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Abstract: Scene classification is an active research area in the remote sensing (RS) domain. Some
categories of RS scenes, such as medium residential and dense residential scenes, would contain
the same type of geographical objects but have various spatial distributions among these objects.
The adjacency and disjointness relationships among geographical objects are normally neglected by
existing RS scene classification methods using convolutional neural networks (CNNs). In this study,
a multi-output network (MopNet) combining a graph neural network (GNN) and a CNN is proposed
for RS scene classification with a joint loss. In a candidate RS image for scene classification, superpixel
regions are constructed through image segmentation and are represented as graph nodes, while graph
edges between nodes are created according to the spatial adjacency among corresponding superpixel
regions. A training strategy of a jointly learning CNN and GNN is adopted in the MopNet. Through
the message propagation mechanism of MopNet, spatial and topological relationships imbedded in
the edges of graphs are employed. The parameters of the CNN and GNN in MopNet are updated
simultaneously with the guidance of a joint loss via the backpropagation mechanism. Experimental
results on the OPTIMAL-31 and aerial image dataset (AID) datasets show that the proposed MopNet
combining a graph convolutional network (GCN) or graph attention network (GAT) and ResNet50
achieves state-of-the-art accuracy. The overall accuracy obtained on OPTIMAL-31 is 96.06% and
those on AID are 95.53% and 97.11% under training ratios of 20% and 50%, respectively. Spatial
and topological relationships imbedded in RS images are helpful for improving the performance of
scene classification.

Keywords: convolutional neural network; graph neural network; multi-output network; remote
sensing; scene classification

1. Introduction

Remote sensing (RS) image scene classification is an active research area essential
for image understanding at the scene level [1]. RS image scene classification focuses on
categorizing images using semantic information. The task of RS image scene classifica-
tion aims to discriminate images of various categories in an image dataset, giving one
label to each scene image [1]. Scene classification is different from image segmentation or
object-oriented classification, giving one label to each pixel or object. The spatial and topo-
logical relationships imbedded in RS images are invariant to image transformation, such
as panning, distortion, or rotation, and are valuable for discriminating various categories
of RS scenes. The adjacency and the disjointness relationships between objects are two
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types of commonly used spatial and topological dependency [2]. Some RS scene images
contain the same type of geographical entities but have various spatial distributions among
these entities and thus have different scene semantic labels. As shown in Figure 1, sparse
residential, medium residential, and dense residential scenes consist of buildings, roads,
and vegetation but have various adjacency or disjointness relationships among the entities.

Figure 1. Illustration of spatial and topological dependency among entities in RS scene images.

Existing methods of RS image scene classification usually neglect or do not exploit
the spatial and topological relationships well. In earlier studies, handcrafted features,
such as the color, texture, or bag-of-visual words, were widely applied in methods of RS
image scene classification [3,4]. Handcrafted features typically require sufficient expert
information to be designed or extracted and are not robust enough to various application
scenarios [1]. Handcrafted features are usually inadequate in representing high-level
semantics of RS images. It is difficult for handcrafted features to achieve promising scene
classification results even when used with spatial and topological relationships [1].

In recent years, deep learning methods, such as convolutional neural networks (CNNs),
have been commonly applied for RS image scene classification [5,6]. CNNs have a powerful
capability to adaptively learn distinctive high-level semantic characteristics [1,7–11]. A
bundle of deep CNNs with diverse layouts of convolutional layers, pooling layers, and
fully connected layers have been employed in scene classification, such as Visual Geometry
Group (VGG)Net [12], Residual(Res)Net [13], and Densely Connected (Dense)Net [14],
since AlexNet [15] obtained astonishing success. In recent years, CNN-based architectures
have been used to improve classification accuracy [16–22]. For example, a dual-model
architecture by combining two CNN-based branches, ResNet and DenseNet, with a global-
attention-fusion strategy was designed in a recent study [23], which was proven effective
by gaining higher accuracies than single-model architectures. CNNs use regularly shaped
convolutional layers and pooling layers. Thus, it is difficult for CNN-based methods to
exploit the spatial and topological relationships imbedded in RS images well [24].

Graph neural networks (GNNs) can implicitly learn the spatial and topological rela-
tionships for graphs [25–29], which are non-Euclidean data structures. A critical strategy
for exploiting GNNs on RS image scene classification is to transform the image classifi-
cation task into a graph classification task. Specifically, a graph that consists of nodes
and edges is first constructed to express the regularly shaped RS image. The spatial and
topological relationships among objects in the RS image are incorporated into the edges
of the graph. Graphs expressing RS scene images are then taken as the inputs of the
GNN, such as the graph convolutional network (GCN) [26] and graph attention network
(GAT) [30], to be labeled as a specified category. The features of corresponding adjacent
nodes of graphs are aggregated via the message propagation mechanisms of GNNs. In
this way, the spatial and topological relationships imbedded in the RS image are exploited
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by the GNN-based methods of RS image scene classification, leading to improved scene
classification performance.

For an RS image, a scene graph can be constructed in several ways. Yang et al. [31]
constructed scene graphs by defining the adjacency relationship between pixels according
to their distances in spectral and spatial domains. However, the method may lead to the
generation of very large and complex graphs, which may cause a computing burden and
negatively affect graph classification accuracy. Liang et al. [32] regarded ground entities
detected as nodes with faster region-based CNN (R-CNN), such as planes and ground
track fields. Then, the contiguous relationship among nodes is defined according to the
spatial distances between these entities. As additional labeled data are required to train the
Faster-RCNN, the low-accuracy and limited-efficiency ground entity detection may affect
the classification result. Li et al. [24] adopted an unsupervised segmentation algorithm
for an image to generate a number of superpixels, which are a group of pixels that share
common color, textural or intensity characteristics [33]. In [24], these superpixels were
regarded as graph nodes, while graph edges between nodes were created according to
the spatial adjacency among corresponding superpixels. The performance of the method
in [24] is greatly influenced by the accuracy of the image segmentation step.

GNNs are usually combined with CNNs to perform RS image scene classification to
make use of the strength of both on feature representation. One strategy of combining CNNs
and GCNs is to treat CNNs as the feature extractor for the nodes of graphs, taking advantage
of the outstanding visual feature representation ability of CNNs. Li et al. [24] used feature
maps generated from a pretrained CNN model to initialize node features for scene graphs
and then performed graph classification for these graphs with a trained GNN model. For
this strategy, the representation quality of node features extracted by the pretrained CNN
has a substantial impact on the performance of graph classification. Furthermore, some RS
image scenes, such as deserts and oceans, may have inaccurate constructed scene graphs
due to the lack of salient regions and obvious topological dependencies and, thus, it is
difficult for them to effectively perform scene classification. It is difficult for this strategy to
achieve promising RS image scene classification for these scenes of RS images.

Another strategy of combining CNNs and GNNs for RS image scene classification is
to fuse two global feature vectors produced separately by the CNN and the GNN. In [32],
features from GCN and VGG16 were elementwise added up and then delivered to a final
classifier to yield the final logits for scene classification. In this strategy, the original GNN
output is replaced by a feature-fused output, which is a worthwhile modification compared
with the previously mentioned strategy. However, as the single prediction output generated
from the fused feature vector is considered the optimized objective, the method may have
insufficient robustness. Inspired by the success of recent dual-model architectures [23,34],
this strategy can be improved by regarding multi-output predictions as the optimized
objective to achieve both high accuracy and great robustness.

In this study, a multi-output network (MopNet) combining GNN and CNN was
proposed for RS scene classification, exploiting the spatial and topological relationships
imbedded in RS images. A training strategy of jointly learning CNN and GNN was adopted
in MopNet. The parameters of the CNN and GNN in MopNet were updated simultaneously
with the guidance of a joint loss via the backpropagation mechanism. Experimental results
on two datasets illustrated that the proposed MopNet achieved promising performance.

2. Methods

The architecture of our multi-output network (MopNet) combining GNN and CNN
for RS scene classification is shown in Figure 2. A graph is created for an RS image through
graph structure construction. For the graph, nodes are denoted as corresponding superpixel
regions obtained from RS images through image segmentation. The CNN-based branch
in MopNet plays the role of a feature extractor for initializing features of graph nodes,
and it functions as an encoder of global visual feature representation for RS images. The
GNN-based branch in MopNet contributes to aggregating local features into global graph
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representations by employing the spatial and topological relationships implicit in graph
edges. MopNet utilizes two classifiers to output GNN logits and CNN logits. The learnable
parameters of the MopNet are optimized by minimizing the joint loss during the training
period. In the inference stage, the final prediction of the input scene image is obtained from
the GNN-based branch of MopNet. Details of the MopNet are elaborated in the remaining
parts of this section.

Figure 2. Architecture of the multi-output network (MopNet) for RS scene classification. In this
figure, the category of the chosen example scene is the center.

2.1. Graph Structure Construction

As seen in Figure 3, the graph structure construction procedure abstracts graph-
structured information from a regular-shaped image for an RS image. A number of super-
pixel regions are first obtained from RS images through unsupervised image segmentation.
These superpixels are regarded as graph nodes. Graph edges between nodes are created
according to the spatial adjacency between corresponding superpixel regions. In this way,
each RS image is transformed into a graph.

Figure 3. Illustration of the graph structure construction procedure for an RS image.
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Mathematically, the graph of an RS image is symbolized as G = (V, E), where V is the
set of nodes representing entities, and E is the set of edges representing the relationships
between entities. A graph can be formed from an adjacency matrix A, denoting whether
an edge between two corresponding nodes exists or not. For an RS image, the adjacency
matrix of a graph is symbolized as A =

[
aij
]

n×n, where n is the total number of superpixel
regions obtained by the unsupervised segmentation method, and aij is defined as:

aij =

{
1, i f ri and rj share a boundary
0, else

, (1)

where ri and rj are two superpixel regions.

2.2. Node Feature Matrix Initialization

After the graph structure has been constructed, the node feature matrix is initialized
and used for graph classification. The CNN-based branch of MopNet is used as a feature ex-
tractor to yield the feature map to initialize the node features. Typically, the CNN generates
multiple feature maps with varying spatial sizes and different numbers of channels. The
feature map yields from the intermediate block, such as the block “conv4_x” of ResNet [13],
and is selected to initialize the node features. As the spatial size of feature maps decreases,
feature maps closer to the output layer contain high-level semantic information but have
fewer details, while feature maps closer to the input layer have more detailed features that
contain low-level semantic information with some noise [32].

The selected feature map is copied and upsampled to the size of the input RS image.
By laying the boundary of superpixel regions over the feature map, each node in the scene
graph is assigned the maximum feature value of the corresponding superpixel region. The
node feature matrix is symbolized as H =

[
hi,j
]

n×d, where hi,j is the jth feature value of the
ith node, and d is the length of node features. hi,j is calculated as:

hi,j = max
(p,q)∈ri

FMj,(p,q), (2)

where ri denotes the ith superpixel region, i.e., the ith node. (p, q) denotes the location of
the pixel in ri, and FMj, (p,q) is the value of the upsampled feature map in the jth channel
at the location (p, q).

2.3. Encoders and Classifiers in MopNet

MopNet has two encoders, a CNN encoder and a GNN encoder, and their correspond-
ing classifiers. The CNN encoder obtains global visual features for RS images. The GNN
encoder obtains global graph representations for scene graphs constructed from RS images.

2.3.1. Global Visual Feature Vector Extraction from the CNN Encoder

For an RS image, two global visual feature vectors are obtained from the CNN encoder
using different feature maps of two different blocks. Specifically, feature maps can be
obtained via a specified convolutional block of the CNN. Then, global average pooling
(GAP) [35] with a fixed output size set at 1 is stacked over these feature maps to calculate
global visual feature vectors. The global visual feature vector is symbolized as x(b) ∈ Rd(b) ,
where d(b) is the number of feature channels of the feature map generated from the bth
block of the CNN. x(b) is calculated as:

x(b) =
1∣∣R(b)
∣∣ ∑
(p,q)∈R(b)

FM(b)
(p,q) (3)

where R(b) denotes the corresponding spatial range of the bth feature map, (p, q) denotes
the location of the pixel in R(b),

∣∣∣Rb
∣∣∣ is the total number of pixels in R(b), and FM(b)

(p,q)
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is the feature vector with the length of d(b) and filtered from the bth feature map at the
location (p, q).

Two global visual feature vectors obtained from different feature maps of the CNN are
separately used in the two classifiers of MopNet. One is generated from the aforementioned
intermediate feature map for initializing node features of scene graphs, denoted as x(mb)

in Section 2.3.3, and is later fused with the global graph representation to be fed into a
classifier for the GNN output. The other one is generated from the last feature map, denoted
as x(lb) in Section 2.3.3, and is fed into a classifier for the CNN output.

2.3.2. Global Graph Representations from the GNN Encoder

In this paper, two GNN models, the graph convolutional network (GCN) [26] and
graph attention network (GAT) [30], are adopted as two different GNN backbones to
aggregate local node features of scene graphs generated from RS images. GCN aggregates
the node information from neighboring nodes to yield a new feature representation.

Mathematically, h(l)
i ∈ Rd(l) is the feature vector of node vi, where d(l) is the number of

output channels of the lth GNN layer. Thus, the new feature representation h(l+1)
i ∈ Rd(l+1)

of vi is generated by graph convolution as:

h(l+1)
i = σ

 ∑
vj∈Ñ(vi)

1
β ji

Wh(l)
j

, (4)

where σ is the activation function, W ∈ Rd(l+1)×d(l) is the learnable weight matrix, and Ñ(vi)

is the set of neighbors of node vi. h(l)
j denotes the feature vector of vj at the lth GNN layer.

β ji is the product of the square root of node degrees, i.e., β ji =

√∣∣∣Ñ(vj
)∣∣∣√∣∣∣Ñ(vi)

∣∣∣.
GAT learns edge weights that reflect to what extent different neighbors contribute

to the new representation via a multi-head attention mechanism in an adaptive learning
way when aggregating neighboring node features [30]. Correspondingly, h(l+1)

i in GAT is
calculated as follows:

h(l+1)
i =‖T

t=1 σ

 ∑
vj∈Ñ(vi)

α
(t)
ij W(t)h(l)

j

, (5)

where ‖ is the concatenation operation and T is the number of attention heads. αij denotes
the normalized weight coefficient between vi and vj and is calculated as:

αij = so f tmaxj
(
eij
)
, (6)

where eij is the weight coefficient between vi and its neighbor vj. eij is calculated via a fully
connected layer as:

eij = LeakyReLU
(

f2d(l+1)

([
Wh(l)

i ‖Wh(l)
i

]))
, (7)

where f2d(l+1)(·) is the fully connected layer with 2d(l+1) output channels. By integrating
Equations (6) and (7), αij is completely written as:

αij =
exp

(
LeakyReLU

(
f2d(l+1)

([
Whi ‖Whj

])))
∑vj∈Ñ(vi)

exp
(

LeakyReLU
(

f2d(l+1)

([
Whi ‖Whj

]))) , (8)

Global graph pooling is used to generate global graph representations for the scene
graph after aggregating node features by graph convolutional layers or graph attention
layers. A weight-and-sum pooling layer [36] is used to transform local node features
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into global graph features for the classification task. The global graph feature vector
hglobal ∈ Rd(−1)

, where d(−1) is the number of output channels of the final GNN layer, is
calculated as:

hglobal =
n

∑
i=1

sigmoid
(

f1

(
h(−1)

i

))
h(−1)

i , (9)

where f1(·) represents a linear transform layer with one output channel and h(−1)
i ∈ Rd(−1)

represents the feature vector of vi output from the final GNN layer.

2.3.3. Multi-Output Logits of MopNet from Classifiers

The MopNet has two classifiers: a classifier with a multilayer perceptron (MLP) for
the GNN output and a classifier with a fully connected layer for the CNN output. A
concatenation operation is adopted to fuse the global graph feature representation hg with
the global visual feature vector generated from the intermediate feature map. The newly
generated feature vector is fed into a two-layer MLP to produce the GNN output. The
GNN output ognn is calculated as:

ognn = MLP
([

x(mb) ‖ hglobal

])
, (10)

where xmb is the global feature vector generated from the intermediate feature map selected
for initializing the node feature matrix.

Additionally, the global feature vector x(lb) generated from the last feature map of
CNN is fed into a fully connected layer to produce the logits as the CNN output ocnn, which
is calculated as:

ocnn = fK

(
x(lb)

)
, (11)

where K is the number of scene classes and fK(·) denotes a fully connected layer with K
output channels.

2.4. Loss Function of MopNet

The MopNet is trained with the joint loss LJ . LJ is calculated by integrating the GNN
loss Lgnn and the CNN loss Lcnn with a balance parameter λ ∈ (0, 1) as:

LJ(θ) = λLgnn + (1− λ)Lcnn, (12)

where θ denotes model parameters, including GNN parameters θgnn, CNN parameters θcnn,
and parameters of classifiers θcl . Lgnn and Lcnn are separately calculated via a cross-entropy
function. In this paper, label smoothing [37] is further adopted to reduce overfitting effects
and improve prediction accuracy. The joint loss LJ is rewritten as:

LJ(θ) = λL
(
y′, ognn

)
+ (1− λ)L

(
y′, ocnn

)
, (13)

where y′ denotes the smoothed label, calculated from one-hot label y according to [37].
L
(
y′, ognn

)
and L(y′, ocnn) are separately calculated as:

L
(
y′, ognn

)
=

K

∑
i=1
−y′i log

 eognn
Twi

gnn

∑K
j=1 eognnTwj

gnn

, (14)

L
(
y′, ocnn

)
=

K

∑
i=1
−y′i log

 eocnn
Twi

cnn

∑K
j=1 eocnnTwj

gnn

 (15)

where K denotes the number of scene classes and w represents the weights and bias of the
last layer.
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In our MopNet, learnable parameters of the GNN and the CNN are simultaneously
optimized by backward propagation during the training process of the model. The training
process of MopNet is depicted in Algorithm 1. The adjacent matrix A and the superpixel
regions R are obtained during graph structure construction, which is performed before the
training process of the MopNet.

Algorithm 1. Training process of MopNet.

Input: RS images I, adjacent matrix A, segmented superpixel regions R and true labels y in
training set.
Output: GNN parameters θgnn, CNN parameters θcnn and parameters of classifiers θcl .
Learning MopNet:

1. for epoch = 1, 2, . . . do;
2. Take I as input, calculate feature maps from the intermediate block mb, calculate feature

maps from the last block lb;
3. Take R as input, overlap R on the feature maps from the block mb, and initialize node feature

matrix H according to Equation (2);
4. Take A as input, update H with A using graph convolutional layers according to

Equation (4) or using graph attention layers according to Equations (5)–(8);
5. Produce global visual features x(mb) and and x(lb) according to Equation (3);
6. Produce global visual features hglobal according to Equation (9);
7. Calculate GNN logits ognn according to Equation (10);
8. Calculate GNN logits ocnn according to Equation (11);
9. Calculate the joint loss based on y according to Equations (12)–(15);
10. Update θgnn, θcnn and θcl via backward propagation;
11. end for

3. Experiments and Results

The results of our experiments are presented and analyzed in this section. A descrip-
tion of the datasets used in this paper can be found in Section 3.1. The experimental settings
are then described in Section 3.2. In Section 3.3, the experimental results on two public
datasets are provided and compared with the results of the state-of-the-art methods.

3.1. Experimental Data Sets

Two RS image scene classification benchmark datasets were employed to test the
effectiveness of the MopNet. The characteristics of the two used datasets are listed in
Table 1.

Table 1. Characteristics of the two RS image scene classification datasets used in this study.

Dataset No. of
Classes

Total Number
of Images

No. of Images
per Class

Image Size
(in pixels)

Training
Ratio

OPTIMAL-31 [38] 31 1860 60 256 × 256 80%
Aerial Image

Dataset (AID) [39] 30 1000 220–420 600 × 600 20%, 50%

Some example images of the two datasets are shown in Figures 4 and 5.
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Figure 4. Example images of the OPTIMAL-31 dataset.

Figure 5. Example images of the AID dataset.
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3.2. Experimental Settings

For MopNet, GAT and GCN were separately used as the GNN backbone, while
ResNet50 was used as the CNN backbone. The MopNet without the CNN prediction,
identified as SopNet, was also compared with the MopNet. Specifically, the following
four experiments were conducted in our study: MopNet-GAT-ResNet50, MopNet-GCN-
ResNet50, SopNet-GAT-ResNet50, and SopNet-GCN-ResNet50.

Some parameters in our method were set as follows. Felzenszwalb’s algorithm [40] was
applied to generate superpixel regions from RS images in the graph structure construction,
with the segmentation scale set as 50 and 300 for the OPTIMAL-31 and AID datasets,
respectively. The GCN encoder used had two graph convolutional layers, while the GAT
encoder used had two graph attention convolutional layers with eight attention heads. In
these two GNN encoders, the hidden dimension and output dimension were both 512. The
feature map from block “conv4_x” of ResNet50 was chosen for initializing node feature
matrixes for scene graphs. All the experiments were trained for 100 epochs. Adam was
used as the optimizer, and the learning rate was 1e-3. The mini-batch sizes were 16 and 8
for the OPTIMAL-31 and AID datasets, respectively.

Our model was implemented using PyTorch and the Deep Graph Library (DGL) [41].
All experiments were conducted on a personal computer equipped with an Intel core
i9-10900K CPU and NVIDIA GeForce RTX 3090 GPU with 24 GB of memory.

3.3. Scene Classification Results
3.3.1. Results under Different Balance Parameters

To determine how the balance parameter λ of the joint loss affects the classification
results, different λ values were set in MopNet-GAT-ResNet50 on the OPTIMAL-31 dataset.
Table 2 shows the results when λ increased from 0.1 to 0.9. In general, as λ increased,
the accuracy first fluctuated and then decreased. The highest overall accuracy (OA) of
96.06% was obtained when λ was 0.7. This indicates that both GNN-based and CNN-based
branches contributed to improving the scene classification performance of MopNet but did
not contribute equally. The GNN-based or CNN-based branch should not be given a fully
dominant weight. In the following experiments, λ was set as 0.7.

Table 2. Overall accuracy on the OPTIMAL-31 dataset with different balance parameters of the joint
loss by MopNet-GAT-ResNet50.

λ Overall Accuracy (%)

0.1 95.16 ± 0.47
0.2 95.32 ± 0.46
0.3 95.34 ± 0.31
0.4 95.03 ± 0.57
0.5 95.16 ± 0.47
0.6 95.30 ± 0.55
0.7 96.06 ± 0.31
0.8 95.16 ± 0.38
0.9 94.62 ± 0.26

3.3.2. Results of MopNet on the OPTIMAL-31 Dataset

Quantitative results are presented for the OPTIMAL-31 dataset in Table 3. OA values of
96.06% and 95.34% were achieved by MopNet-GAT-ResNet50 and MopNet-GCN-ResNet50,
outperforming the fine-tuned ResNet50 with increases of 5.60% and 4.88%, respectively.
Generally, MopNet-GAT-ResNet50 had a higher OA and lower standard deviations than
MopNet-GCN-ResNet50, indicating better performance and the robustness of using GAT
as the GNN backbone on the OPTIMAL-31 dataset. Nevertheless, both MopNet-GAT-
ResNet50 and MopNet-GCN-ResNet50 achieved better results than most of the compared
methods in Table 3. Notably, our MopNet-GAT-ResNet50 obtained a higher accuracy
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than the method in [42] using the vision transformer, which has achieved remarkable
performances on classification tasks in recent years.

Table 3. Comparison of OAs (%) on the OPTIMAL-31 dataset.

Methods OA (80% Training)

Fine-tuning ResNet50 [43] 90.46 ± 0.38
ARCNet-ResNet [38] 91.28 ± 0.45

MSNet [44] 93.92 ± 0.41
EfficientNet-B3-aux [45] 94.51 ± 0.75

ResNet_LGFFE [43] 94.55 ± 0.36
IDCCP with ResNet50-512 [46] 94.89 ± 0.22

Vision transformer [42] 95.56 ± 0.18
DM-GAF [23] 96.24 ± 1.10

SopNet-GCN-ResNet50 93.37 ± 0.68
MopNet-GCN-ResNet50 (Ours) 95.34 ± 0.31

SopNet-GAT-ResNet50 93.55 ± 0.71
MopNet-GAT-ResNet50 (Ours) 96.06 ± 0.31

The confusion matrix generated by MopNet-GAT-ResNet50 on the OPTIMAL-31
dataset is presented in Figure 6. It can be seen that 28 out of 31 categories had scores
higher than 90%, with 21 categories having scores of 100%. MopNet-GAT-ResNet50 had a
better ability to discriminate the classes that are easily misclassified by other methods, such
as DM-GAF [23]. The commercial area, dense residential area, and industrial area were
classified by our model with accuracies of 92%, 83%, and 100%, respectively, while these
three classes only obtained accuracies of 83%, 67%, and 83%, respectively, by DM-GAF [23].

Figure 6. Confusion matrix of MopNet-GAT-ResNet50 on the OPTIMAL-31 dataset.
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3.3.3. Results of MopNet on the AID Dataset

A comparison of the results on the AID dataset is presented in Table 4. Our Mop-
Net had a comparable or even better performance on the AID dataset than the methods
presented in Table 4. On the AID dataset, MopNet-GCN-ResNet50 achieved a higher OA
than MopNet-GAT-ResNet50 under training ratios of 20% and 50%, with OA values of
95.53% and 97.11%, respectively. Our MopNet obtained much better results than DM-GAF
on the AID dataset, although our MopNet had a slightly lower OA than DM-GAF on
the OPTIMAL dataset. In addition, our MopNet obtained greater improvements under
a training ratio of 20% than under a training ratio of 50% compared with methods such
as SFCNN [47], DCNN [10], and the method combining CNN with GCN [32]. This phe-
nomenon indicates that our MopNet is robust for scene classification, especially when the
training set is small.

Table 4. Comparison of OAs (%) of different methods on the AID dataset.

Methods OA (20%) OA (50%)

Fine-tuning ResNet50 [43] 86.48 ± 0.49 89.22 ± 0.34
ResNet_LGFFE [43] 90.83 ± 0.55 94.46 ± 0.48

ACNET [48] 93.33 ± 0.29 95.38 ± 0.29
DM-GAF [23] 94.05 ± 0.10 96.12 ± 0.14

EfficientNet-B3-aux [45] 94.19 ± 0.15 96.56 ± 0.14
SFCNN [47] 93.60 ± 0.12 96.66 ± 0.11

Combined CNN with GCN [32] 94.93 ± 0.31 96.70 ± 0.28
DCNN [10] 90.82 ± 0.16 96.89 ± 0.10

IDCCP with ResNet50-512 [46] 94.80 ± 0.18 96.95 ± 0.13
MSNet [44] 95.59 ± 0.15 96.97 ± 0.27
GLDBS [34] 95.45 ± 0.19 97.01 ± 0.22

SopNet-GCN-ResNet50 89.06 ± 0.39 93.56 ± 0.28
MopNet-GCN-ResNet50 (Ours) 95.53 ± 0.11 97.11 ± 0.07

SopNet-GAT-ResNet50 91.26 ± 0.43 95.16 ± 0.16
MopNet-GAT-ResNet50 (Ours) 95.16 ± 0.16 96.75 ± 0.11

Figures 7 and 8 show the confusion matrixes generated by our MopNet-GCN-ResNet50
on the AID dataset under training ratios of 20% and 50%, respectively. The number of
categories with classification accuracies higher than 95% was 22 and 24 under the training
ratios of 20% and 50%, respectively. The most obvious misclassification occurred between
the categories of resort and park, and between the categories of school and commercial area.
Taking the results under the training ratio of 20% as an example, 4% of the images from the
resort were misclassified as parks, and 3% of the images from the school were misclassified
as commercial. Similar confusion also occurred for IDCCP [46] and the method combining
GCN with CNN [32]. Nevertheless, our MopNet performed better in classifying these
confusable categories than these two methods. Specifically, for IDCCP [46], 16% of images
from the resort were classified as parks, and 6% of images from the school were classified
as commercial. For the method combining a GCN with a CNN [32], 6% of the images from
the resort were classified as parks, and 3% of the images from the school were classified
as commercial.
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Figure 7. Confusion matrix of MopNet-GCN-ResNet50 on the AID dataset under a training ratio
of 20%.

Figure 8. Confusion matrix of MopNet-GCN-ResNet50 on the AID dataset under a training ratio
of 50%.

3.3.4. Comparison Results of MopNet and SopNet

As seen from the experimental results, our MopNet obtained higher OAs with lower
standard deviations than the corresponding SopNet. Specifically, as shown in Table 3, on
the OPTIMAL-31 dataset, our MopNet with GCN and GAT as the GNN backbones obtained
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1.97% and 2.69% improvements in OA compared to SopNet, respectively. According to
Table 4, on the AID dataset, MopNet with GCN obtained 6.55% and 3.55% improvements
in OA under the 20% and 50% training ratios compared to SopNet, respectively, while
MopNet with GAT obtained 3.9% and 1.59% improvements. Moreover, MopNet obtained
lower standard deviations of OAs than the corresponding SopNet.

The classification accuracies obtained by MopNet and SopNet for some typical cate-
gories are presented in Figures 9–11. Some categories with complex spatial and topological
relations among ground objects in the scene images were selected for comparison, such
as church, commercial area, industrial area, center, school, square, and residential area.
Some categories with no salient spatial topological dependences contained in the scene
images, such as desert, lake, and bare land, were also selected for comparison. As seen
in Figures 9–11, MopNet usually obtained higher classification accuracies than the corre-
sponding SopNet for these categories on the two datasets.

Figure 9. Classification accuracies calculated by MopNet and SopNet on some typical classes of the
OPTIMAL-31 dataset.

Figure 10. Classification accuracies calculated by MopNet and SopNet on some typical classes of the
AID dataset under the training ratio of 20%.
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Figure 11. Classification accuracies calculated by MopNet and SopNet on some typical classes of the
AID dataset under the training ratio of 50%.

4. Discussion
4.1. Effectiveness of MopNet for Various Categories

The proposed MopNet had universally promising performance for various categories
of RS scenes. As seen in Figures 6–8, our MopNet had a robust capability in classifying
various categories of scenes, although different categories of scenes usually have various
geographical entities and spatial distributions among these entities. The number of graph
nodes generated from an RS image is related to the number of geographical entities in
these images. The average and the variance of graph node counts of various categories are
presented in Tables 5 and 6. Complex RS scenes, such as dense residential scenes, usually
had more graph nodes, while simple RS scenes, such as meadow scenes, usually had fewer
graph nodes. For a specified category, the spatial and topological relationships imbedded
in images of the category were imbedded in graph edges between corresponding nodes
and were employed through the message propagation mechanism of MopNet. In this way,
the MopNet was effective at scene classification for various categories.

Table 5. Node counts of each category in the OPTIMAL-31 dataset.

Class Node
Counts Class Node

Counts Class Node
Counts

airplane 131 ± 27 desert 133 ± 54 medium residential 210 ± 28
airport 194 ± 30 forest 197 ± 47 mobile home park 219 ± 26

baseball diamond 135 ± 33 freeway 162 ± 35 mountain 204 ± 49
basketball court 181 ± 38 golf course 135 ± 28 overpass 179 ± 33

beach 129 ± 38 ground track field 189 ± 37 parking lot 192 ± 23
bridge 120 ± 31 harbor 163 ± 24 railway 194 ± 32

chaparral 185 ± 37 industrial 226 ± 27 rectangular farmland 135 ± 47
church 198 ± 31 intersection 201 ± 22 roundabout 193 ± 26

circular farmland 154 ± 42 island 96 ± 30 runway 112 ± 28
commercial 212 ± 24 lake 147 ± 49

dense residential 243 ± 16 meadow 93 ± 33

Table 6. Node counts of each category in the AID dataset.

Class Node
Counts Class Node

Counts Class Node
Counts

airport 123 ± 36 farmland 70 ± 34 port 124 ± 53
bare land 46 ± 26 forest 74 ± 37 railway station 142 ± 50

baseball field 108 ± 29 industrial 175 ± 53 resort 153 ± 57
beach 55 ± 33 meadow 24 ± 15 river 72 ± 30
bridge 73 ± 31 medium residential 159 ± 45 school 190 ± 53
center 158 ± 51 mountain 105 ± 49 sparse residential 101 ± 21
church 204 ± 36 park 132 ± 42 square 155 ± 51

commercial 170 ± 52 parking 211 ± 41 stadium 163 ± 44
dense residential 228 ± 45 play ground 101 ± 33 storage 159 ± 47

desert 27 ± 21 pond 72 ± 30 viaduct 126 ± 43
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As seen in Table 5, for the OPTIMAL-31 dataset, the categories of commercial, dense
residential, industrial, and medium residential had a larger number of graph nodes. It was
difficult for RS scene classification methods to distinguish these categories. Our MopNet
obtained accuracies of 92%, 83%, 100%, and 100% for these categories, respectively, which
are comparable to or higher than existing methods, such as DM-GAF [23]. In contrast, the
category of island generated fewer graph nodes and was relatively easy to classify. For
the island, our MopNet obtained a classification accuracy of 100%, while DM-GAF [23]
obtained an accuracy of 83%.

As seen in Table 6, for the AID dataset, the commercial, dense residential, and indus-
trial categories had abundant details in the scene images and thus had a large number of
graph nodes. For these categories, our MopNet obtained accuracies of 98%, 97%, and 95%,
respectively, under the training ratio of 20%, while the results generated by the method
combining GCN with CNN [32] were 95%, 91%, and 94%, respectively. In contrast, cate-
gories such as desert and meadow had poor textures and thus had the fewest graph nodes.
Our MopNet obtained accuracies of 97% and 99% separately for these two categories, while
the method in [32] obtained accuracies of 92% and 98%, respectively.

4.2. Contribution of the GNN and CNN in MopNet to Scene Classification

Both the GNN-based and CNN-based branches of MopNet contribute to RS image
scene classification but do not contribute equally. The contributions of the GNN and CNN
are described as follows:

(1) The GNN-based branch employs spatial and topological relationships imbedded in
RS images, leading to an improved classification accuracy of MopNet. The GNN com-
pensates for the shortcoming of the CNN by representing features in non-Euclidean
space. Given that the balance parameter λ was suggested to be set as 0.7 by the
comparison experiments, the GNN plays an important role in minimizing the joint
loss of the MopNet. Moreover, the contribution of the GNN to MopNet can also be
drawn from the comparison between our MopNet and GLDBS [34]. GLDBS [34] used
two CNNs as the backbones of two branches, unlike our MopNet, which has a GNN
branch beside a CNN branch. It is difficult for models such as GLDBS to effectively
learn the spatial and topological information. The experimental results show that our
MopNet obtained higher overall accuracies than GLDBS on the AID dataset.

(2) The CNN-based branch helps to improve the performance and stability of MopNet.
As shown in Tables 3 and 4, MopNet obtained higher overall accuracies (OAs) and
lower standard deviations of OAs in comparison to the corresponding SopNet, which
did not involve the CNN prediction in the optimized objective of the model. As shown
in Figures 9–11, MopNet achieved obvious accuracy improvements in comparison to
the corresponding SopNet for various categories, such as commercial and industrial
in the OPTIMAL-31 dataset and center, resort, school, and square in the AID dataset.
SopNet suffers from the effect of uncertainties caused by image segmentation and
graph structure construction for images of these categories. For MopNet, the CNN-
based branch helps to reduce the effect and thus improve the stability.

4.3. Differences between MopNets and Existing Methods Combining CNN and GNN

The proposed MopNet differs from the existing methods that also combine CNN and
GNN [24,32] in terms of the training strategy and the prediction output.

(1) Training strategy: A training strategy of jointly learning CNN and GNN was adopted
in MopNet. The parameters of the CNN and GNN in MopNet are updated simul-
taneously with the guidance of a joint loss via the backpropagation mechanism. In
contrast, the method in [24] adopts the step-by-step training strategy, training the
CNN and the GNN separately. The parameters of the CNN and GNN in [24] were
not simultaneously optimized as in our MopNet. The classification performance of
the GNN in [24] may suffer from the effect of the representation ability of the CNN.
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(2) Prediction output: The experimental results indicate that the MopNet obtained higher
classification accuracies with more robustness than the corresponding SopNet that
did not involve the CNN output in the optimized objective. Moreover, our MopNet
regarded both outputs of the GNN and CNN as the optimized objective, unlike the
method in [32] using the GNN prediction alone. Our MopNet obtained better classi-
fication results than the method in [32]. In the future, MopNet will be investigated
with more CNN backbones and various GNN backbones.

5. Conclusions

In this paper, a new multi-output network (MopNet) combining GNN and CNN is
proposed for achieving high-accuracy RS image scene classification. The parameters of the
CNN and GNN in MopNet are updated simultaneously with the guidance of a joint loss
via the backpropagation mechanism. Experimental results on the OPTIMAL-31 and AID
datasets show that the proposed MopNet combining GAT/GCN and ResNet50 has promis-
ing overall accuracies, outperforming the state-of-the-art methods. The proposed MopNet
is able to achieve higher overall accuracies with lower variances than the corresponding
single-output network (SopNet). The CNN-based branch of MopNet reduces the effect
of uncertainties caused by image segmentation and graph structure construction for RS
images, and thus helps to improve the performance and stability of MopNet. On the other
hand, the GNN-based branch employs spatial and topological relationships imbedded in
graph edges among geographical objects in RS images and helps to improve the classifica-
tion accuracy of MopNet. Spatial and topological relationships imbedded in RS images are
helpful for improving the performance of scene classification.
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