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Abstract: This study assesses the performance of UAV lidar system in measuring high-resolution
snow depths in agro-forested landscapes in southern Québec, Canada. We used manmade, mobile
ground control points in summer and winter surveys to assess the absolute vertical accuracy of the
point cloud. Relative accuracy was determined by a repeat flight over one survey block. Estimated
absolute and relative errors were within the expected accuracy of the lidar (~5 and ~7 cm, respectively).
The validation of lidar-derived snow depths with ground-based measurements showed a good
agreement, however with higher uncertainties observed in forested areas compared with open areas.
A strip alignment procedure was used to attempt the correction of misalignment between overlapping
flight strips. However, the significant improvement of inter-strip relative accuracy brought by this
technique was at the cost of the absolute accuracy of the entire point cloud. This phenomenon
was further confirmed by the degraded performance of the strip-aligned snow depths compared
with ground-based measurements. This study shows that boresight calibrated point clouds without
strip alignment are deemed to be adequate to provide centimeter-level accurate snow depth maps
with UAV lidar. Moreover, this study provides some of the earliest snow depth mapping results in
agro-forested landscapes based on UAV lidar.

Keywords: UAV lidar; boresight calibration; strip alignment; agro-forested landscapes; ground
control points

1. Introduction

One of the key features of snow accumulation is the spatial variability of the snow
cover. At a broader scale, quantifying the spatial distribution of snow depth is vital to
address the current behavior and the future of the cryosphere [1]. At the watershed or
smaller scales, accounting for the spatial variability of snow depth is crucial to estimate
the amount and timing of spring runoff [2]. Rapid changes in the amount, extent, timing,
and duration of the snow cover in cold regions with changing climatic conditions—mainly
in response to warming temperatures and rain-on-snow events [3,4]—call for a better
knowledge of the quantification of snow distribution [5].

Given the importance of accounting for the spatial variability of the snow cover, the
most frequently utilized techniques to observe snowpack variations are in situ observations
and/or remote sensing. The traditional, ground-based, and mostly manual process of mon-
itoring snow characteristics is expensive, extremely labor-intensive, time-consuming, and
potentially dangerous. Additionally, it can disturb the snowpack and influence subsequent
measurements [6]. Even when available, and despite its accuracy, point measurements may
not be representative of a larger area [7]. Nevertheless, during the past several decades,
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remote sensing techniques that surmounted most of the aforementioned drawbacks have
become a powerful and efficient approach for monitoring snowpack in remote environ-
ments. A variety of airborne and terrestrial remote sensing techniques developed using
satellite, radar, laser (lidar: Light detection and ranging), and photogrammetry data have
been extensively used in a variety of cryospheric studies [7,8]. Among these techniques,
airborne (manned and unmanned) laser scanning has become increasingly popular due
to its ability to capture high-resolution micro (<100 m) and mesoscale (100 m–10 km) vari-
ability, as well as to detect snow cover/ground under canopy due to its strong penetration
ability [6,9–18]. In recent years, there has been a growing interest in the use of unmanned
aerial vehicle (UAV) laser scanning for small scale high-resolution mapping, due to its
potential to deliver dense and high-quality point clouds with minimal occlusion in forested
areas compared with airborne laser scanning (ALS) [14–16,19–23]. Snow depths from
lidar data are commonly estimated by differencing snow-covered and snow-free elevation
products [6,9,10,24–27]. Usually, ground-based manual measurements are used as ground
truth data to validate the lidar-derived snow depth products [6,7]. However, as with any
other measuring technique, UAV laser scanning is not exempt from errors.

In general, the UAV lidar system comprises three instruments: A laser device, an
inertial measurement unit (IMU) that continuously records platform orientation, and high
precision airborne global positioning system (GNSS, global navigation satellite system),
which records the three-dimensional position of the platform [6,28]. Moreover, the system
requires a GNSS base station installed at a known location and in the vicinity of the airborne
platform (preferably within 50 km), which operates simultaneously to differentially correct,
and thus improve the precision of the airborne GNSS data [29]. Error sources of UAV
lidar mapping can broadly be classified into boresight errors, navigational errors, terrain-
induced errors, vegetation-induced errors, and post-processing errors [6,30]. Boresight
errors occur due to offset and angular differences between the lidar and IMU origins. The
origin difference vector is called boresight shift or lever-arm offset, and the three angles
between the lidar and IMU axes are called boresight angles [30,31]. UAV lidar systems are
more prone to boresight angular errors, due to their lower sensor installation precision
and stability than lidars used onboard manned aircrafts [28,32]. Precise calibration of
lever-arm offsets and boresight angles can reduce the boresight errors [28,33]. While
lever-arm offsets can usually be accurately measured after system assembling or from
drawings [28], boresight angle errors should be calibrated manually [31] or using automated
methods [28,32–34].

Errors associated with GNSS and IMU can result in navigational errors. These naviga-
tional errors can be minimized with IMU calibration, as well as GNSS accuracy enhance-
ments methods, such as differential global positioning system (DGPS), real-time kinematic
(RTK), precise point positioning (PPP) or post-processing kinematic (PPK) [6]. Another
method to reduce random errors caused by GNSS and IMU is the strip adjustment, which
fundamentally decreases the discrepancies between flight strips. The strip adjustment
(or strip alignment) technique has proven to be very successful with ALS data [35,36],
and implementing it on UAV data remains an active area of research [21,37]. One of the
reasons that this technique is not (yet) very popular among UAV users is that the readily
available strip adjustment algorithms require raw data of the laser scanner, which is often
not accessible for most end-users through the UAV lidar system [21,32].

Terrain-induced errors are mostly positional errors that occur due to complex terrain
and steep terrain slopes. Flight planning can help in reducing these terrain-induced errors
to some extent by minimizing oblique incident laser shots on steep slopes [6]. The presence
of canopy and/or sub-canopy can reduce the number of laser shots reaching the ground
or snowpack surface, and thus result in observation gaps. The density of ground return
lidar points depends on the canopy type and architecture, laser spot size, laser pulse rate,
scan angle, flying height, and flying speed, i.e., higher pulse rates provide more laser shots,
while smaller scan angles and a lower flight altitude increase the probability of canopy
penetration [6,38,39]. Therefore, a proper flight planning can minimize errors to some
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degree. Post-processing errors are predominantly caused by misclassification of the raw
point cloud (misclassifying the terrain points as non-terrain and/or vice versa). Point cloud
classification algorithms are often highly automated. As a result, the magnitude of error
depends on the type of filter used, local terrain geometry, the height and type of vegetation,
the presence of manmade structures, such as buildings, and the accuracy of the measured
elevation [6,40,41].

Moreover, there is a lack of studies evaluating the accuracy of UAV lidar point data
and lidar-derived snow depth maps with and without different vegetation covers. To our
knowledge, two studies estimated the UAV-based lidar snow depth measurement accuracy
to date [16,17]. Harder et al. [16] compared snow depth estimates between UAV lidar
versus structure-from-motion (SfM) technique using manual snow depth measurements
in mountain and prairie environments in western Canada. Jacobs et al. [17] explored
the capability of UAV lidar to estimate shallow snow depths in mixed-hardwood-forest
and open-field land covers in the eastern USA through the comparison of simultaneous
field-based snow depth measurements. Both studies showcased the ability of UAV lidar to
effectively quantify the small scale snow depth variability.

The overall motivation for this work is to understand and assess the performance of
UAV lidar system in measuring high-resolution snow depths in agro-forested landscapes.
Moreover, to our knowledge, this study is the first of its kind that utilized the UAV laser
scanning technique to measure small scale snow depth variability in southern Québec,
Canada, which houses distinct land use patterns of alternating agricultural fields and
forest patches. These mosaics of forests and agricultural fields are referred to as agro-
forested landscapes in southern Québec [42,43]. In addition to boresight calibration, a strip
alignment method was applied to the data to test whether it can improve the accuracy
of data by partly correcting high-frequency IMU errors (random errors). First, this paper
discusses the data collection and processing workflow, including the sources of errors and
the refinement methods implemented in this study. Then, an assessment of the absolute and
relative accuracy of the lidar data, an evaluation of the accuracy of snow depth maps with
manual measurements in the open field versus forested environments, and an investigation
of the applicability of strip alignment with UAV lidar data are presented.

2. Materials and Methods
2.1. Study Sites

Three sites that represent the main land use and cover patterns in southern Québec
were selected to test the ability of UAV lidar to measure snow depths in open and vegetated
areas (Figure 1). Sainte-Marthe (45.4◦ N, 74.2◦ W) is a paired agricultural and dense decid-
uous forested site [44], where the forested area comprises sugar maple (Acer saccharum),
red maple (Acer rubrum) with no or sparse understory, and a small conifer plantation to the
Southwest. Saint-Maurice (46.4◦ N, 72.5◦ W) is a paired agricultural and high to moderate
dense mixed forested site, and the forested area comprises poplar (Populus x canadensis),
red maple (Acer rubrum), white pine (Pinus strobus), and balsam fir (Abies balsamea) with
sparse understory. The forested areas in these sites overlie undulating glacial till sediments
that are often associated with rougher microtopography, whereas the agricultural fields
are associated with flatter glaciomarine or fluvioglacial sediments (Québec Ministry of
Forests, Wildlife, and Parks (MFFP), Québec Research and Development Institute for the
Agri-Environment (IRDA), and La Financière Agricole du Québec (FADQ)). The main crop
type in the agricultural areas of these two agro-forested sites is soya. Irrigation canals and
streams that flow through these open agricultural areas form distinct terrain characteristics
in the exposed agricultural fields. Forêt Montmorency (hereafter Montmorency; 47.3◦ N,
71.1◦ W) is a site with dense boreal forest interspersed with large gaps. The dominant tree
types in this site are balsam fir (Abies balsamea), black spruce (Picea mariana), and white
spruce (Picea glauca) with no understory. Adjacent to the forest is an open area hosting the
NEIGE-FM snow research station, which hosts a variety of precipitation gauges and snow-
pack measuring sensors, and is part of the World Meteorological Organization’s (WMO)
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Global Cryosphere Watch (GCW) surface network [45]. Montmorency has a combination
of glacial till and fluvioglacial soil types. Table 1 outlines the physiographic and climatic
conditions at each site. Climatic data presented here were based on the climate averages
(1981–2010) from the Environment and Climate Change Canada [46] meteorological stations
closest to each site (station climate ID 7016470, 7017585, and 7042388 for Sainte-Marthe,
Saint-Maurice, and Montmorency, respectively). Land use datasets were obtained from
the MFFP. For interpretation purposes, open agricultural areas in Sainte-Marthe and Saint-
Maurice and the small open area in Montmorency (NEIGE-FM site) are referred to as
“field” hereafter.
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Figure 1. Overview of the study sites with lidar survey extents. (a) Sainte-Marthe; (b) Saint-Maurice;
and (c) Montmorency. Manual measurement and ground control point (GCP) locations are also shown.
(Manual measurements in Saint-Maurice could not be retrieved due to a probe malfunctioning, thus
they are not shown). Contour intervals deliberately differed between sites for interpretation purposes.

Table 1. Site characteristics and field campaign details.

Sainte-Marthe Saint-Maurice Montmorency

Elevation range, m 70–78 46–50 670–700

MAAT, ◦C 6.0 4.7 0.5

Total precipitation, mm 1000 1063 1600

Snowfall/Total
Precipitation, % 15 16 40

Winter season November–March November–March October–April

Lidar extent, km2 0.22 0.25 0.12
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Table 1. Cont.

Sainte-Marthe Saint-Maurice Montmorency

Snow-off flight date 11 May 2020 02 May 2020 13 June 2019

Snow-on flight date 12 March 2020 11 March 2020 29 March 2019

Average snow depth, m 0.32 0.60 1.40

Number of
manual measurements 56 - a 43

MAAT: Mean annual air temperature; a: Manual snow depth measurements could not be retrieved due to a probe
malfunctioning.

2.2. Data Acquisition

Field campaigns were carried out in summer for the snow-free surface and in winter
for the snow-covered surface with UAV lidar (Table 1) in 2019 and 2020. Simultaneous
manual snow depth measurements were taken on the same day of the winter–UAV lidar
flights to later validate the UAV-derived snow depths. Winter surveys were targeted to
capture near-peak snow accumulation. Figure 2 depicts the site conditions during snow-off
and snow-on surveys.
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basal ice layer in Sainte-Marthe field; (d) Saint-Maurice site during summer survey and (e) during
winter survey; (f) Montmorency site during summer survey and (g) during winter survey; (h) local
snow accumulation in a forest gap in Montmorency boreal forest.

2.2.1. Lidar System

A Geo-MMS lidar mapping payload mounted onto a DJI M600 Pro UAV platform
was used for the surveys (Figure 3). This Geo-MMS UAV lidar system is manufactured by
Geodetics Inc., San Diego, USA and is comprised of a Velodyne VLP-16 lidar sensor coupled
to a real-time, dual-antenna GNSS aided inertial navigation system (INS). The INS, called
Geo-iNAV, is comprised of a tactical MG364 Quartz Micro Electro Mechanical (MEMS) IMU,
a high performance dual-core processor, a data recorder, and two dual-frequency GNSS
receivers. The VLP-16 sensor uses 16 infra-red lasers (wavelength of 905 nm) each pulsating
at 18.08 kHz and retrieves measurements up to 600,000 points/s in dual return mode, with
a 3 cm precision at 50 m above ground level (AGL) [47]. The Geo-iNAV INS provides
positional accuracy of 5 cm in horizontal and 10 cm in vertical dimensions with a 0.1 and
0.3◦ accuracy in roll/pitch and heading, respectively [48]. Based on the manufacturer
specifications, the Geo-MMS can meet a ±5 cm (RMS, root mean square) accuracy of the
point cloud. The UgCS flight control software [49] developed by SPH Engineering, Latvia
was used to generate terrain-following flight paths with respect to an underlying shuttle
radar topography mission digital elevation model (SRTM DEM). Flight parameters were
optimized to reduce overall INS errors and maximize the mapping efficiency in the forested
areas. Maximum flight time with one battery set was conservatively limited to 15 min.
Depending on the extent of the surveying area, our flight plans included multiple return
flight paths with two or three battery exchanges. Flight parameters used for the surveys
are outlined in Table 2.
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Table 2. Flight parameters.

Flying speed 3 m/s
Flight altitude 40 m AGL

Lidar RPM 1200
Field of view 145◦

Distance between parallel flight lines 64 m
Ground overlap 20%

Point density 603 points/m2
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2.2.2. Ground Control Points (GCPs)

GCPs were used to assess the absolute accuracy of lidar data (in the vertical dimen-
sion, z) in all three survey areas. In the Montmorency site, two permanent structures were
utilized as GCPs, whereas at other sites, in the absence of static structures, two types of
temporary targets, circular-shaped elevated (1 m diameter) ones, and square-shaped flat
(0.5× 0.5 m) ones (Figure 4) were employed. Elevated targets were used in both winter and
summer surveys, while flat targets were only used in summer surveys. Locations of the
GCPs are shown in Figure 1. Geographical coordinates of the GCPs were measured using
PPK surveys. Each target was surveyed at 1 Hz for 5 min using a FOIF A30 GNSS receiver.
Each static survey was post-processed relative to another A30 base receiver deployed at
each site. Figure 2d,f shows the deployment of A30 base stations in Saint-Maurice and
Montmorency. Nominal horizontal and vertical accuracies of the PPK surveys were 3 and
3.5 mm, respectively.
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2.2.3. Ground Validation Surveys

To assess the lidar-derived spatially distributed snow depth retrievals, we used
ground-based manual snow depth measurements taken simultaneously with the lidar
flight (Table 1). Snow depth transects were taken in a manner that effectively samples the
different vegetation types and pronounced topographical characteristics at the respective
sites (Figure 1). Snow depths were measured using a Magna probe [50] in Sainte-Marthe
and Saint-Maurice and a snow tube in Montmorency. The Magna probe automatically
measures and stores the snow depth in a data logger. Unfortunately, the snow depth mea-
surements at Saint-Maurice were lost due to a probe malfunctioning, which prevented the
data recording. At each location, five measurements were taken and averaged to achieve
more representative snow depths. Measurements were taken as one point in the center,
and four points 1 m away from the center in a diagonal cross shape. The geographical
coordinates of the center measurement were obtained using RTK surveys relative to a FOIF
A30 base receiver deployed at each site (Figure 2d,f). Nominal horizontal and vertical
accuracies of the rover points relative to the base in RTK mode are 8 and 15 mm. RTK signal
can be degraded in forested areas due to the multipath error [51]. Therefore, positional
accuracy was expected to be lower than the nominal accuracy in forested areas, especially
in Montmorency.
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2.3. Data Processing

Figure 5 presents the workflow developed to produce snow depth from lidar data.
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2.3.1. GNSS Data Processing

Post-processing of GNSS data was carried out in EZSurv software [52]. Base station
locations varied between flights. The base station of the first survey in Sainte-Marthe was
geo-referenced to the closest available geodetic marker [53]. Due to the unavailability of
geodetic markers in the vicinity of the other two sites, the processing of base stations of the
first surveys (summer or winter, no matter which one was conducted first, see Table 1) was
carried out using the PPP option in EZSurv. Since the location of the GNSS base station
changed on the second survey, we used three permanent structures—reference post—(light
post, two logger boxes of weather instrument) in the vicinity of the three sites as reference
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points to co-register the two lidar surveys conducted in summer and winter. In summary,
the GNSS data processing of the snow-off and snow-on surveys involved two steps:

(1) First survey: PPP of the base, then PPK of the reference post, drone, and GCPs;
(2) Second survey: PPK of the reference post, calculate the coordinates of the new base

using the positional shift of the reference post relative to the first survey, PPK of the
drone, and GCPs using the corrected base coordinates.

Manual snow depth measurements were processed as RTK and registered to the
reference post. The standard deviation of PPP computed and further processed base stations
was consistently lower than 0.01 m. The uncertainty of RTK manual snow depth survey
points varied among sites and their respective land cover (field and forest). Horizontal
standard deviation in Sainte-Marthe forest ranged between 0.327–3.091 m with RTK float
solutions (low quality and less confident) and 0.003–0.081 m with RTK fixed solutions
in the field. The higher range of values in the forest implies the higher uncertainty of
GNSS measurements in the forest. In Montmorency, the average horizontal RTK accuracy
was 0.008 m. Horizontal standard deviation in Montmorency forest ranged between
0.002–0.034 m and 0.002–0.007 m in the field, both with RTK fixed solutions. Nevertheless,
the uncertainty of RTK solutions in Montmorency forest could be significantly higher than
the values indicated here due to the multipath effect [10,51].

2.3.2. Raw Lidar Data Processing

A geo-referenced lidar point cloud requires post-processing of IMU and GNSS data.
First, high-frequency raw trajectory data (x,y,z, heading, pitch, roll) from the Geo-iNAV
INS was post-processed in the Geodetics proprietary software LiDARTool [54] with PPK
correction. The PPK option regenerates a significantly more accurate trajectory file by
correcting the onboard GNSS data with the GNSS base station data [54]. Then, this post-
processed trajectory file was merged with the raw laser data to produce a geo-referenced
x,y,z point cloud. To reduce the noise level of lidar data, the outer beams of the VLP-16
lidar, where the noise level is highest [54], were discarded from processing (i.e., only the
laser beams between ±8◦ from the full ±15◦ vertical field of view were used in processing).
The outlier removal tool in LiDAR360 [55] removed the remaining low and high noisy data
present in lidar data (Figure 5).

2.3.3. Boresight Calibration

As depicted in Figure 5, while lidar direct geo-referencing with post-processed trajec-
tory and GNSS data is quite precise in the position and orientation of each point cloud,
it can be prone to errors if the alignment of the laser sensor to the INS is not precisely
known. Quite often, the manufacturer’s calibrated boresight shift and angles of the laser
frame to the platform body frame can be slightly offset upon reassembling of the laser
sensor on the Geo-iNAV system. This problem can be solved by a boresight calibration.
Once calibrated, these values remain constant as long as the lidar sensor payload is not
disassembled [54]. For this purpose, we first manually and precisely measured the lever
arm distances between the laser sensor and IMU center. To find the boresight angles, the
manufacturer recommends a manual adjustment with a trial-and-error procedure [54]. To
achieve this, test flights were carried out in the University of Québec at Trois-Rivières
premises in April 2019 by flying the Geo-MMS system in different directions over a flat
roof and an inclined surface to calibrate the boresight angles (Figure 6a). Processing and
visualization of the data collected by the system were carried out in Geodetics LiDARTool
and LiDAR360, respectively. The test flights were conducted with the nominal boresight
angles (90, 0, −90◦ in roll, pitch, heading) and the misalignment between flight strips was
analyzed in all three rotational axes. Calibration of the boresight angles was initiated with
the heading angle. Two opposite direction strips covering the roof edges were selected,
plotted together, and the top view alignment was checked. Since the roof edges seem to
be misaligned (Figure 6b), the nominal heading angle was increased in a small step of
1◦ (90, 0, −91◦ in roll, pitch, heading) and the flight strips were re-processed in LiDAR-
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Tool. Then, the re-processed flight strips were checked to inspect the impact of the angle
change along the roof edges from a top view of the roof. Generally, if two flight strips
become more aligned/converged compared with nominal values and if there was still
room for convergence, the heading angle was increased in small steps in the same direction
(e.g., −92◦), otherwise, the angle was increased in the opposite direction (e.g., −89◦). Then,
the step size was progressively narrowed (e.g., down to 0.1◦) when the two strips started
converging. This process was continued until a good alignment between flight strips along
the heading was achieved (Figure 6c). Once the heading angle was calibrated, and by
maintaining the calibrated heading angle, the same procedure was followed to calibrate
the pitch and roll angles by checking the misalignment of adjacent flight strips over the
inclined surface in the side view in LiDAR360 (Figure 6d,e). The calibrated boresight angles
obtained from this procedure for our system were 90.1, 0.28, and −90.6◦ in roll, pitch, and
heading, respectively. Figure 6c,e illustrates the noteworthy improvement of the alignment
of the flight strips after boresight calibration. Then, these boresight angle values were used
to process data collected from all the flights in this study.
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2.3.4. Strip Alignment

We tested an automatic strip alignment algorithm implemented in BayesStripAlign
2.17 software developed by BayesMap solutions, USA, [56] to assess whether it can im-
prove upon the manual boresight calibration procedure. The strip alignment algorithm
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in BayesStripAlign registers overlapping lidar flight strips and uses relative displacement
calculated between those overlapping strips to correct both relative and absolute geometric
errors. The goal of the process is to have the smallest possible absolute corrections, while
achieving the maximum relative accuracy. The algorithm uses a spatially adaptive approach
to address time-dependent effects, such as drifts and oscillations (i.e., high-frequency IMU
drifts and oscillations), which cannot be corrected with a classical sensor calibration, and
thus effectively reduces the discrepancies between flight strips. Within the algorithm,
systematic effects are absorbed by the x and y lever arms, boresight angles, and internal
distortion corrections. The high-frequency components of the random walk IMU noise
are mainly treated by high-frequency drift corrections. After testing the algorithm with
different combinations of aforementioned parameters on the flight strips, the best alignment
of overlapping flight strips was found for the automated calibration and correction of the
y lever arm, boresight angles, and use of a rigorous model to capture internal distortions
and with 5 s intervals for high-frequency drift corrections. This combination of parameters
found for our dataset was reviewed and verified by the software developer. BayesStri-
pAlign allows for the control of the absolute accuracy of corrected point cloud using GCP
information. The version used in this study includes the automatic detection of GCPs based
on local terrain roughness and the calculation of bias using interpolated and gridded lidar
data. Each point at GCP locations is weighed using inverse terrain roughness before the
absolute accuracy statistics are computed. Unfortunately, the automatic detection of GCPs
based on this roughness method did not work well with the elevated GCPs used, and thus
this option was excluded from the analysis.

2.3.5. Bare Surface Points Classification

Snow depth mapping requires a classification of the point clouds into the bare surface,
ground (from summer survey) or snow (from winter survey). We used the multiscale cur-
vature classification (MCC) algorithm [40] implemented in the commercial Global Mapper
software [57] to classify bare surface points. The Global Mapper lidar module identifies
possible ground points by employing a morphological filter prior to the application of
the MCC algorithm. The morphological filter uses three user-defined parameters of the
maximum height difference, expected terrain slope, and maximum building width. MCC
uses two user-defined parameters, bin size and minimum height difference from the local
mean. Parameters of the algorithm were adjusted according to the vertical spread of the
flight strips over open terrain, the local slope of the terrain and streams, and the pres-
ence/absence of buildings. A bin size of 0.5 m, a minimum height difference of 0.2 m, a
maximum height difference of 10 m, expected terrain slope of 10◦ in Sainte-Marthe and
Saint-Maurice sites and 20◦ in Montmorency, and a maximum building width of 10 m were
found as the optimum parameters for the sites in both seasons. To classify the bare surface
points of streams and visible snowbanks, the algorithm was implemented by selecting
these areas manually and adjusting the abovementioned parameters to 0.5 m, 0.35–0.45 m,
10 m, 40–70◦, and 10 m, respectively. Following a careful inspection of the classified bare
surface points, some misclassified points in forested areas were manually reclassified as
bare surface.

2.3.6. Snow Depth Maps

Snow depth rasters were produced by differencing winter and summer DEMs. DEMs
were generated by aggregating bare surface points at each site to a grid resolution of
1.4 m using the binning method in Global Mapper. This method takes the average of the
bare surface points that fall inside a grid cell, rather than interpolating. Observation gaps
in the point cloud were assigned as no data (i.e., no interpolation method was used to
fill the gaps in the DEMs). With the high point density obtained from UAV lidar, this
method would ensure that the generated DEMs were of reasonable representations of
the true ground/snow surfaces. The grid resolution of 1.4 m was selected based on the
manual sampling strategy outlined in Section 2.2.3 (i.e., five measurements at each sampling
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location represented a 1.4 × 1.4 m (
√

12 + 12) grid cell) and aimed at minimizing the effect
of GNSS positional errors on manual measurements. As final filtering, spurious negative
snow depths were set to zero as they are physically impossible and needed to be filtered
out [24]. Negative snow depths were found along the access roads, stream banks, and
forested areas. Negative snow depths along access roads could be due to the snow clearing
operations in winter. Compressed grasses or shrubs due to snow, and/or misclassification
errors, and local changes in topography could be the reason for negative snow depths
along stream banks and in forests. However, all these values are rather small in magnitude,
accounting for a small portion of the total area (<0.1%) sampled and had a negligible effect
on our snow depth statistics. DEMs and snow depth maps derived before applying the
strip alignment (i.e., rasters derived after manual boresight calibration only) are denoted as
“BSC” and those derived after applying the strip alignment are denoted as “SA”.

2.4. Data Analysis

We assessed the accuracy of UAV lidar in terms of absolute and relative accuracies
in the vertical direction (z). The absolute accuracy was determined by comparing the
GNSS elevation of the GCPs with those obtained from the lidar data. The relative accuracy
between the overlapping flight strips was obtained as a direct output from BayesStripAlign.
In addition, one repeat summer flight was conducted on the same day in Sainte-Marthe
and used to further assess the spatial distribution of relative errors of the lidar data. The
relative accuracy statistics were calculated for the DEM created by differencing the two
repeat summer DEMs. The manual snow depth measurements were finally used to validate
the lidar-derived snow depth maps. The lidar-derived snow depth error was estimated
by comparing each manual measurement to its corresponding 1.4 m grid cell snow depth.
The locations of the GCPs and manual measurements are indicated in Figure 1. The error
metrics employed to assess accuracies, include the mean (bias), standard deviation (sd),
and root mean square error (RMSE).

3. Results
3.1. Accuracy Assessment of Lidar Point Cloud
3.1.1. Absolute Accuracy of Lidar Data

Absolute error statistics calculated for the lidar point cloud are presented in Figure 7.
Generally, SA shows an inferior performance, with higher RMSE values than BSC. All BSC
results show that the RMSE values are closer to the nominal accuracy of the lidar system
(0.05 m), while the majority of the SA RMSE values are higher.

With the BSC method, winter surveys consistently show a lower RMSE, bias, and sd
than summer surveys in both Sainte-Marthe and Montmorency. In contrast, the absolute
accuracy was slightly better in summer than winter at Saint-Maurice. With the exception
of Montmorency, the other two sites generally exhibit a small bias compared with the
spread (sd) for both seasons with the BSC method. The SA method exhibits a different
pattern: The winter RMSE, bias, and sd are higher at Saint-Maurice and Montmorency than
in summer, while Sainte-Marthe shows an opposite tendency. On the other hand, the SA
method appears to consistently increase the bias of the BSC data. Moreover, it seems to
decrease the summer sd of the BSC data, but increase it in winter, except in Sainte-Marthe.
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3.1.2. Relative Accuracy of Lidar Data

The relative RMSE error is a combination of errors from two co-registered point clouds
at the same location. The expected uncorrelated relative error for lidar data is approximately
7 cm (

√
52 + 52). As seen from Figure 8, SA significantly improved the inter-strip relative

accuracy of the BSC data. For example, the large biases in Sainte-Marthe summer and
Montmorency winter BSC data were notably reduced after the application of SA. All SA
statistics are closer to zero, and well below the nominal error of lidar data.
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Repeat flight statistics provide an insight into the probable error values we could
expect in snow depth maps, as shown in Figure 9. Accuracy statistics show that relative
errors are larger (Figure 9a) and more variable (Figure 9b) in the forested area compared
with the field area. SA appears to consistently increase the BSC bias, while decreasing the
BSC sd, partly in line with the inter-strip relative statistics found in Figure 8. The estimated
RMSE values for the two processing methods in all landscape units are well below the
nominal error (Figure 9a).
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3.2. Accuracy Assessment of Snow Depth Maps
3.2.1. Lidar-Derived Snow Depth Maps

Snow depth maps were produced for four cases corresponding with the BSC and SA
methods and their bias-corrected versions (BSC_BC and SA_BC; BC: Bias-corrected). The
bias-corrected DEMs were produced by directly subtracting the bias estimated from the
absolute accuracy assessment (Figure 7) to each winter and summer DEM before deriving
the snow depth map. Figure 10 shows the snow depth maps derived from UAV lidar
data. The overall snow depth patterns among the different processing methods did not
significantly differ, thus only the maps from the BSC processing method are shown here.

The highest snow depths are found at the colder and more humid Montmorency site,
specifically in forest gaps (Figure 10: Number 4). Higher snow accumulation in streams
(Figure 10: Number 1) and along the forest edges (Figure 10: Number 2) is apparent at
the two agro-forested sites. Access roads in Sainte-Marthe and Montmorency (Figure 10:
Number 3) are snow-free due to snow clearing operations.
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3.2.2. Snow Depth Validation

The validation of UAV lidar-derived snow depths with manually sampled ground
measurements is shown as boxplots in Figure 11. The boxplots illustrate the discrepancy
between the lidar and manual snow depths in the field and forest at each site for the four
processing methods, BSC, BSC_BC, SA, and SA_BC.

As seen in Figure 11, boxplots of the Sainte-Marthe field, forest, and Montmorency
field show on average a consistent overestimation (positive bias) of lidar snow depths,
whereas in Montmorency forest, lidar snow depths seem to be mostly underestimated for
all methods. Owing to their different characteristics, field and forest areas in the two sites
show contrasting behaviors in terms of lidar snow depth accuracy. In Sainte-Marthe, field
snow depths consistently show a higher error dispersion (RMSE = 0.16–0.22 m) than the
adjacent deciduous forest (RMSE = 0.079–0.12 m). On the other hand, the small open field
in Montmorency exhibits a smaller and less dispersed error (RMSE = 0.043–0.17 m) than the
adjacent boreal forest (RMSE = 0.19–0.22 m). The influence of vegetation type is apparent
in Figure 11, where the leaf-less deciduous forest in Sainte-Marthe has a smaller RMSE
(0.079–0.12 m) compared with evergreen coniferous trees of Montmorency (0.19–0.22 m).

Sainte-Marthe BSC and BSC_BC show a similar performance in both field and forest
(Figure 11a,b). This suggests that the small bias of ≤1 cm in each DEM (Figure 7) does
not contribute significantly to errors in the final snow depth map. Compared with BSC,
SA displays higher RMSE and bias in both field and forest at this site. Despite the slightly
better RMSE and bias values of the SA_BC method in comparison with SA, its performance
remains inferior to the BSC and BSC_BC methods. In contrast with Sainte-Marthe, BSC_BC
shows a lower RMSE and bias in Montmorency field, but a higher RMSE and bias in
Montmorency forest, compared with BSC. However, similar to Sainte-Marthe, SA results in
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a substantial increase in RMSE and bias in the field, but only a minor change in the forest.
SA_BC statistics are better than SA in the field, but are still higher than the BSC_BC method.
Moreover, the SA_BC method in Montmorency forest shows the highest RMSE and bias
among all cases.
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by “+” symbol in boxplots.

4. Discussion

As previously mentioned, error sources in lidar mapping can stem from boresight
errors, navigational errors, terrain-induced errors, vegetation-induced errors, and post-
processing errors [6,30]. In this study, boresight errors were minimized by a careful bore-
sight calibration. Furthermore, navigational errors posed by the system were minimized
by implementing fine alignment (IMU calibration by maneuvering the Geo-MMS through
several turns at different velocities prior to the system entering the scanning area [31]),
deploying a base station at each site, and using the PPK post-processing technique to correct
the Geo-MMS positions. The elevation ranges were small at all sites, as were the slopes
(mean grid slopes are 3, 2, and 7◦ in Sainte-Marthe, Saint-Maurice, and Montmorency,
respectively). Therefore, terrain-induced errors are assumed to be minimum. Flight pa-
rameters, such as flight height, lidar rotational speed (RPM), overlap, and scan angle were
optimized to obtain maximum penetration and minimum occlusion of lidar in the forested
area, and thus mitigating errors posed by vegetation. Extensive manual inspection was
conducted after each ground point classification to identify any misclassification errors and
correct them when necessary. In addition, there could be errors in lidar-derived snow depth
products due to changes in microtopography between snow-off and snow-on surveys.
For instance, changes of the soil surface due to freezing, possible plowing in agricultural
fields, compression of vegetation by snow, and state of understory vegetation could cause
spurious and/or negative lidar snow depths [16,17]. Since our snow-off surveys were
carried out shortly after the last snowfall with leaf-off deciduous canopy and sub-canopy
conditions, and before the growing season begins, it is expected to have minimal changes
to the soil surface and minimum effects from vegetation to ground retrievals [10,58]. A
good agreement with the lidar-derived snow depths with manually sampled ground mea-
surements in this study implies that these errors, if present, were small overall. Our results
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demonstrate that while there are still errors in UAV lidar, as with any measuring technique,
they are within the expected system accuracy and consistent.

4.1. Comparison of Lidar Point Cloud Accuracy to Previous Studies

Similar to the findings of Harder et al. [16], our BSC absolute accuracy statistics
(Figure 7) generally show a better performance in winter. In contrast, SA absolute accuracy
statistics showed an inferior performance in winter (except in Sainte-Marthe), most probably
due to reduced micro topographical contrasts in the winter point clouds that are used by
the strip aligning algorithm to match strip segments. The number of GCPs may also have
impacted the accuracy assessment. For example, the use of only two GCPs in Montmorency
might not be sufficient to assess the notably high bias observed in Montmorency. Despite
this, all BSC results show RMSE values closer to the nominal error of the lidar system
(0.05 m), which implies that the collected data were of acceptable accuracy. As expected,
SA substantially reduced elevation (z) discrepancies between flight strips. This implies
that the application of strip alignment effectively helped in rectifying the misalignment
between corresponding segments of overlapping BSC strips. However, the results suggest
that this significant improvement in relative accuracy brought by SA was at the cost of the
absolute accuracy of lidar data.

Relative error statistics in Figure 9 show that the errors are generally higher and more
variable in the forest than in the field area. Lidar data are expected to be more prone to errors
in the forest depending on the canopy cover density, the presence of sub-canopy cover, and
the lidar ability to penetrate through canopy gaps and reach the ground/snow surface.
This observation is analogous to previous studies [16,17], which observed a higher RMSE
in the presence of vegetation compared with open areas in their studies. Moreover, Jacobs
et al. [17] noted that reduced lidar returns combined with sampling issues contributed to
the higher uncertainty of snow depths in the forest compared with open areas in their study.

4.2. Sources of Uncertainty in Lidar-Derived Snow Depths

In general, the snow depth validation error statistics (Figure 11) exhibited higher
values than the probable errors estimated from the relative accuracies (Figure 9) across all
sites. These higher errors can be explained by site characteristics.

4.2.1. Sainte-Marthe Snow Depths

The higher and more variable snow depth RMSE in the Sainte-Marthe field compared
with the adjacent deciduous forest can be explained by the deep, narrow canals/streams
in the field (Figures 1 and 10) and the presence of basal ice layers in the snowpack. The
notable positive bias in lidar-derived snow depths indicates an overestimation of snow
depths by UAV lidar, mostly in the field, as shown by the distinctive higher lidar snow
depths for measurements in the area shaded in brown color in Figure 12 (measurement ID
1–31 and 51–56). In contrast, Jacobs et al. [17] and Harder et al. [16] reported slightly low
(negative) biases of lidar snow depths compared with manual soundings in a field by UAV
lidar in Durham, the United States and Alberta and Saskatchewan, Canada respectively
(however, these authors have not reported a presence of basal ice layer in their study sites).
As both summer and winter DEMs in this study have biases less than 1 cm, which causes
minimal systematic bias in the final snow depth maps, this remaining bias of the lidar snow
depths can be attributed to the presence of the ice layers. We observed a 2–10 cm thick ice
layer at the base of the snowpack in the field during manual measurements (Figure 2c),
which limited the ability of the probe to reach the soil surface. Therefore, in these cases, the
lidar measurements are in fact deemed to be more accurate than the manual soundings. As
well, as can be observed from Figure 10, snow depths in the streams are twice as deep as
the adjacent terrain since snow drifting fills the canals. At locations where the central snow
depth manual measurement was directly inside the streams, the average of the five manual
measurements was significantly higher or lower than the average lidar snow depths (refer
to the range of snow depths at ID 2, 4, 6, 8, 10 in Figure 12), which reflected in higher outlier
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values (i.e., indicated as “+” in boxplots) of field boxplots in Figure 11a. This is thought to
be the main reason for the high variability of errors in the field.
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Figure 12. Variability of manual and lidar snow depth measurements in Sainte-Marthe. Error
bars represent the minimum and maximum snow depth values of the five manual measurements
taken at each sampling location and blue dots denote the average value of the five measurements.
Measurements in the field (ID 1–31 and 51–56) and the forest (ID 32–50) are demarcated by brown
and green colored shadings, respectively.

4.2.2. Montmorency Snow Depths

Similar to Sainte-Marthe, Montmorency field lidar snow depths show a positive bias.
This could also be due to the presence of an ice layer and the snow tube’s limited penetration
ability [17]. Compared with the field, forest lidar snow depth biases are only slightly greater
(Sainte-Marthe) and lower (Montmorency) than from the manual soundings in both sites.
This contrasts with previous findings from UAV lidar in the forest [16,17,59], where they
observed a notable underestimation (negative bias) of lidar snow depths than from the
manual measurements compared with the open field. In their studies, the causes of these
differences were partially attributed to the snow probe’s ability to penetrate the soil and
vegetation, e.g., Jacobs et al. [17] and Proulx et al. [59] suggested that the overprobing by
the Magna probe into the thick leaf litter layer present in the forest might have caused the
higher average Magna probe snow depths than lidar snow depths. Compared with Sainte-
Marthe, Montmorency’s snow depth validation in the coniferous forest does not show a
large bias, but a larger dispersion (sd) which increases the RMSE. This larger variation (sd)
is attributed to be mainly associated with positional errors caused by multipath effects
that are reportedly occurring in areas with thick canopy cover [9,38,51]. Apart from the
errors propagated from individual DEMs, misclassification errors in forested areas, and
small branches that are compressed by snow can also cause errors in lidar snow depths.
However, the higher RMSE in Montmorency has a comparatively smaller impact due to
the deeper snowpack observed at the site, i.e., the relative RMSE error (RMSE/mean snow
depth) in Montmorency (0.068–0.135) is much lower than the relative error (0.321–0.420) in
Sainte-Marthe where the snowpack is shallower.

4.3. Comparison of Lidar Snow Depth Accuracy to Previous Studies

When the strip alignment is not used, the UAV lidar system is able to capture snow
depths with a RMSE < 0.16 m in an open environment (including a basal ice layer) and a
RMSE < 0.19 m in forests with different canopy covers. This is comparable with previous
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efforts with UAV lidar (0.09–0.17 m from open to coniferous environment) [16,17] and air-
borne lidar (0.09–0.35 m from open to coniferous environment) [10–12,19,60,61]. Therefore,
despite potential inaccuracies within the coniferous forested area, our results show that
UAV lidar can be an efficient technique to capture high-resolution, on-demand snow maps
within complex agro-forested landscapes.

4.4. Use of GCPs in UAV Lidar

While authors as Harder et al. [16] have suggested that the low bias of UAV lidar
errors, without incorporating GCPs, would remove the need of deploying GCPs at the
site, we believe that at least a few GCPs are required in natural environments, such as
Sainte-Marthe and Saint-Maurice, where distinct manmade structures, such as buildings
and roof structures are not present to control for systematic biases in repeat flights. In these
environments, GCPs would ensure an absolute check of the lidar dataset and provide a
quantitative assessment of the bias, and thus would help in correcting the bias of the data.
Csanyi and Toth [62] also highlighted the importance of using well-defined lidar-specific
GCPs for applications with high accuracy requirements (e.g., survey-grade mapping). They
showed that using specifically designed lidar targets (1 m radius circular-shaped elevated
targets) could improve the lidar flight strip accuracies. Furthermore, they mentioned
that in the absence of three-dimensional ground information, such as buildings and roof
structures at site, the information from mobile lidar specific ground control targets can be
used in or after the strip adjustment process to correct the remaining absolute errors in the
corrected strips.

4.5. Use of Strip Alignment for UAV Lidar

Our results showed that while the SA algorithm improved the relative accuracy of the
point clouds, its ultimate impact was to degrade the snow depth validation compared with
the simple BSC method, even after bias correction. This observation was consistent in both
field and forested areas, and at all sites. Possible reasons for this inferior performance can
be attributed to the limitations of the algorithm used. The software version did not support
the elevated GCPs used in this study, and thus did not use the GCP information during strip
alignment, which led to degrading the absolute errors of the point cloud. It is not surprising
that the SA exacerbated errors in winter, as there were fewer or no microtopographic
features for the strip aligning algorithm to match the point cloud segments reliably in
winter. Therefore, our results indicate that the SA implemented in this study is not suitable
for similar UAV lidar applications, especially for monitoring snow depths. The main reason
for using BayesStripAlign was for its ability to directly use the las and trajectory files
rather than raw data from the laser scanner [21], which is not currently retrievable from the
Geo-MMS system. However, our results could be used to improve the BayesStripAlign SA
algorithm for further UAV applications in snow-covered landscapes.

5. Conclusions

This study demonstrated the ability of UAV lidar to measure snow depth variability
under varying vegetation covers with reasonable accuracy. However, the observation gaps
in ground returns in the coniferous forest imply that, despite the higher point density
returned by the UAV lidar compared with ALS, airborne remote sensing techniques alone
are not able to retrieve a comprehensive snow depth distribution pattern under a coniferous
canopy. A combination of UAV lidar and ground-based manual measurement (or under
and above canopy UAV lidar as demonstrated by Hyyppä et al. [63]) might be beneficial to
obtain more representative and extensive snow depths in coniferous environments.

The results showed that the strip alignment approach we used was not suitable for
UAV lidar, since it degraded the absolute accuracy of the point clouds. The dataset would
potentially benefit from a strip alignment algorithm that incorporates GCPs in the alignment
procedure and/or uses that information in a 3D (x,y,z) adjustment of the point cloud.
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Nevertheless, it can be concluded from the results that a careful boresight calibration
can provide centimeter-level accuracy of lidar data without SA enhancement. Therefore,
boresight calibration should receive paramount attention in the data processing workflow.
Moreover, a well-formulated flight plan plays a critical role in reducing system errors.
Utilizing two or more turning maneuvers allows for better tuning of the IMU. Furthermore,
flying at a lower altitude and slower speed reduces the impact of uncertainty in the
boresight angles. Flight planning should also address weather conditions, for instance,
flying the Geo-MMS in windy conditions (wind speeds higher than 8 m/s according to
specifications) would degrade the sensor accuracies. The deployment of GCPs ensures an
absolute check of data in the absence of distinct structures visible from airborne sensors.
Importantly, a successful ground point classification is critical to the final accuracy of the
snow depth maps. A manual inspection of the geo-referenced point cloud is advisable
following automatic classification, preferably with geo-tagged imagery if available.

The methodological framework presented in this paper provides a valuable contribu-
tion to the UAV lidar accuracy assessments for snow research, which is reproducible in
similar environments.
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