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Abstract: Moving target imaging in high-squint synthetic aperture radar (SAR) shows great potential
for reconnaissance and surveillance tasks. For the desired resolution, high-squint SAR has a long-time
coherent processing interval (CPI). In this case, the maneuvering motion of the moving target usually
causes high-order phase terms in the echoed data, which cannot be neglected for precise focusing.
Many ground moving target imaging (GMTIm) algorithms have been proposed in the literature,
but some high-order phase terms remain uncompensated in high-squint SAR. For this problem, a
high-order phase correction-based GMTIm (HPC-GMTIm) method is proposed in this paper. We
assumed that the target of interest has a constant velocity in the subaperture CPI, but maneuvering
motion parameters for the whole CPI. Within the short subaperture CPI, the target signal can be
simplified as a three-order phase expression, and the instantaneous Doppler frequency (DF) was
estimated by some time–frequency analysis tools, including the Hough transform and the fractional
Fourier transform. For the whole CPI, the subaperture, the instantaneous DF was combined to form
a total least-squares problem, outputting the undetermined phase coefficients. Using the proposed
local-to-global processing chain, all high-order phase terms can be estimated and corrected, which
outperforms existing methods. The effectiveness of the HPC-GMTIm method is demonstrated by
real measured high-squint SAR data.

Keywords: ground moving target imaging (GMTIm); high-order phase correction; high-squint SAR;
maneuvering motion; parameter estimation

1. Introduction

For synthetic aperture radar (SAR), the high-squint imaging mode enhances the flexi-
bility and detection ability of the modern radar system, which makes it more preferable than
the conventional broadside mode [1–3]. In high-squint mode, focusing the ground moving
target can provide detailed target signatures, which benefits the subsequent detection [4]
and classification [5].

In stationary SAR images, the ground moving target is defocused and dislocated due
to its unknown motions [6–10]. Generally, the range velocity induces an extra Doppler cen-
troid shift, which causes azimuth dislocation and an additional linear range walk [11]. The
cross-range velocity impacts the Doppler rate, which results in cross-range defocusing [12].
In addition, the high-squint SAR has a large coherent processing interval (CPI), where the
maneuvering motion of the observed target is usually inevitable [13]. The maneuvering
motion parameters, such as the acceleration and acceleration rate, cause high-order phase
terms. To achieve accurate focusing, these high-order phase terms should be estimated
and corrected.

Ground moving target imaging (GMTIm) mainly contains two processing steps: mov-
ing target detection and motion parameter estimation. Moving target detection can signifi-
cantly improve the target signal-to-noise ratio (SNR) and benefits the subsequent motion
parameter estimation. For the target located at the high band of the pulse repetition
frequency (PRF), it can be separated from the clutter spectrum in the range–Doppler do-
main [14]. If the target is submerged by the clutter spectrum, the target energy may be
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extracted in the image domain [14]. However, if the target is seriously blurred, high SNR
data of the moving target can hardly be achieved by windowing the blurred energy in the
image domain. To deal with such a problem, this paper utilized multiple low-resolution
subaperture images for moving target detection. In different subaperture images, the
stationary clutter is nearly unchanged, while the moving target blur gradually varies over
a slow time. In this paper, the dominant blur of the moving target was extracted from each
subaperture image and transferred back to the raw data domain. By combining the moving
target signal from multiple subapertures together, one can obtain the target signal of the
whole CPI with a high SNR.

The next step is to estimate and correct the motion parameters of the moving target.
The keystone transform (KT) [15–17] and the Hough transform (HT) [14] can be used
for the linear range walk correction (LRWC). The KT eliminates the dependence of the
range–frequency by interpolation. However, the KT fails to eliminate the LRWC, when the
target has a large radial motion due to Doppler ambiguity. The HT can estimate the slope
of the target envelop and perform the LRWC in the presence of Doppler ambiguity. If the
range curve exists for the moving target of interest, the second-order KT can be utilized for
the range curve correction (RCC) [18,19]. After the LRWC and RCC, the target energy is
concentrated in one range cell. For the signal in this range cell, the cross-range phase terms
are still influenced by the motion parameters, which need to be further estimated. The
fractional Fourier transform (FrFT) [8,20–22] is capable of extracting the Doppler rate, and
the third-order Doppler parameter can be estimated by the generalized Hough high-order
ambiguity function (GHHAF) transform [18] or the polynomial Fourier transform [11].

To our knowledge, the existing GMTIm algorithms are suitable for broadside imaging
and only deal with the second- or third-order phase model. They cannot be applied directly
to high-squint mode, since more high-order phase terms should be considered. It is worth
noting that high-order phase terms are not only caused by the SAR observation, but also
induced by the target maneuvering motion in a large CPI.

In this paper, we propose a flexible radar signal processing method to focus the ground
moving target in high-squint SAR, which is named the high-order phase correction GMTIm
(HPC-GMTIm) algorithm. First, the whole CPI is divided into multiple subapertures.
In each subaperture, the target velocity is assumed to be constant. This assumption is
acceptable since the subaperture CPI is very short. As a result, the subaperture signal
can be reduced to a three-order phase function. From this three-order phase function,
the instantaneous Doppler frequency (DF) can be obtained, using the HT and the FrFT to
estimate the Doppler centroid and Doppler rate, respectively. The next step is to estimate
the signal phase in the whole CPI. The subaperture DF is combined into a linear system
of equations, and the whole CPI phase coefficients are determined by solving a total
least-squares problem. The proposed GMTIm algorithm can estimate and correct more
high-order phase terms in comparison with the existing methods.

2. Moving Target Signal Model in High-Squint SAR

Figure 1 shows the high-squint SAR geometry containing one moving target. The
platform carrying the SAR sensor flies along a straight line parallel with the X-axis with a
constant velocity v. The squint angle of the beam center line is θ, and the operational range
from the aperture center to the scene center o is r0. Suppose that a target with azimuth
distance xT moves from position P1 to P2 during the CPI. It is hard to determine the target
motion information, since no prior knowledge is available. For example, the moving target
may have a constant velocity, acceleration, or time-varying motion parameters. In general,
the along-track motion is denoted by vector Λx, and the cross-track one is defined as Λy.
Both Λx and Λy contain velocity, acceleration, and high-order motion parameters. As a
result, the slant range of the moving target at a slow time ta can be expressed by:

rT(ta) =
√

[r0 sin θ − v(ta − tc) + s(Λx)]
2 +

[
r0 cos θ − s

(
Λy
)]2 (1)
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where ta ∈ (−T/2, T/2], T is the synthetic aperture time, tc denotes the aperture center
time for the moving target, and s(Λx) and s

(
Λy
)

represent the moving distance in the X-
and Y-axis, respectively. Extending (1) into a Q-order Taylor series at (ta − tc), we obtain
the approximated slant range:

rT(ta) ≈
Q

∑
q = 0

aq(ta − tc)
q ≈

Q

∑
q = 0

αqta
q (2)

where aq is the qth Taylor coefficient. Symbol αq is a function of aq and tc, which means that
αq is azimuth dependent.

X
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Figure 1. High-squint SAR geometry with a ground maneuvering moving target.

For high-squint SAR imaging, a five-order polynomial has been used in some litera-
ture [23]. In the presence of maneuvering motion, more high-order polynomial coefficients
should be considered for accurate focusing. The proposed HPC-GMTIm algorithm aims to
estimate all Q (α0 is omitted since it has no effect on focusing) unknown coefficients using
a local-to-global processing strategy.

3. The Proposed HPC-GMTIm Algorithm
3.1. Moving Target Detection

In the first type, the moving target Doppler spectrum is located at the high band of
the PRF, which means that the moving target energy can be separated from the clutter
spectrum in the Doppler domain. Since the moving target spectrum and clutter spectrum
do not overlapped, the extracted moving target data have a high SNR. Please see the targets
T1 and T3 in the real data experiments in Section 4.

In the second type, the moving target is partially or completely submerged by the
clutter spectrum, which implies that the moving target cannot be detected in the Doppler
domain. In such a condition, the moving target will be detected in the image domain.
However, the moving target may be seriously blurred in the image domain due to the
maneuvering motion, for which is difficult to obtain high SNR data. To solve this problem,
a moving target detection strategy based on multiple low-resolution subaperture images
was developed in this paper. Firstly, all the aperture data are divided into subapertures,
and the subaperture images are focused subsequently. The stationary clutter stays nearly
unchanged in each subaperture image, while the moving target energy varies with the slow
time. Therefore, the moving target can be distinguished visually and extracted from each
subaperture image. Finally, the extracted moving target signal in the subaperture image
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is transferred back into the raw data domain. By combining the moving target data from
multiple subapertures together, one can obtain the target signal in the whole CPI with a
high SNR. Examples of the moving target belonging to the second type can be found in
Section 4.

3.2. Subaperture Processing

Since the subaperture CPI is quite short, the maneuvering motion of the target can be
neglected. Therefore, we assumed that the moving target has a constant velocity within the
subaperture CPI, and the slant range at the slow time ta_sub can be simplified as:

rT(ta_sub) =
√

[r0 sin θ − v(ta_sub − tc) + vx(ta_sub − tc)]
2 +

[
r0 cos θ − vy(ta_sub − tc)

]2 (3)

where tc = xT
/
(v− vx), ta_sub ∈ (−Tsub/2, Tsub/2], Tsub is the subaperture duration, and

vx and vy are the along-track and cross-track velocity of the target, respectively. From our
experience, the three-order Taylor series of (3) is accurate enough to focus the subaperture
signal, which is given by:

rT(ta_sub) ≈
3

∑
k = 0

ck(ta_sub − tc)
k (4)

where: 
c0 = r0
c1 = − v sin θ + vr

c2 = (v cos θ−vcr)
2

2r0

c3 = (v cos θ−vcr)
2(v sin θ−vr)

2r0
2

(5)

and: {
vr = vx sin θ − vy cos θ
vcr = vx cos θ + vy sin θ

(6)

vr is the range velocity, and vcr is the cross-range one.
Suppose that a pulsed chirp signal st(tr) = rect

(
tr
/

Tp
)
· exp

[
j2π
(

fctr + γtr
2/2
)]

is transmitted. Symbol tr is the fast time; Tp denotes the pulse width; fc represents the
carrier frequency; γ corresponds to the chirp rate. After removing the carrier frequency,
matched-filtering in the range dimension, and transforming the echoed signal into the
range–frequency domain, we obtain:

Ss( fr, ta_sub) =Wr( fr)wa(ta_sub − tc) exp

[
−j

4π

c
( fc + fr)

3

∑
k = 0

ck(ta_sub − tc)
k

]

=Wr( fr)wa(ta_sub − tc) exp

[
−j

4π

c
( fc + fr)

3

∑
k = 0

βktk
a_sub

]
(7)

where Wr( fr) and wa(ta_sub − tc) are the window function in the range and cross-range
dimensions, respectively, c denotes the speed of light, and fr represents the range frequency.
The coefficient βk is given by:

β0 = r0 − c1tc + c2tc
2 − c3tc

3

β1 = c1 − 2c2tc + 3c3tc
2

β2 = c2 − 3c3tc
β3 = c3

(8)

Generally, β3 makes no contribution to the range cell migration, and the range curve
can be corrected by the SAR parameters. Target motion mainly affects the linear range walk
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and the azimuth quadratic phase within the subaperture CPI. A simulation experiment
was performed to validate these approximations. The simulated parameters are listed in
Table 1. There are two targets in the scene. Target 1 is moving with a constant velocity,
while target 2 is stationary. Figure 2a shows the linear range walk difference between
two targets. It indicates that the target motion causes extra range walk, which cannot be
neglected for SAR imaging with a resolution of 1 m × 1 m (range×cross-range). Figure 2b
gives the quadratic phase difference between Target 1 and Target 2, which shows that the
target motion influences the azimuth focusing. Figure 2c illustrates the third-order azimuth
phase difference between the moving target and the stationary one, which implies that
the target motion has no effect on the third-order phase. In addition, since the third-order
phase is azimuth-independent, it can be deramped by the reference function corresponding
to the scene center.

Table 1. Simulated parameters.

Parameter Value

Operational band Ku
Squint angle 70◦

Platform velocity 100 m/s
Operational range 10 km
Subaperture CPI 1 s

Target 1 coordinate (range, cross-range) (0, 1000) m
Target 1 velocity (range, cross-range) (30, 20) m/s

Target 2 coordinate (range, cross-range) (0, 1000) m
Target 2 velocity (range, cross-range) (0, 0) m/s
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Figure 2. Range: Please add bold for abc in figure, same as others. cell migration and azimuth
phase comparison. (a) Linear range walk difference. (b) Quadratic phase difference. (c) Third-order
phase difference.

Based on the assumptions above, the range curve of the moving target within the
subaperture CPI can be corrected by the SAR parameters. The range curve correction (RCC)
function is given by:

FRCC( fr, ta_sub) = exp

[
j
2π(v cos θ)2

cr0
frt2

a_sub

]
(9)

It should be mentioned that the moving target range r0 is unknown, which impacts
the precision of the RCC function. Generally, the target moves within a small range area
during the subaperture CPI. Therefore, the RCC precision can be guaranteed by using the
range center of the data block containing the moving target.
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After the RCC, the signal is transferred back to the fast time domain, which is given
by:

ss(tr, ta_sub) = sinc

γTp

tr −
2
(

β0 + β1ta_sub

)
c

 · exp

(
−j

4π

λ

3

∑
k = 0

βktk
a_sub

)
(10)

where λ is the wavelength. Obviously, β1ta_sub introduces extra linear range walk in (10).
We used the HT to estimate the target envelop slope rate. Then, the linear range walk
correction (LRWC) function can be obtained as follows:

FLRWC( fr, ta_sub) = exp
[

j
4π

c
( fc + fr)β̂1ta_sub

]
(11)

where β̂1 is the target envelop slope rate estimated by the HT.
After the LRWC, the target signal is given by:

ss(tr, ta_sub) = sinc
[

γTp

(
tr −

2β0

c

)]
· exp

[
−j

4π

λ

(
β0 + β2t2

a_sub + β3t3
a_sub

)]
(12)

Now, the target energy is concentrated into one range cell. It should be noted that the
moving target is located at range β0 instead of the real one r0 after the LRWC, which usually
causes an azimuth-variant phase in high-squint SAR [23]. From Figure 2, we know that the
target motion has no effect on the third-order azimuth phase. Therefore, the third-order
phase can be deramped by the reference function corresponding to the scene center, which
is given by:

F3rd_dmp(ta_sub) = exp

(
j
2πv3cos2θ sin θ

λβ0
2 t3

a_sub

)
(13)

Since the real slant range r0 is unknown, the equivalent one β0 after the LRWC is
used in (13). In (8), β0 = r0 − c1tc + c2tc

2 − c3tc
3. In airborne SAR, the operational range

r0 � −c1tc + c2tc
2 − c3tc

3 within the subaperture CPI. This indicates that the difference
between r0 and β0 is very small; therefore, the deramping precision can be guaranteed
by (13). After the third-order phase correction, the target signal can be expressed by:

ss(tr, ta_sub) = sinc
[

γTp

(
tr −

2β0

c

)]
exp

[
−j

4π

λ

(
β0 + β2t2

a_sub

)]
(14)

Next, the FrFT is utilized to estimate the Doppler rate. Then, we can obtain the
second-order deramping function as follows:

F2nd_dmp(ta_sub) = exp
(

j
4π

λ
β̂2t2

a_sub

)
(15)

where β̂2 comes from the estimation result of the FrFT. Multiplying (14) and (15), and
performing the azimuth Fourier transform (FT), the target can be focused in the Doppler
domain as follows:

sS(tr, fa_sub) = sinc
[

γTp

(
tr −

2β0

c

)]
sinc

( fa_sub
Ba_sub

)
· exp

(
−j

4π

λ
β0

)
(16)

where Ba_sub is the Doppler bandwidth in the subaperture CPI.
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3.3. Whole Aperture Processing

For symbol clarity, we use non-bold symbols to represent scalars and bold symbols to
indicate vectors or matrices. The dimensionality of the vectors and matrices is marked by
their subscript.

Based on the phase parameters estimated in the last subsection, the instantaneous DF
of the moving target in the subaperture CPI can be obtained as follows:

DF(m; ta_sub) =
2
λ

[
β̂1(m) + 2β̂2(m)ta_sub + 3β̃3(m)t2

a_sub

]
(17)

where β̂1 is the target envelop slope rate estimated by the HT, β̂2 is the Doppler rate
obtained by the FrFT, β̃3 = v3cos2θ sin θ

2β0
2 , and m is the subaperture index, m = 1, 2, . . . , M. In

discrete form, the vector containing DF elements of pulses in the subaperture is given by:

DF(m) = [DF(m, t1) DF(m, t2) · · ·DF(m, tN/M)]1×N/M (18)

where N represents the number of pulses in the whole aperture.
Next, the estimated DF components from all the subapertures can be vectorized as:

Ψ = [DF(1) DF(2) · · · DF(M)]T1×N (19)

where [ · ]T denotes the vector/matrix transpose.
The theoretical DF of the moving target can be calculated by the first-order derivation

of Equation (2), which is given by:

Ω =
2
λ
· ∂rT(ta)

∂ta
=

2
λ
· [δ(n, q)]N×Q (20)

δ(n, q) = q · [ta(n)]
q−1 (21)

where n = 1, 2, . . . , N, q = 1, 2, . . . , Q. The undetermined coefficients can be vectorized as:

α =
[
α1 α2 · · · αQ

]T
1×Q (22)

Thus, we can obtain the following least-squares problem:

Ψ = Ωα (23)

In practical applications, the pre-determined polynomial order Q may be different from
the real one, which induces error in the matrix Ω. At the same time, due to the existence
of noise and clutter, the DF elements from subaperture processing, i.e., the observation
vector Ψ, may also contain estimation errors. In such a situation, the total least-squares
(TLS) [24–26] kernel helps to improve the estimation precision of Equation (23).

To apply the TLS kernel, singular-value decomposition (SVD) is first performed as
follows:

[Ω Ψ] = USV T (24)

where S ∈ <N×(Q+1) contains the singular values, and U ∈ <N×N and V ∈ <(Q+1)×(Q+1)

denote the left and right singular matrices, respectively.
Let Ur = [ur o]N×N , where ur denotes the left r columns of U and r ≤ N. Substitut-

ing Ur with U, the approximated linear system can be set up as follows:

Ψr = Ωrα (25)
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where Ψr = UrSV T
Ψ , Ωr = UrSV T

Ω, V =

[
VΩ

VΨ

]
. Then, the TLS solver can be com-

puted by:

α̂TLS =
(

Ωr
TΩr

)−1
Ωr

TΨr

=
(

VΩSTUr
TUrSV T

Ω

)−1
VΩSTUr

TUrSV T
Ψ

=
(

VΩSTUTUrUr
TUSV T

Ω

)−1
VΩSTUTUrUr

TUSV T
Ψ

=
(

ΩTUrUr
TΩ
)−1

ΩTUrUr
TΨ (26)

Obviously, Ur is an r-rank approximated matrix of U. According to the SVD result, S
contains all singular values, and the effective rank r can be determined by the following ex-
pression:

ζ(r) =
‖Sr‖F
‖S‖F

=


r
∑

i = 1
δi

2

N
∑

i = 1
δi

2


1/2

(27)

where ‖ · ‖F is the Frobenius norm and δi is the nonzero singular value. To determine the
effective rank, one can set a threshold approximated to 1 (ζT(r) = 0.998 for example), and
r is the smallest integer that satisfies ζ(r) ≥ ζT(r). The TLS solver helps to reduce the effect
of errors in Ω and Ψ on the phase coefficients, thus improving the estimation precision.

Based on the TLS result α̂TLS, the range cell migration correction (RCMC) and phase
correction for all the aperture data can be performed. The corresponding correction function
is given by:

Ss( fr, ta) = exp

[
−j

4π

c
( fc + fr)

Q

∑
q = 1

α̂qta
q

]
(28)

where α̂q ∈ α̂TLS. After the range inverse FT and cross-range FT, the moving target can be
focused as follows:

sS(tr, fa) = sinc
[

γTp

(
tr −

2α0

c

)]
sinc

(
fa
Ba

)
exp

(
−j

4π

λ
α0

)
(29)

where Ba is the Doppler bandwidth of the moving target in the whole CPI.
Since the number of DF elements N is much larger than the order of polynomial Q,

the proposed HPC-GMTIm algorithm is suitable for a high-order signal model. In practical
applications, the proposed method may be performed in an iterative way to improve
the focusing precision. In earlier iterations, a short subaperture CPI is recommended for
high-order phase estimation, while a large subaperture CPI is suitable for the low-order
signal model in later iterations. For clarity, the flowchart of the HPC-GMTIm algorithm is
illustrated in Figure 3.
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Moving target data in 
subaperture CPI

RCC using SAR parameters

LRWC using HT

Third-order phase correction

Quadratic phase correction 
using FrFT

Instantaneous DF in 
subaperture CPI
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SAR data of 
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Figure 3. Flowchart of the proposed HPC-GMTIm algorithm.

3.4. Simulation Experiment

A simulation was performed to illustrate the processing details of the HPC-GMTIm
algorithm. The simulated parameters are listed in Table 2. All the aperture data were
divided into 8 subapertures, and the polynomial order was set as Q = 7. There was one
moving target in the observed scene, which had maneuvering motion, including a constant
velocity, acceleration, and acceleration rate.

Table 2. Simulated parameters.

Parameter Value

Operational band 17 GHz
Squint angle 70◦

Bandwidth 200 MHz
Sample rate 250 MHz

Platform velocity 100 m/s
Operational range 10 km

PRF 1 kHz
Whole CPI 4 s

Subaperture CPI 0.5 s
Resolution (range × cross-range) 1 m × 1 m

Target coordinate (range, cross-range) (0, 1000) m
Target velocity (range, cross-range) (30, −20) m/s

Target acceleration (range, cross-range) (2, 2) m/s2

Target acceleration rate (range, cross-range) (0.5, 0.2) m/s3

For subaperture processing, Figure 4 shows the corresponding subaperture images,
which are well focused. After the RCMC and azimuth phase correction for all the aperture
data, the moving target can be focused, as shown in Figure 5a. We used the GHHAF
method proposed in [18] for the performance comparison. The GHHAF method can only
compensate the third-order phase error caused by target motion, which is insufficient for
high-squint SAR-GMTIm. As shown in Figure 5, the proposed HPC-GMTIm algorithm
achieved better focusing performance than GHHAF. To evaluate the focusing quality, the
related peak sidelobe ratio (PSLR), integrated sidelobe ratio (ISLR), and impulse response
width (IRW) are listed in Table 3. Obviously, the proposed HPC-GMTIm outperformed the
GHHAF method from the aspect of both cross-range profiles and focusing quality values.
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Figure 4. Subaperture processing results. The whole aperture is divided into 8 subapertures, and all
8 subaperture images are well focused by the proposed HPC-GMTIm algorithm.

(a) (b) (c)

Figure 5. Whole aperture image. (a) HPC-GMTIm algorithm. (b) GHHAF method. (c) Cross-range
profile comparison.

Table 3. Focusing quality evaluation.

Methods PSLR(dB) ISLR(dB) IRW(m)

HPC-GMTIm −12.96 −10.03 0.66
GHHAF −1.93 −1.89 2.11

3.5. Practical Considerations

(1) Platform motion errors: For high-squint SAR mounted on an unmanned aerial vehicle
(UAV) [24,27–29] or missile [30], platform motion errors are usually inevitable. If the
platform is equipped with a high-precision inertial measurement unit (IMU), motion
compensation (MOCO) can be performed using the IMU data. Otherwise, an autofocus
technique is needed [3,31,32]. For autofocusing, the stationary scene should be selected
to estimate the motion error. Then, MOCO is performed, and the moving target can
be processed by the proposed HPC-GMTIm method;

(2) High resolution imaging: The higher resolution one desires, the larger the CPI it takes.
This means that the target motion becomes more complicated for high-resolution
applications. Besides the high-order phase, high-order range cell migration may
be induced in the recorded data. In such a condition, the proposed HPC-GMTIm
algorithm was still effective, and for that, the assumption of subaperture constant
velocity still can be guaranteed by decreasing the subaperture length, while the
polynomial order can be set flexibly for high-order range cell migration and phase
correction. In addition, more motion vectors, such as rotation and rotation rate [33,34],
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become non-negligible for high-resolution imaging, which will be considered in our
future work;

(3) Motion parameters estimation: In HPC-GMTIm processing, all Q polynomial coeffi-
cients are determined, but the target parameters (i.e., velocity, acceleration, acceleration
rate, and position) cannot be obtained. This is because the target motion parameters
are coupled together, and they cannot be estimated accurately from the undetermined
system of equations. Since the motion parameter estimation is a technical obstacle for
high-squint SAR GMTIm at present, this paper paid more attention to target focusing.

4. Real Data Experiments

Real datasets collected by an experimental airborne SAR system were used to validate
the performance of the HPC-GMTIm algorithm. The system- and data-related parameters
are listed in Table 4. There were 4 moving targets to be focused, where targets T1 and T2
were extracted from Dataset 1 and T3 and T4 came from Dataset 2. The imaging result of
each target will be shown in the following.

Table 4. Real data parameters.

Parameter Dataset 1/Dataset 2

Operational band Ku
Squint angle 50◦/70◦

Operational range 7.3 km
Synthetic aperture length 175 m

Whole CPI 4 s
Subaperture CPI 0.5 s

Resolution (range×cross-range) 1 m × 1 m/2 m × 2 m

4.1. T1

Target T1 is located at the high band of the PRF, as shown in Figure 6a, which denotes
the range–Doppler domain after the LRWC for the stationary scene. Then, the target
detection is performed in the range–Doppler domain by windowing the dominant blur of
the moving target, as shown in Figure 6b. The corresponding image of the stationary scene
is given in Figure 7, where the blur of the moving target cannot be found.

(a)

(b)

Cross-range

R
an

g
e

Figure 6. Moving target detection for T1. (a) Range–Doppler domain. (b) Moving target detection result.
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Cross-range

R
an

g
e

Figure 7. The stationary scene image after eliminating the energy of T1.

After the LRWC for the stationary scene, the envelope of T1 is plotted in Figure 8a. It
can be seen that the moving target had serious range cell migration, which indicated that
T1 had a large radial velocity. Using the proposed HPC-GMTIm algorithm, the envelope
of T1 was confined into one range cell after the RCMC, as illustrated in Figure 8b. T1 can
be focused after azimuth high-order phase correction, which is shown in Figure 9a. In the
GHHAF method, by contrast, the moving target was still defocused, as given in Figure 9b.
The reason for the failure of the GHHAF method was that the high-order phase terms were
not estimated and corrected.

Cross-range

R
an

g
e

R
an

g
e

Cross-range

(a) (b)

Figure 8. The envelope of T1. (a) Before correction. (b) After correction.

(a) (b)

Figure 9. The imaging result of T1. (a) HPC-GMTIm (entropy = 2.97). (b) GHHAF method
(entropy = 3.36).
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4.2. T2

The moving target T2 was submerged by the clutter, as shown in Figure 10. Target
detection in the image domain by windowing the dominant blur was confronted with
serious clutter disturbance, which decreased the moving target SNR. T2 belongs to the
second type of target, as discussed in Section 3, and it was detected based on multiple
subaperture low-resolution images, which are shown in Figure 11. In each subaperture
image, the energy of T2 was reserved, while the clutter area was reduced vastly, thus
improving the target SNR after detection.

By transferring the detected data in Figure 11b back to the range-compressed and
cross-range slow time domain, the envelope of T2 is plotted in Figure 12a, which contains
large range cell migration. After processing by the HPC-GMTIm algorithm, the envelope
was corrected into one range cell, as shown in Figure 12b. Figure 13 presents the imaging
results of the HPC-GMTIm and GHHAF methods. It is shown that the HPC-GMTIm
algorithm outperformed the GHHAF from the viewpoint of focusing, which validates the
necessity of high-order phase correction.

Cross-range

R
an

g
e

Figure 10. The stationary scene image containing moving target T2.

(a)

(b)

Figure 11. Moving target detection for T2. (a) Subaperture images before detection. (b) Subaperture
images after detection.
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(a) (b)

Figure 12. The envelope of T2. (a) Before correction. (b) After correction.

(a) (b)

Figure 13. The imaging result of T2. (a) HPC-GMTIm (entropy = 3.62). (b) GHHAF method
(entropy = 4.17).

4.3. T3

Applying the LRWC for the stationary scene and transferring the echo to the Doppler
domain, the range–Doppler data are illustrated in Figure 14a. There is one moving target,
named T3, outside the clutter spectrum in Figure 14a. The energy of T3 was extracted
using a rectangle window around the dominant blur, which is shown in Figure 14b. The
related stationary scene is plotted in Figure 15. There is a highway cross in Figure 15, which
indicates that moving targets can be observed easily. Figure 16 presents the envelope of T3,
where Figure 16a is the envelope after the LRWC using the SAR parameters, and Figure 16b
is the one corrected by the HPC-GMTIm algorithm. After azimuth phase compensation, T3
was well focused by the HPC-GMTIm algorithm, while the imaging result of the GHHAF
method involved obvious blurring, as shown in Figure 17.
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(a)
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(b)

Figure 14. Moving target detection for T3. (a) Range–Doppler domain. (b) Moving target detection re-
sult.

Cross-range
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Figure 15. The stationary scene image corresponding to T3.
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Figure 16. The envelope of T3. (a) Before correction. (b) After correction.

(a) (b)

Figure 17. The imaging result of T3. (a) HPC-GMTIm (entropy = 2.48). (b) GHHAF method
(entropy = 2.81).

4.4. T4

Figure 18 shows the SAR image containing target T4. It can be seen that the energy
of T4 spread along a horizontal road. Similar to the detection of T2, multiple subaperture
images were used to extract the energy of T4, as shown in Figure 19. Transferring the
detected signal in Figure 19b back to the range-compressed and cross-range slow time
domain, we obtained the target envelope in Figure 20a. Since there is no obvious range
cell migration in Figure 20a, it can be deduced that the defocusing was mainly caused by
the cross-range motion parameters. After the RCMC using the proposed HPC-GMTIm
algorithm, the envelope of T4 is plotted in Figure 20b, which is straighter than the one in
Figure 20a. The final imaging result is given in Figure 21, where the HPC-GMTIm still
outperformed the GHHAF method.
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Figure 18. The stationary scene containing moving target T4.

(a)

(b)

Figure 19. Moving target detection for T4. (a) Subaperture images before detection. (b) Subaperture
images after detection.
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(a) (b)

Figure 20. The envelope of T4. (a) Before RCMC. (b) After RCMC.
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(a) (b)

Figure 21. The imaging result of T4. (a) HPC-GMTIm (entropy = 3.46). (b) GHHAF method
(entropy = 4.03).

5. Conclusions

An improved GMTIm algorithm, named the HPC-GMTIm, was proposed in this paper,
which is suitable for high-squint SAR mode and capable of estimating more high-order
phase terms in comparison with the existing methods. In the HPC-GMTIm algorithm,
it is assumed that the moving target has a constant velocity in the subaperture CPI and
maneuvering motion in the whole CPI. As a result, the echoed signal can be approximated
by a three-order polynomial in the subaperture CPI and a high-order one for the whole
CPI. From the estimation results of the subaperture processing, the instantaneous DF
was obtained. By combining the instantaneous DF elements from the subapertures into a
linear system of equations, the high-order polynomial coefficients for the whole CPI can
be determined by a TLS solver. The proposed GMTIm algorithm is flexible for various
polynomial signals.
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