities, a number which is expected
to rise to 70% by 2050 according to United Nations’ estimates [1]. The foreseeable expansion
of the urban environment coincides with a critical point in the global climate, as predic-
tions indicate an increase of global mean temperature and the frequency, as well as the
severity of extreme weather events [2]. Towards responding to these challenges, a number
of international initiatives set up policy frameworks to enhance and promote the struggle
for sustainable and resilient urban development (Sustainable Development Goal 11 [3])
and the New Urban Agenda [4]), which are considered to be critical for mitigating the
negative impacts of urbanization and protecting local populations [5,6]. Popular actions
for coping with the impacts of climate change on cities, especially overheating, include the
use of cool materials [7], as well as the improvement of green and blue infrastructure at
neighborhood scale [8,9]. These urban design approaches have been extensively discussed
and are expected to affect the urban microclimate in a positive way with regard to the
residents’ well-being [8,10].

Evaluating the climatic effects of urban interventions is quite complex. Urban climate
studies require quantitative information on urban form and function, as well as a funda-
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mental understanding of the urban surface–atmosphere interactions, in other words, the
Urban Energy Balance (henceforth UEB), which essentially represents the conservation of
energy principle for urban units [11]. The UEB components and their dynamics provide
insight for the thermodynamic behavior of air, surface temperature and humidity which
are essential for assessing the local climate [12]. Several studies have analyzed the Urban
Heat Island (UHI) phenomenon which characterizes the urban climate as cities are ob-
served to have higher temperatures than their surroundings, using satellite observations [9].
However, regarding UEB assessments, the direct estimation of urban energy fluxes using
Earth Observation (EO) data is as, of yet, a challenge [13]. Hence, biophysical models that
simulate energy and water fluxes are commonly used in urban climate studies.

For instance, Martins et al. (2016) [14] used biophysical modeling and evaluated
various urban design strategies for the Montaudran district in Toulouse, showing that
the high albedo scenario, which is among the commonly used urban design approaches,
would have adverse effects on pedestrian thermal comfort. A similar methodology was
followed by Fahed et al. (2020) [15], to investigate theoretical heat mitigation measures
in a dense urban district of Lebanon. Panagiotakis et al. (2021) [16] estimated the effects
of abstract implementations of Nature-Based Solutions (NBS) in Heraklion, Crete, and
presented a temperature decrease when vegetation cover is increased. Ward and Grimmond
conducted an extensive study which evaluated the effects of conceptual and applied
scenarios regarding surface cover changes, human behavior and climate on the UEB in
London, and showed that changes which have occurred in household garden compositions
reduced evaporation [17].

These are indicative examples which highlight how biophysical models are insightful
for assessing the potential effects of various interventions in the urban environment, which
may sometimes be unpredictable or not evident in the planning phase; in turn, these
simulations allow for the establishment of a robust scientific background regarding the
advantages and disadvantages of urban interventions [17]. The most common approaches
in such UEB assessments combine Urban Surface Models (henceforth USM), meteorological
measurements, flux tower observations (which are used for model validation) and surface
cover products in various spatial scales to represent the urban form [13].

In this context, regarding the aforementioned studies, Ward and Grimmond [17]
used surface cover information from the Generalised Land Use Database (GLUD), while
Martinset al. (2016) [14] and Fahed et al. (2020) [15] do not provide details for the source of
the spatial data used. In turn, Panagiotakis et al. (2021) [16] used EO products as urban
form data inputs. In other relevant studies which also used biophysical models, surface
cover maps from aerial photographs are used by Ward et al. (2012) [18] to report multi-
season Eddy Covariance (henceforth EC) observations in Swindon, UK. More recently,
ground surveying and Geographic Information Systems (GIS) were exploited to derive
surface cover parameters around an EC site in Shanghai by Ao et al. (2018) [19]. In larger
scales, Rafael et al. (2017) [20] used data from the CORINE Land Cover (CLC) and the
Porto Urban Atlas along with supplementary satellite data and field surveying to obtain
land cover and land use information for the greater Porto region, and to use as inputs for
models to evaluate climate change scenarios.

Although the majority of these and similar studies use remote sensing and EO-derived
products as input for the model simulations, none provide further insights or explore the
potential of the systematic exploitation of EO in USM forcing. Generally, the use of EO
data involves a number of technical challenges, such as spatial/temporal resolution limita-
tions, observational perspectives, complex pre-processing procedures, big data handling,
and multisource data fusion. For example, robust multiscale approaches for exchanging
information between different spatial scales (i.e., city scale and local scale) have not been
yet developed. Nonetheless, EO data provide critical information for such applications
and show potential to push the limits of modeling with multi-temporal monitoring [21],
large-scale mapping [22], and urban vegetation dynamics quantification [23] capabilities.
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The main objective of this study is (a) demonstrate and assess the potential limitations
of using EO data to provide inputs for USM models and (b) to explore the spatial extent
of the climatic effect of a real-world urban intervention plan and, more specifically, to
address the following research questions: (a) Can EO be systematically exploited in USM
parameterization? (b) To what extend does the urban intervention affect the Urban Energy
Balance (UEB) at neighborhood scale? To address these questions, we focus on the imminent
development of a recreational park in a sub-urban area of a typical Mediterranean city
(Heraklion, Crete) and explore the effect of this intervention using the Surface Urban
Energy and Water Balance Scheme (SUEWS) [24], which has recently been evaluated in
this region. The model is forced by EO data, which are extensively processed to provide
the urban form data inputs. The delineation of the workflow followed provides insight
regarding the use of EO data sources for the parameterization of SUEWS, in the direction
of assisting the adaptation of similar workflows at any given site given the availability of
EO data. The uncertainty introduced in the model outputs from the surface cover products
is assessed through a novel methodology, while model simulations for the current and the
future surface cover conditions allowed evaluating the potential effects in the vicinity of
the development area, which are estimated not to cause significant variations of the UEB
components at the neighborhood scale.

2. Materials and Methods
2.1. Study Area

This study focuses on the development plan for a new recreation park in a residential
area of the city of Heraklion, the largest city of the island of Crete, and the fourth largest
in Greece, with a population of more than 200,000 inhabitants. The region’s climate is
characterized as hot-summer Mediterranean, falling in to the Csa category in the Köppen
climate classification scheme. The approximate area of the municipality of Heraklion is
244.6 km2 and it is divided in a number of urban units as presented in the Supplementary
Materials (Figure S1). The Area of Interest (AOI) in this project is located in the district of
Mesabelies, one of the southernmost and peri-urban areas of Heraklion, which is developing
rapidly. The municipal development plan for this district includes the renovation of an
area without any current use to a recreational park, which will include a bicycle lane,
a pedestrian walking route, and children’s playgrounds. The intervention is labeled as
a green space development, including tree and lower shrub plantations throughout the
whole area. However, the respective development plan also includes the substitution of
grass and bare soil with paved surfaces (bicycle and pedestrian lane). The first part of
the development corresponds to a total area of approximately 1.5 hectares, about half of
which are going to be part of the green space and are presented in Figure 1. The detailed
development plan is presented in Section 2.3.1.

2.2. Model Requirements

SUEWS is a USM known for its simplicity which simulates the energy and water
balance exchanges mainly for urban areas using commonly used spatial, meteorological,
and census data [25–27]. The applicable scale of the model ranges from 102 to 104 m, i.e.,
neighborhood scale [20]. The model is built upon the UEB equation (Equation (1)) [28],
which is the main focus of this study, computing all of its components, as well as the urban
water balance [29].

Q* + QF = QH + QE + ∆QS

[
W m−2

]
(1)

Q* represents the net all-wave radiation, QF the anthropogenic heat flux, QH the
turbulent sensible heat flux, QE the turbulent latent heat flux, and ∆QS the net change
in heat storage. Essentially, the left part of Equation (1) represents the energy inputs
which are assumed to be distributed among the processes represented by the right part
flux components, i.e., air heating (QH), water evaporation (QE), and energy being stored
in elements of the urban environment (impervious materials, buildings) (∆QS). Each of
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the UEB components is simulated based on a number of sub-models. These include the
Net All-Wave Radiation Parameterization (NARP) [30] for the computation of Q* and
the Objective Hysteresis Model (OHM) [31] for ∆QS, while evaporation and the surface
conductance which are the basis for QE computation, are based on an adapted Penman–
Monteith equation [32] and the methodology proposed by Jarvis [33], respectively. QF is
computed using the Järvi et al. (2011) [25] approach, which is based on heating and cooling
degree days and population density. Finally, QH is computed as the residual. This approach
inevitably causes error propagation from all other flux components to the sensible heat flux
component [25].

Remote Sens. 2022, 14, x  4 of 24 
 

 

 
Figure 1. Map of Heraklion, Crete (background map), and area of green space development denoted 
within the purple polygon (zoomed map). Approximate area of polygon = 7640 m2. 

2.2. Model Requirements 
SUEWS is a USM known for its simplicity which simulates the energy and water 

balance exchanges mainly for urban areas using commonly used spatial, meteorological, 
and census data [25–27]. The applicable scale of the model ranges from 102 to 104 m, i.e., 
neighborhood scale [20]. The model is built upon the UEB equation (Equation (1)) [28], 
which is the main focus of this study, computing all of its components, as well as the urban 
water balance [29]. 

Q* + QF = QH + QE + ΔQS [W m−2] (1) 

Q* represents the net all-wave radiation, QF the anthropogenic heat flux, QH the tur-
bulent sensible heat flux, QE the turbulent latent heat flux, and ΔQS the net change in heat 
storage. Essentially, the left part of Equation (1) represents the energy inputs which are 
assumed to be distributed among the processes represented by the right part flux compo-
nents, i.e., air heating (QH), water evaporation (QE), and energy being stored in elements 
of the urban environment (impervious materials, buildings) (ΔQS). Each of the UEB com-
ponents is simulated based on a number of sub-models. These include the Net All-Wave 
Radiation Parameterization (NARP) [30] for the computation of Q* and the Objective Hys-
teresis Model (OHM) [31] for ΔQS, while evaporation and the surface conductance which 
are the basis for QE computation, are based on an adapted Penman–Monteith equation 
[32] and the methodology proposed by Jarvis [33], respectively. QF is computed using the 
Järvi et al. (2011) [25] approach, which is based on heating and cooling degree days and 
population density. Finally, QH is computed as the residual. This approach inevitably 
causes error propagation from all other flux components to the sensible heat flux compo-
nent [25]. 

The architecture of SUEWS has been developed with a minimal input requirements 
approach. As of yet, the urban surface cover scheme implemented within the model con-
sists of seven classes, namely paved, buildings, evergreen trees, deciduous trees, grass, 
bare soil, and water. Various characteristics of these surfaces such as albedo, emissivity, 
and moisture storage capacity may be edited within the model to correspond to the area 

Figure 1. Map of Heraklion, Crete (background map), and area of green space development denoted
within the purple polygon (zoomed map). Approximate area of polygon = 7640 m2.

The architecture of SUEWS has been developed with a minimal input requirements
approach. As of yet, the urban surface cover scheme implemented within the model
consists of seven classes, namely paved, buildings, evergreen trees, deciduous trees, grass,
bare soil, and water. Various characteristics of these surfaces such as albedo, emissivity,
and moisture storage capacity may be edited within the model to correspond to the area of
implementation (Table 1). Other urban form parameters required include the mean building
and tree heights, while urban function inputs include human behavior information such
as energy and water use, and population density. The minimum meteorological data
requirements are: incoming shortwave or solar radiation (K↓), air temperature (Tair),
relative humidity (RH), barometric pressure (p), wind speed (U), and precipitation (P). An
in-depth analysis of the model functionality is presented by Järvi et al. (2011,2014) [25,26].
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Table 1. Parameterization of surface cover classes, same as Panagiotakis et al. (2021) [16], Ward et al.
(2016) [34].

Surface Type Albedo Emissivity Storage Cap (mm)

Paved 0.12 0.95 0.48
Buildings 0.15 0.91 0.25
Evergreen Trees 0.1 0.98 1.3
Deciduous Trees 0.12–0.18 0.98 0.3–0.8
Grass 0.18–0.21 0.93 1.9
Bare Soil 0.21 0.94 1
Water 0.1 0.95 0.5

Several studies have assessed the performance of the model in a variety of urban
typologies and climates [16,19,25,26,34,35]. This is predominantly achieved by exploiting
EC observations of the turbulent fluxes in specific sites where such equipment is available
and comparing the measurements with the model outputs. Naturally, the evaluation
process is spatially restricted and corresponds to the source area of the flux tower. The
evaluation results for the net all-wave radiation and the turbulent heat fluxes from such
studies are presented in Table 2 below. These are indicative of the model performance,
highlighting the need for site-specific parameterization.

Table 2. SUEWS evaluation results for net all-wave radiation, turbulent latent, and sensible heat flux
for different sites. Text in brackets indicates the code name for a specific site/experiment as presented
by the authors in the literature. RMSE stands for Root Mean Square Error.

City Site
Description

Q* QE QH Reference

R2 RMSE R2 RMSE R2 RMSE

Los Angeles (USA) – – 164.2 (Ar93) – 53.6 (Ar94) – 83.1 (Ar94) Järvi et al., 2011
[25]

Vancouver (Canada) – 0.95 44.9 0.74 32.5 0.77 39.1 Järvi et al., 2011
[25]

London (UK) dense urban 0.988 17.76 0.245 24.66 0.528 47.1 Ward et al.,
2016 [34]

Swindon (UK) residential suburban 0.995 13.85 0.721 22.62 0.789 28.21 Ward et al.,
2016 [34]

Shanghai (China) central business district – – 0.19 (QF,S
Irr)

16.9 (QF,S
Irr)

0.57 (QF,0
Noirr)

42.6 (QF,0
Noirr)

Ao et al., 2018
[19]

Helsinki (Finland) – 0.74 (He2) 29.3 (He2) 0.48 (He2) 4.1 (He2) 0.74 (He1) 28.2 (He1) Järvi et al., 2014
[26]

Basel (Switzerland) – 0.99
(BSPR) 16.2 (BSPR) −0.11

(BSPA) 0.8 (BSPA) 0.91 (BSPR) 42.1 (BSPR) Järvi et al., 2014
[26]

Montreal (Canada) – 0.89 (PR) 36.8 (PR) 0.59 (RL) 7.2 (RL) 0.86 (PR) 30.7 (PR) Järvi et al., 2014
[26]

Minneapolis-Saint
Paul (USA) – 0.98 (SP2) 36.1 (SP2) 0.48 (SP2) 3.7 (SP2) 0.82 (SP1) 28.2 (SP1) Järvi et al., 2014

[26]

Dublin (Ireland) Mix of dense commercial units
and residential apartments – – 0.11 9.98 0.67 24.65 Alexander et al.,

2016 [35]

Hamburg
(Germany)

West: large warehousing
Units

East: green vegetation, trees
and little

building coverage

– – 0.45 37.72 0.56 32.07 Alexander et al.,
2016 [35]

Melbourne
(Australia)

Medium-density residential
houses 5–8 m tall, open

spacing and an
ample amount of vegetation

– – 0.06 30.99 0.25 31.77 Alexander et al.,
2016 [35]

Phoenix (USA)
Low-rise residential housing

5–8 m tall with dry xeric
landscaping

– – 0.00 7.99 0.67 43.59 Alexander et al.,
2016 [35]

Heraklion (Greece) Commercial area: mix of low
and mid-rise buildings 0.99 54 – – 0.85 61.36 Panagiotakis

et al., 2021 [16]

It should be noted that the results presented here are the best reported in each case
study, which in most cases, included a number of different experiments to improve the
model performance, or even different test sites within a city. Where available, the names of
the different test sites/different experiments are presented in Table 2 in brackets.

For the net all-wave radiation Q*, Ward et al. [34] reported the lowest RMSE reaching
13.85 W m−2 in Swindon (UK), in the case where observed longwave radiation (L↓) is
provided in the forcing data as input for the model. In turn, Järvi et al. [26] presented RMSE
values as low as 0.8 W m−2 in Basel for the BSPR site, and finally, Alexander et al. [35]
reported an RMSE of 24.65 W m−2 when comparing modeled vs. observed sensible heat
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flux in Dublin (Ireland). In all, latent heat flux obtains the lowest RMSE values. However,
this is directly related to the maximum and minimum values generally observed for each
flux component, which vary significantly. For example, the net all-wave radiation values
are inherently larger than the respective of the latent heat flux; hence the corresponding
errors should be interpreted accordingly. Accounting for model performance in different
regions and applications should be done with care, due to the inability to generalize the
results across different sites exposed to different forcing data and/or varying typologies.
However, in cities where the model performance has been assessed, as in our case by
Panagiotakis et al. (2021) [16], and in the same wavelength as previous studies [17], a solid
basis for interpretation of model outputs for this region is available.

2.3. Data Preparation Workflow

As described by Ward et al. [27], SUEWS requires input parameters related to the
urban surface cover and morphology presented in Table 3 below, which can be derived
using a very high-resolution land cover map along with a normalized Digital Surface Model
(DSM). In the following section, the process of producing this information is described
in detail.

Table 3. Spatial data requirements for SUEWS [27].

Type Definition Reference/Comments

Building/Tree Morphology

Mean height of building/trees Mean height of objects (m
above ground level (agl)). [31]

Frontal area index

Area of the front face of a
roughness element exposed to
the wind relative to the
plan area.

[31]

Plan area index
Area of the roughness
elements relative to the total
plan area.

[31]

Land cover fraction Should sum to 1

Paved
Roads, sidewalks, parking
lots, impervious surfaces that
are not buildings.

-

Buildings Buildings.
Same as the plan area index of
buildings in the
morphology section.

Evergreen trees Trees/shrubs that retain their
leaves/needles all year round.

Tree plan area index will be
the sum of evergreen and
deciduous area. Note: same as
the plan area index of
vegetation in the
morphology section.

Deciduous trees Trees/shrubs that lose
their leaves. Same as above.

Grass Grass. –

Bare soil Bare soil—non vegetated but
water can infiltrate. –

Water Rivers, lakes, ponds,
swimming pools, fountains. –

The workflow for producing the surface cover map using multi-source EO data is
presented in Figure 2. WorldView-2 (WV2), very high spatial resolution imagery which
was acquired on 19/03/2020 was used to produce the baseline surface cover map. WV2
imagery contains a panchromatic, at 0.5 m× 0.5 m, and 8 multispectral bands, at 2 m × 2 m
(Table S1). The processing of this product includes radiometric and sensor-related correc-
tions, providing a Circular Error (CE90) ranging from 5 m to 23 m. As shown in Table 3,
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SUEWS input requirements include 3 vegetation classes, namely Grass, Evergreen Trees,
and Deciduous Trees. Extracting these solely from WV2 imagery is not possible due to
vegetation spectral similarity in the available bands. In order to overcome this issue, we
exploit a high resolution normalized DSM (nDSM, Figure S2) to discriminate between grass
and trees, as well as time series of Sentinel-2 imagery (20 × 20 m, Table S2) downscaled to
10 × 10 m [36] to categorize trees as evergreen and deciduous.
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Figure 2. Workflow for the extraction of the land cover scheme required by the model.

Orthorectification is a fundamental preprocessing step, because satellite images inher-
ently come with geometric distortions [37], related sensor, and target conditions, including
topography. WV2 orthorectification was based on Rational Polynomial Coefficients (RPC)
model [38], which was used in conjunction with a very high resolution DSM (posting
1 m × 1 m) for the city of Heraklion [39]. Pansharpening of the initial WV2 image improves
the resolution of the final result to 0.5 × 0.5 m, preserving the original radiometry. This
process was based on the Hyperspherical Color Space Resolution Merge algorithm [40].
Optimization of the orthorectified product was achieved with a follow-up registration
algorithm. The ‘Georeferencer GDAL’ plugin of QGIS [41] was used to register the product,
using the Thin Plate Spline transformation and the Lanczos resampling method which
provided the best results in combination with 11 Ground Control Points (GCPs) (Figure S3).
Google Maps was used as the GCPs reference, due to the ease of access and the satisfac-
tory co-registration of this layer with the already existing data (i.e., the DSM used). The
minimum distance between the GCPs was 1500 m corresponding to 1/10th of the diagonal
distance of the image. To evaluate the final product, 21 check points equally distributed
across the area of interest were used from the same reference as the GCPs (Figure S3). A
minimum distance of 500 m was ensured from the latter, to avoid spatial autocorrelation
and the introduction of bias in the validation process. The result added up to RMSEr = 0.9 m
and the 95% interval circular error RMSECL95 = 1.56 m, a significant accuracy improvement.

Following, to map the surface cover, the final orthorectified product was classified,
using also the Normalized Difference Vegetation Index (NDVI), extracted from WV2 red and
near infrared bands (Table S1) as an extra spectral band. A recent extension of the traditional
support vector classifier (SVM), namely X-SVM [42] was used. The X-SVM classifier reduces
the need for manual parameterization of the classification process, assisting the user to reach
optimum results much faster. To produce the surface cover map, 9 classes are originally
selected and a minimum number of 50 training points for each class is acquired from
the original WV2 image. Some classes are merged, after the classification of the image is
executed. This approach is standard when working with classes which are not inherently
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separable from the spectral signatures of the objects in the image, i.e., buildings which may
include roofs with tile, cement or insulation material. Indicative locations of the respective
sampling points in the vicinity of the urban intervention are shown in Figure 3.
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The product of the X-SVM-based classification is a surface cover map containing the
following five classes: Paved, Buildings, Vegetation, Bare Soil, and Water. In order to fine
tune the classifier parameters, 100 random reference points per class were selected from the
original satellite image and were used to iteratively evaluate the classification outputs. Then,
the optimum classification product was selected based on the overall classification accuracy,
reaching the maximum value of 89.9%. To improve the classification outcome, a smoothing
filter was used to remove pixel clusters smaller than 5 pixels, assigning values based
on the surrounding pixels’ values. This step diminishes the salt and pepper effect often
encountered in pixel-wise classification outputs which may be caused by high local spatial
heterogeneity between neighboring pixels [43]. Finally, spatial masks were used, derived
from in-house available polygons, to improve the result of the classification regarding
buildings, and the road network. Using the aforementioned evaluation methodology, the
overall accuracy of the final product was found at 92.6% (the respective confusion matrix is
given in Table S3).

The approach for differentiating grass and trees is straightforward and easy to imple-
ment when an nDSM is available. The latter is a raster which includes only the absolute
heights of 3D objects on the surface of the area, i.e., buildings, high vegetation, etc. By
extracting vegetation as a layer from the classified image and applying it as a mask on the
nDSM, we can then set a threshold of 2 m to classify the vegetation layer. An indicative
overlay of the two layers is presented in Figure S4. All pixels with values above the thresh-
old are classified as trees, whereas the ones falling below the threshold are considered to
be grass.

With the vegetation layer split into the subcategories of grass and trees, the latter was
subsequently processed to separate evergreen from deciduous trees. The approach to do
this involves the assumption that seasonal variations in NDVI values are expected to differ
between the two classes, as deciduous trees seasonally shed their leaves, usually in autumn.
This difference in phenological state is expected to be evident when analyzing time series
of satellite data. The time interval selected is the whole year of 2020, and the Sentinel-2 data
are filtered with a maximum cloud fraction threshold of 10%. Cloud and cloud shadow
masking were conducted using the Sentinel-2 cloud probability band, setting the cloud
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probability to less than 5%, and masking out values classified as cloud shadow or cirrus in
the scene classification band (SCI). The resulting image collection consists of 63 images. In
the case of Sentinel-2, NDVI corresponds to the normalized difference between bands B8
and B4. Yearly NDVI statistics (min and max values) were used to evaluate the variations
which are attributed to the phenological state of vegetation, and discriminate evergreen
and deciduous trees, as per Chrysoulakis et al. [13]. The minimum and maximum NDVI
images were initially masked, using the high vegetation layer produced previously, and the
pixels of the latter were classified as evergreen or deciduous, based on NDVI thresholds
from the literature, presented in Table 4 [13,39]. The deciduous and evergreen trees’ layers,
as all the rest, retain the resolution of the pansharpened WV2 image, i.e., 0.5 m.

Table 4. NDVI thresholds for separating evergreen and deciduous trees adapted from Chrysoulakis et al.
(2018) [13].

Vegetation Type NDVI min NDVI max

Evergreen 0.2 0.7
Deciduous 0.45 0.9

To extract the building and tree heights, we conduct a simple masking process using
the buildings, evergreen trees, and deciduous trees’ layers from the finalized classified
image, and the nDSM available superimposition of the buildings and the nDSM raster are
presented in Figure S5. The masking process resulted in two raster-type maps with height
information for each of the abovementioned layers, which are in turn used to compute the
morphometric parameters required by SUEWS by employing a morphometric calculator
included in the Urban Multi-scale Environmental Predictor (UMEP) [44].

The minimum meteorological and radiation input requirements of the USM (see Model
requirements) were provided by the HECKOR flux tower [45], which is located close to
the study area. Focusing on heat stress, the model ran for June and July of 2020. HECKOR
observations for July are shown in Figure 4, whereas June was used as a spin-up period for
the model, which essentially secures that the initial conditions, such as soil moisture, are
based on model computations. Generally, Figure 4 indicates a typical dry summer month
with overall high temperatures.
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Finally, population density data, used to compute the anthropogenic heat flux in
SUEWS, was provided by the National Statistical Service (census data). The mean popula-
tion density for the city of Heraklion was used as input for the model (57 ha−1).

2.3.1. Model Runs

This study aims at quantitatively analyzing the potential effects from the renovation
of a new park in a residential area of Heraklion, and the surface cover changes modeled in
this study are based on the development plan, as provided by the Heraklion Municipal
Authorities (Municipality of Heraklion 2021; personal communication). Therefore, the
baseline model run simulated the current situation of the study area, whilst a second run
simulated the scheduled surface cover changes as depicted in the surface cover maps shown
in Figure 5. As mentioned earlier, the imminent changes include the plantation of several
trees in the perimeter of the park, and the substitution of bare soil/vegetated surfaces with
pavements which will serve as pedestrian routes and bicycle lanes. The model ran by using
a grid configuration with 100 m × 100 m cells covering the urban intervention area, as well
as the surrounding building blocks (Figure 6). The model outcomes for each grid cell were
analyzed on the basis of the corresponding surface cover change.
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The area is residential, and the major Local Climate Zone (LCZ) type is LCZ6 [46]
corresponding to Open Low-Rise based on the classification scheme proposed by Steward
and Oke [47]. Numerous patches of land of no particular use exist, which are mostly
covered by low vegetation or bare soil.

2.3.2. Uncertainty Analysis

Generally, model outputs can only be as good as the model inputs, following the
garbage in, garbage out principle. In this context, it is important to assess how the outputs
of the model are affected by the accuracy of the spatial data inputs. This is done by
conducting a sensitivity analysis of the model with respect to the surface cover fractions
and the surface cover classes’ precision (Table S4). The overall process (Figure S3) involves
conducting a baseline model run, using the surface cover fractions for each grid cell as
computed by the standard process of zonal statistics, and a second run using different land
cover fractions which are computed as:

Ftrue
i = fi∗ pi + R∗ fi (2)

where fi is the initial land cover fraction of class i, pi is the class-wise precision, R is defined
as the residual as in:

R = 1−
n

∑
i

fi ∗ pi (3)

and finally, fi is the mean value of the fraction for class i across all grid cells. These equations
are designed so as to account for the class-wise uncertainty of the surface cover maps and
the characteristics of the area (i.e., the mean fraction values for class). Hence, comparing
the model outputs of the baseline and the second model run with the edited surface cover
fractions, an estimation can be made regarding the potential uncertainty in the mean flux
values computed by the model, i.e., ∆Q*, ∆QE, ∆QH, ∆QF and ∆(∆QS).

3. Results

The surface cover map corresponding to the 5-class classification scheme, with an
overall accuracy of 92.6%, is presented in Figure 7. As described in detail in the previous
section, the vegetation layer is extracted and categorized as grass and trees using the nDSM,
and in turn, split into the classes of Grass, Deciduous and Evergreen trees. The minimum
and maximum NDVI maps from Sentinel-2, used to discriminate the tree classes are shown
in Figure S7. The final land cover map of the vicinity of the development area is shown
in Figure 8. The accuracy of the latter reaches 89.6% and the confusion matrix with the
corresponding class-wise accuracies is displayed in Table S4.

The surface cover map is combined with the grid covering the intervention area to
estimate the current and future cover fractions for each grid cell. The resulting land cover
percentages are presented in Figure 9, along with the percentage changes (future-current)
per class and per grid cell, shown in detail in Table S5 and Figure 10. It should be noted
that grid cells 1, 2, 6, 7, 11, and 12 refer to the surrounding area of the AOI and are not
going to undergo any changes in land cover. Hence, the changes presented in all tables
henceforth, refer to the remaining grid cells which experience changes in land cover. The
bulk albedo of each grid cell is also calculated using a weighted average of the fraction of
each surface type within the grid and the corresponding albedo value (Table 1).

Paved cover shows a general increase in most grid cells, with a maximum increase of
8.9% for grid cell 9, as a result of the bicycle and pedestrian lane development. Evergreen
trees do not show significant changes, with the exception of grid cell 10 with an increase
of 2.6% in this class, due to the plantation of olive trees in this region of the park. The
development plan includes the plantation of deciduous trees across the whole area of the
park, hence this class percentage increases for all grids, with a maximum of 4.3% for grid
cell 9. Grass is the dominant land cover class of the area prior to the development, and it is
mainly substituted with paved and tree cover, showing an overall decrease across all grids,
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with the exception of grid cell 10 which shows an increase of 2.8%. Likewise, bare soil is
mainly substituted with paved cover, trees, and grass, showing decreasing trends in all
grid cells, with a maximum of −11.9%.
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The building and tree height layers extracted from the nDSM and the land cover
map are presented in Figure 11, and these layers are used to compute the morphometric
parameters for buildings and trees for the same grid configuration and for the current as
well as future scenarios. Buildings are not affected in any way by the development plan
and consequently, the morphometric parameters presented in Table S6 are not subject to
change. It should be noted that the computed Plan Area Index and Mean Building Height
for the grid cells are in line with the LCZ6 category as reported by Mitraka et al. [46], with
the exception of grid cell 9 and 10 where there is an absence of buildings. On the other
hand, as shown in Figure 5, a number of trees will be planted in the development area;
hence, the corresponding morphometric parameters are affected (Table S7). The changes in
mean vegetation height are caused by the fact that in the modeling process, the height of
the new trees is assigned at 2.5 m to simulate the early years of growth. This tends to lower
the overall mean tree height in the grid cells where trees are already present, and increase
the mean height in grid cells with few or no trees at all. The roughness length follows the
corresponding decrease or increase in approximately 1/10th of the surface elements’ mean
height, which in this case are the trees.

Remote Sens. 2022, 14, x  16 of 24 
 

 

The building and tree height layers extracted from the nDSM and the land cover map 
are presented in Figure 11, and these layers are used to compute the morphometric pa-
rameters for buildings and trees for the same grid configuration and for the current as 
well as future scenarios. Buildings are not affected in any way by the development plan 
and consequently, the morphometric parameters presented in Table S6 are not subject to 
change. It should be noted that the computed Plan Area Index and Mean Building Height 
for the grid cells are in line with the LCZ6 category as reported by Mitraka et al. [46], with 
the exception of grid cell 9 and 10 where there is an absence of buildings. On the other 
hand, as shown in Figure 5, a number of trees will be planted in the development area; 
hence, the corresponding morphometric parameters are affected (Table S7). The changes 
in mean vegetation height are caused by the fact that in the modeling process, the height 
of the new trees is assigned at 2.5 m to simulate the early years of growth. This tends to 
lower the overall mean tree height in the grid cells where trees are already present, and 
increase the mean height in grid cells with few or no trees at all. The roughness length 
follows the corresponding decrease or increase in approximately 1/10th of the surface el-
ements’ mean height, which in this case are the trees. 

 
Figure 11. Building and tree height layer overlay of Heraklion and the area of the park. 

The uncertainty introduced by the class-wise precision of the surface cover map used 
to compute the surface cover fractions for each grid cell is presented in Table 5 as absolute 
mean value differences. These are later on used to interpret the model outputs, which are 
assumed to include the values shown in Table 5 as uncertainties in the overall means, per 
flux component and per grid cell. 

  

Figure 11. Building and tree height layer overlay of Heraklion and the area of the park.

The uncertainty introduced by the class-wise precision of the surface cover map used
to compute the surface cover fractions for each grid cell is presented in Table 5 as absolute
mean value differences. These are later on used to interpret the model outputs, which are
assumed to include the values shown in Table 5 as uncertainties in the overall means, per
flux component and per grid cell.
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Table 5. Absolute mean flux differences per grid (baseline-error model run).

Grid Cell ∆Q* (W m−2) ∆QF (W m−2) ∆(∆QS) (W m−2) ∆QE (W m−2) ∆QH (W m−2)

3 0.62 0.00 2.89 0.13 2.14
4 0.48 0.00 2.67 0.17 2.03
5 0.33 0.00 0.96 0.18 0.45
8 0.37 0.00 1.66 0.00 1.28
9 0.16 0.00 0.10 0.21 0.05
10 0.36 0.00 0.60 0.30 0.06
13 0.47 0.00 1.34 0.03 0.84

The simulations of the model (baseline and future development scenario) are presented
and discussed with regard to the observed differences in the urban surface fluxes. The grid
cells which do not experience any changes in surface cover do not show any differences
in the outputs of these two model runs, as expected based on the mechanics of the model,
which essentially runs for each cell individually. Naturally, this limitation which overlooks
advection between neighboring cells, is taken into account in the interpretation of results,
and in the case where large differences are observed in the results of a cell, the surrounding
cells are also expected to be affected. Additionally, since there is no change in the Buildings
plan area (no buildings are taken down, or built), and no change is introduced in the
population density, the anthropogenic heat flux component, which is indicative of urban
function, does not show any changes and is hence omitted from the following tables and
figures. Table 6 and Figures 12, S8 and S9 sum up the outputs of the baseline and future
development model runs, which are displayed in terms of percentages, raw values and
overall, daytime, nighttime, and hourly mean values.

Table 6. Model outputs of the current and future runs per grid cell for Net All-Wave Radiation (Q*),
Sensible Heat Flux (QH), Latent Heat Flux (QE), and Net Change in Heat Storage (∆QS). The table
presents monthly (MM), daytime (DM), and nighttime (NM) mean values in W m−2.

Cell 3 Cell 4 Cell 5 Cell 8 Cell 9 Cell 10 Cell 13

cur fut cur fut cur fut cur fut cur fut cur fut cur fut

Q*
MM 223.5 224.3 221.6 223.1 215.3 215.3 221.9 221.9 215.4 218.5 213.3 215.3 222.7 222.7
DM 421.8 423.1 4186 421.2 407.7 407.6 418.9 419.0 408.0 413.3 404.4 407.9 420.4 420.4
NM −44.7 −44.8 −44.8 −44.9 −44.8 −44.8 −44.6 −44.6 −45.0 −45.1 −45.2 −45.2 −39.9 −39.9
QH
MM 150.0 150.0 151.4 149.6 175.2 175.9 156.8 157.2 170.4 164.7 174.9 175.1 159.5 160.2
DM 238.2 238.1 241.2 237.2 291.2 292.7 251.6 252.4 281.1 269.2 289.0 290.0 257.8 259.1
NM 28. 8 29.1 28.1 29.3 16.7 16.4 26.7 26.6 19.1 21.7 19.0 18.2 31.2 31.2
QE
MM 7. 9 7.4 7.6 7.07 4.3 4.2 6.9 6.7 4.4 5.0 3.0 3.0 7.2 6.6
DM 11.4 10.5 10.8 10.0 5.5 5.2 9.7 9.4 5.5 6.6 3.2 3.2 10.3 9.3
NM 3.3 3.2 3.3 3.2 2.7 2.7 3.1 3.1 2.8 2.8 2.6 2.5 3.1 3.0
∆QS
MM 88.1 89.3 84.9 88.9 58.0 57.4 80.4 80.3 62.9 71.0 57.6 59.4 78.1 78.0
DM 199.1 201.5 193.6 201.0 138.0 136.7 184.6 184.2 148.4 164.5 139.1 141.7 179.2 178.9
NM −61.4 −61.7 −61.4 −61.9 −49.4 −49.0 −59.6 −59.5 −52.1 −54.8 −51.9 −51.2 −58.2 −58.1
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4. Discussion

Overall, the methodology presented in Figure 2 using multi-source EO data manages
to capture urban form accurately for the purposes of parameterization of the USM. One of
the major challenges of this approach is the need for adequate co-registration of the VHR
products used to extract building and tree heights, which in our case, is achieved with the
use of registration algorithms. The NDVI threshold process mentioned in the Materials
and Methods section is an important source of error of the surface cover map, something
that is evident from the class-wise precisions of the Evergreen and Deciduous Trees classes
(Table S4). A future development of this methodology will account for the potential below
crown surface cover which may include grass, paved cover, and bare soil surfaces, and
is expected to affect the NDVI values computed. Moreover, paved surfaces are, in part,
erroneously misclassified as buildings and bare soil, lowering the class precision. This
is attributed to the spectral similarity often encountered in pixels of these classes, which
makes them indistinguishable to the classification algorithm. Even so, the final land cover
map produced to match the desired classification scheme including the 3 vegetation classes,
presented in Figure 8, shows very good accuracy.

In turn, the model outputs for the baseline and future runs provide insight regarding
the UEB response to the land cover changes expected to take place. Figure 12 presents
these land cover changes in terms of percentages along with the modeled changes in the
UEB components.

Regarding grid cell 3, the bulk albedo decreases from 0.13 to 0.12 (Table S5), whilst
emissivity increases, since grass and bare soil are replaced by materials with higher emis-
sivity values, resulting in a small increase of the net all-wave radiation Q*. As a general
rule, changes in albedo propagate to the outgoing components of the shortwave radiation,
consequently affecting the Q*. The increase of paved cover for grid cell 3 is evident from the
observed differences regarding the net change in heat storage ∆QS which increases when
impervious cover is expanded. This leads to the storage of heat during the daytime which
is released during the night, forcing the air temperature increase. A notable observation
regards the generally low values of QE. This can be attributed to the reduced evaporation
taking place, since soil moisture is not replaced through rainfall during the study time
interval. Grass, bare soil and evergreen trees have the largest storage capacity values as
presented in Table 1. Since these classes are replaced, the overall storage capacity of the
grid becomes lower and this leads to changes in the Soil Moisture Deficit (henceforth SMD),
which is greater in the future land cover scenario (Figure S9). This gap tends to fade out as
the total change in soil and surface moisture stores becomes smaller, hence diminishing
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the differences in QE. In SUEWS, QH is computed as the residual, so its values are very
responsive to the changes in the rest of the energy fluxes computed by the model; the
results for grid cell 3 highlight this behavior. In the early days of the month, when QE
shows larger differences, QH increases to account for the increase in Q* and ∆QS, and the
decrease of QE. As time passes and QE differences fade out, QH starts to decrease to restore
the energy balance. The changes mentioned in Q* and ∆QS seem to peak during the time
that the maximum values of these quantities are observed, i.e., close to midday, while QE
differences are most evident early in the morning.

The changes in land cover for grid cell 4 are similar to grid cell 3, with the exception of
the increase in paved surfaces, which is higher in grid cell 4 replacing grass and bare soil.
This leads to a greater increase of ∆QS, which shows an overall mean increase of 4 W m−2

peaking at midday, reaching maximum differences just over 10 W m−2. In this grid cell, the
bulk albedo does not change, so the changes in Q* values are mostly attributed to changes
in emissivity. In the same wavelength as before, the model outputs show differences in
QE, which become lower over time. To counterbalance the increase of ∆QS, Q*, and the
fading decrease of QE, QH decreases with the differences between the future scenario and
the baseline run outputs becoming larger over time and reaching differences up to −8.83 W
m−2 (future-baseline). The same pattern is observed in the total surface and soil moisture
stores, and the SMD (Figure S9). These results indicate that when it comes to QE, which is
seemingly a driving force in UEB for the model runs conducted, the differences observed
caused by the changes in surface cover seem to fade out in time.

This is partially related to the forcing data, i.e., the local climate in general, as well
as the absence of rain, and most importantly, on the state of the vegetation and the soil
moisture which gradually reduces, leading to dry soils, with high SMD values and increased
surface conductance. Given the dry summer period of study, which is typical for this type
of Mediterranean climate, this is expected to be standard for this area. As pointed out by
Järvi et al. [25], the surface conductance parameters play a major role in how efficiently
water is exchanged between the vegetation layers and the atmosphere. Hence, soil dryness
significantly affects the latent heat flux QE. Essentially, dry soils translate to a decrease in
evaporation rates, due to soil moisture saturation, and since the latent heat flux is the latent
heat of vaporization, it can only but follow this decrease. Such variations in QE may have
significant effects on the UEB. Manoli et al. [48] have presented the effect of out-of-phase
solar radiation and water availability which causes different hysteresis patterns of the
surface urban heat island seasonality. This highlights the significance of evaporation in
the urban climate. Given that no validation of the modeled QE based on observations
has been conducted, conclusions regarding the potential underestimation of QE must be
cautiously interpreted. A palette of parameters within the model may be edited to fine
tune the outputs, like the surface conductance parameters, the irrigation patterns, and the
threshold above which evaporation from a wet surface is considered to take place. The
fine-tuning of these is expected to diminish the underestimation of evaporation which is
estimated to take place, a conclusion based on the very low evaporation rates modeled,
demoting the validity of the observed QE values.

Grid cell 5 shows minimal changes in surface cover, as only a very small proportion of
the development area falls within the grid area. However, the change in fluxes is in line
with the changes in surface cover and the results of the rest of the grid cells. A decrease of
paved surfaces leads to a decrease in ∆QS peaking at midday. This, in conjunction with
the pattern of QE, causes QH to obtain an increase, which becomes lower over time. The
same can be concluded for cell 8, where the maximum surface cover change is observed for
deciduous trees with an increase of 0.4%, while paved, grass and bare soil cover decreases.
It is easily observed that the differences in values presented in Table 6 fall within the
margins of error shown in Table 5 for cell 8 and 13. As expected, the flux difference trends
are very similar to those of cell 5.

Grid cell 9 shows the largest differences in surface cover, reaching 8.9% for paved
(increasing) and grass (decreasing) cover and, in that sense, it is likely to be the only cell
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subject to changes which will alter UEB in a small, but measurable amount. The reason
that this does not apply to the previous grids, is the magnitude of the surface fluxes. This
is evident by examining the values presented in Tables 5 and 6 and the corresponding
differences between model runs as in Figures 12 and S8. Changes in Q* and ∆QS are
approximately an order of magnitude lower than the modeled fluxes across these grids,
hence are considered negligible. Grid cell 10 shows a significant decrease in bare soil cover.
The decrease of albedo results in a small increase in Q*, and the increase of paved cover
leads to an increase of ∆QS. It is interesting to note that despite the decrease of bare soil,
which is the largest across all grids, QE remains largely unaffected. This behavior is directly
related with the non-accurate extreme soil dryness which is simulated in the model runs;
but still, this observation indicates that in cases of intense prolonged drought, changes in
the bare soil fraction do not affect the evaporation rates. Notably, cells 9 and 10 are the only
ones where the SMD decreases, based on the changes in surface cover. Cell 10 shows the
largest differences as SMD decreases in the future scenario, an observation related to the
increase in all vegetation classes’ fractions.

The maximum flux values modeled occur at near-midday, which is also the time that
the maximum differences in the model runs are observed across all grid cells. These maxima
reach 746.9 W m−2 for Q*, 462.4 W m−2 for QH, 22.2 W m−2 for QE, and 309.7 W m−2 for
∆QS (see Table S8) in the baseline model run for grid cell 9. Comparing these values with
the variations shown in Figure S8, which correspond to changes in mean values lower than
10%, leads to the conclusion that such differences are considered very small to account for
measurable effects in the neighborhood-scale microclimate. The percentage differences
in mean values per grid cell and per flux component are presented in Table 7 (previously
presented in Figure 12). The only notable variations are observed for ∆QS and QE for grid
cell 9. However, the increase observed in ∆QS is considered a predictable observation,
something that does not apply for QE, as mentioned earlier. QE is generally expected to
obtain low values, based on the long, dry summer period which is standard for Heraklion
and generally for areas with a hot-summer Mediterranean climate. Still, the model output
values propose that nearly no evaporation is taking place, something that is partially proved
wrong by examining the variations and relatively high values of the relative humidity from
the forcing data used. This underestimation propagates to modeled QH.

Table 7. Percentage changes in mean surface flux values per grid.

Q* ∆QS QE QH

Cell 3 0.3% 1.4% −6.6% 0.1%
Cell 4 0.7% 4.7% −6.7% −1.2%
Cell 5 – −1.1% −3.7% 0.4%
Cell 8 – −0.2% −3.2% 0.3%
Cell 9 1.4% 12.1% 13.1% −3.4%
Cell 10 0.9% 3.1% −1.6% 0.1%
Cell 13 – −0.1% −8.9% 0.5%

In general, the model outputs presented so far highlight the sensitivity of the model to
surface parameters. QE is very sensitive to surface conductance and, as presented in detail
by Ao et al. [19], appropriate irrigation patterns may critically improve the validity of QE
outputs. Accurately modeling the soil moisture is a decisive step in reaching realistic results
for the turbulent heat fluxes. Moreover, when modeling the effects of such interventions,
potential changes in irrigation patterns have to be taken into account as urban function
changes. The optimization of all the model parameters related to the evaporation process is
expected to improve the overall flux simulation outputs, and reproduce realistic results,
especially for QH and QE. Nonetheless, the changes in fluxes that are observed are indicative
of SUEWS’s functionality and provide a qualitative insight of the UEB complexity in a
real-world scenario. Other studies have shown that increasing the vegetation fraction of an
area at the cost of paved surfaces leads to important increase in QE and important decrease
in QH [16,17]. Our results indicate that in such cases, this process can be disturbed by
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dryness of vegetation and soils, which causes QE to reach a threshold which in turn affects
the way QH is modeled. Additionally, as also noted by Panagiotakis et al. [14], the largest
changes in UEB components are observed in the daytime, peaking at midday. This is clearly
depicted in Figure S8c and Table 6.

5. Conclusions

This study presents how EO can be used for assessing the climatic impacts of urban
interventions, focusing on how the development of a park in a residential area of a typical
Mediterranean city is able to modify UEB at local scale. A versatile methodology is
followed, which allows for the extraction of urban form information of any city, given the
availability of VHR satellite observations. The processing workflow presented highlights
the capabilities of EO data to produce accurate information on surface cover, as well as
the limitations and difficulties encountered when working with multi-source geospatial
data. A significant note relates to information exchange between coarse-scale satellite data
(Sentinel-1, Sentinel-2, Landsat missions etc.) and neighborhood-scale modeling processes.
Exploiting the full potential of time series of satellite observations is still a challenge, as
simplistic approaches such as the one presented in this study tend to introduce errors.
Nonetheless, this constitutes a prominent extension of this study, which may include model
runs for a longer period (i.e., yearly), using a dynamic land cover which will account for
seasonal changes in vegetation based on observational rather than modeled data.

In summary, our results are in agreement with past studies and have shown that:

• In areas where the bulk albedo decreases due to substitution of vegetation with paved
surfaces, Q* tends to increase. However, in this case study, the maximum increase of
mean Q* reaches only 1.4%, and is hence considered not to have any significant effect
on the neighborhood climate.

• In areas where impervious materials substitute pervious surfaces, ∆QS increases. This
means more energy is ‘stored’ during the daytime, and is released at nighttime, hence
reducing the standard nighttime temperature decrease. This is expected to occur in the
development park, as paved cover is increased across most grid cells, at a magnitude
that will not significantly alter the thermal comfort of the residents.

• All differences observed in the surface fluxes due to changes in surface cover show
peaks during daytime. Q* and ∆QS differences peak at midday, while QE differences
peak early in the morning. QH differences simply follow the result of these changes.

• Although QE was not realistically modeled, the observed trends still stand. This means
that the pattern of substituting grass surfaces with paved cover and trees tends to
lower the overall evaporation capability of the area, hence reducing QE and allowing
for an increase in QH. As this is a rapidly developing area and more buildings are
likely to be built in the near future, this trend is expected to increase.

Overall, in this case study, it is shown that imminent changes in surface cover at the
fine scale are not expected to have a significant negative or positive effect in UEB, thus in
air temperature, at the neighborhood scale. This is related to (a) the changes in surface
cover are small; (b) the grid cells, which seemingly experience larger changes (i.e., increased
paved cover) appear to also undergo changes which cancel out any significant effect (i.e.,
plantations of trees which partially make up for the overall vegetation percentage), and
(c) the largest differences in mean flux values are observed for a spatially restricted fraction
of the development area. However, it is evident that similar interventions at larger scales
are likely to impact the neighborhood climate. This should be taken into account by urban
planners and stakeholders in terms of the environmental component of sustainability as
discussed by Chrysoulakis et al. [49], given that the Mediterranean region is likely to be a
hotspot of global warming as temperatures are expected to rise faster around this region
than globally over the next few decades [50].

Finally, the results of this study present a significant weakness in simulating QE
because soil properties and the water availability of vegetation need to be more accu-
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rately parameterized. More detailed information on these parameters will be used in
future studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs14061473/s1, Figure S1: Urban Units of Heraklion municipality. Baseline image:
WorldView-2 pansharpened imagery 19/03/20, Figure S2: Normalized DSM for the city of
Heraklion (1 × 1 m), Figure S3: Ground Control Points (red circle) and Check Points (orange
circle) used for the registration process and validation of the result, Figure S4: Overlay of
vegetation layer and nDSM to differentiate between low (<2 m) and high (>2 m) vegetation,
Figure S5: Overlay of nDSM and the Buildings layer, Figure S6: Workflow followed to compute
errors in flux outputs introduced from the land cover map accuracy, Figure S7: Annual minimum
and maximum NDVI values extracted from monthly composites of Sentinel-2 images for 2020,
Figure S8: Differences in raw values (columns a and b) and differences in hourly means (column
c) of Q*, ∆QS , QE and QH for the future—baseline model run outputs per grid cell. In column c,
daytime and nighttime hours are shown in light grey and dark grey background respectively,
Figure S9: Latent Heat Flux (a), Evaporation (b), Total change in soil and surface moisture
storage (c) and Soil Moisture Deficit (SMD) (d) model outputs for the baseline and future model
run, Table S1: WorldView-2 Sensor wavelengths per band, Table S2: Sentinel-2 bands, Table S3:
Confusion matrix for the validation of the 5-class surface cover map shown in Figure 7 (Overall
Accuracy: 92.6 %), Table S4: Confusion matrix and class-wise precision of the final surface cover
map, Table S5. Current Surface cover percentages and bulk albedo values of grid cells subject
to changes in land cover based on the development plan. Imminent changes are shown in the
parentheses, Table S6: Morphometric parameters for buildings of grid cells subject to changes
in land cover, Table S7: Morphometric parameters for trees of grid cells subject to changes in
land cover. Changes based on the development plan are shown in the parentheses, Table S8:
Monthly maximum values per grid for the baseline and future development model runs [51,52].
See attached Supplementary Materials document.
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