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Abstract: Globally, native semiarid grasslands and savannas have experienced a densification of
woody plant species—leading to a multitude of environmental, economic, and cultural changes.
These encroached areas are unique in that the diversity of tree species is small, but at the same time
the individual species possess diverse phenological responses. The overall goal of this study was to
evaluate the ability of very high resolution drone imagery to accurately map species of woody plants
encroaching on semiarid grasslands. For a site in the Edwards Plateau ecoregion of central Texas, we
used affordable, very high resolution drone imagery to which we applied maximum likelihood (ML),
support vector machine (SVM), random forest (RF), and VGG-19 convolutional neural network (CNN)
algorithms in combination with pixel-based (with and without post-processing) and object-based
(small and large) classification methods. Based on test sample data (n = 1000) the VGG-19 CNN model
achieved the highest overall accuracy (96.9%). SVM came in second with an average classification
accuracy of 91.2% across all methods, followed by RF (89.7%) and ML (86.8%). Overall, our findings
show that RGB drone sensors are indeed capable of providing highly accurate classifications of
woody plant species in semiarid landscapes—comparable to and even greater in some regards to
those achieved by aerial and drone imagery using hyperspectral sensors in more diverse landscapes.

Keywords: deep learning; machine learning; drones; woody encroachment; semiarid; pixel-based
classification; object-based classification; phenology; Texas; Edwards Plateau; VGG-19

1. Introduction

Native semiarid grasslands and savannas across the globe are increasingly affected by
woody plant encroachment, a phenomenon that leads to fundamental state shifts, whereby
herbaceous-dominated landscapes are converted to landscapes more similar to forests and
dense shrublands. Increases in woody cover can result in myriad significant changes to
a region’s ecology, economy, and culture [1]. The Edwards Plateau ecological region of
central Texas (93,000 km2), USA, has been historically maintained as a savanna community
by fuel–fire feedbacks driven by the grazing habits of native megafauna. However, over
the last 150 years, in response to the combined effects of overgrazing, fire suppression,
and climate change, this region of Texas has experienced accelerated encroachment of
woody plants [2]. The four main woody species encroaching into native savannas in this
region are live oak (Quercus virginiana), blueberry juniper (Juniperus Ashei), redberry juniper
(Juniperus Pinchotii), and honey mesquite (Prosopis glandulosa). The effects of this expansion
on the region’s hydrological system include an increase in baseflow which is facilitated by
the natural karst landscape [3]. Furthermore, the increased density of woody vegetation
across the region has made much of the land inhospitable to cattle ranching, affecting
the livelihood of landowners and the local economy. As a result of the declining grazing
pressure [3], herbaceous plants have expanded concomitantly with woody plants, creating
a dynamic multilevel plant community structure. This herbaceous vegetation consists
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mainly of shade-tolerant C3 species, replacing the more historically abundant C4 species,
as a response to the greater canopy cover across the landscape [4], thus changing grazing
patterns and affecting the landscapes’ biodiversity.

The creation of accurate maps depicting the spread of woody plants across the Edwards
Plateau provides a basis for identifying and classifying the encroaching species, which can
help landowners better manage their properties. Understanding settlement patterns and
structure of encroaching woody plant expansion over large areas also enables scientists and
conservationists to scale up the impact of woody plant encroachment into native grasslands
and savannas, making the phenomenon more accessible to the general public. Instead of
traditional field sampling methods, a more practical and economical means of studying
large areas is now offered by remote sensing—especially given the growing abundance of
affordable aerial drones on the market. In 2016, two months after mandating a nationwide
drone registry, The Federal Aviation Administration (FAA) reported a greater number
of registered drones than traditional aircraft [5]. The most popular drones for ecological
purposes are “micro-drones” (weighing under 2 kg) equipped with a stabilized camera
system (including 4k video), granting flight times of ~10–30 min and costing between ~ USD
300 and 5000 [5]. Furthermore, thanks to advances in autonomous flight, camera control
technology, and image stitching software, novice users can learn to fly and begin taking
aerial images in less than a few hours [5]. The Edwards Plateau is particularly well-suited
to species classification via this methodology. First, it is characterized by a low diversity
of woody plant species [6]. Second, each of the aforementioned four tree species displays
a unique phenology: honey mesquite is characterized by long periods of senescence, live
oak by very short periods of senescence, and blueberry juniper and redberry juniper by
no period of senescence, as shown in Figure 1. These differences make it possible for land
managers and scientists to use cost-effective image-acquisition methods for classifying
vegetation during the transitionary period from winter into late spring. In addition, drone
imagery has the capability to create 3D point clouds through photogrammetry—thereby
adding vertical structure information, which improves classification results.
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Live Oak (Quercus Virginiana) is a semi-evergreen woody plant that loses some of its greenness 
through the winter months. (b) Blueberry/Redberry Juniper (Juniperus ashei/pinchotti) is a perennial 
evergreen woody plant that remains green throughout the year. (c) Honey Mesquite (Prosopis Glan-
dulosa) is a deciduous woody plant that loses its leaves through the winter months. 

Figure 1. The woody species that can be found in our study site and across the Edwards Plateau.
(a) Live Oak (Quercus Virginiana) is a semi-evergreen woody plant that loses some of its greenness
through the winter months. (b) Blueberry/Redberry Juniper (Juniperus ashei/pinchotti) is a perennial
evergreen woody plant that remains green throughout the year. (c) Honey Mesquite (Prosopis
Glandulosa) is a deciduous woody plant that loses its leaves through the winter months.

For a number of land cover classification projects, nonparametric machine learning
algorithms—such as support vector machines (SVMs), random forest (RF), and deep
learning convolutional neural networks (CNNs)—have demonstrated significantly higher
levels of classification accuracy than traditional parametric statistical methods such as
maximum likelihood (ML) [7,8]. Nonparametric classifiers, such as SVM and RF, do
not require that training data be normally distributed and are not based on statistical
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parameters. These features increase the robustness of the output in cases where training
data are limited and there is a mixed set of input variables [9]. Support vector machines are
particularly useful for classifying multidimensional data with limited training samples [10],
and RF retains a strong position as a classifier because of its ease of parameterization and
good performance for both simple and complex classification functions [11]. However,
it is the deep learning CNNs that have demonstrated the greatest accuracy of the three
algorithms in identifying complex patterns in image classification [12,13]. However, CNNs
are computationally intensive and require large quantities of labeled training data to
perform [13]. Furthermore, hidden layers in CNNs can cause the user to lose interpretability
for how the model can be improved; the resultant black box approach can lead to overfitting
and reduced performance when the model is applied to new data.

Woody species classification studies have seen adequate levels of accuracy using mul-
tispectral and hyperspectral imagery from aerial and satellite platforms [14–16]. Ref. [14]
used SVM and RF algorithms to classify tree species in the Southern Alps of Italy, using
a combination of airborne multispectral, hyperspectral, and Lidar data. In another study,
carried out by [15], SVM, RF, and a CNN were used with airborne hyperspectral imagery
to classify five tree species in Karkonosze National Park, Poland. Finally, [16] classified
ten tree species in a temperate Austrian forest by means of WorldView-2 satellite imagery
using object- and pixel-based methodologies in combination with RF. They found that
the object-based classification methodology applied to high-resolution imagery is more
accurate than pixel-based approaches—specifically if the pixel size is significantly smaller
than the classes of interest [16]. However, few studies have tested the feasibility of using
affordable high-resolution RGB imagery from drone imagery to map species-specific woody
encroachment in semiarid grasslands and savannas.

Previous research into semiarid woody plant species classification has garnered ac-
ceptable results using a variety of sensors and platforms; however, few of these studies
used drones [17,18]. Using five-band RapidEye satellite data (5 m spatial resolution), five
woody plant species were mapped in a dry forest in Botswana [17]. Studying the effects
of climate and land use change on woody plant species distributions in Mediterranean
woodlands and semiarid shrublands, 1 m-resolution hyperspectral data were gathered
across a 43 km-long strip, and 247 trees consisting of seven woody species were identified
for classifying using SVM [18]. In [19], a customized sensor granting a red-edge band was
attached to a drone to map mortality rates of three woody plants species in a dry forest in
Peru using object-based image analysis. Our study is unique in execution and purpose,
strictly using RGB imagery gathered from a drone and for the purpose of classifying a semi-
arid region impacted by woody plant encroachment. Furthermore, the results will inform
land managers in these landscapes of whether it is worth investing in a cost-effective drone
to better help them manage the advancement of woody plant species into their properties.

Recently published works using RGB imagery acquired from drones to classify woody
plant species have garnered good results but have actively focused on natural forests and
areas of high humidity [20–23]. The authors of [20] captured leaf-on and leaf-off images of a
mixed deciduous–pine forest located in humid Kyoto, Japan, classifying seven tree species
using a CNN and SVM for comparison. It was found that the CNN outperformed the SVM
in both the leaf-on and leaf-off seasons, while attaining the highest accuracy (97.6%) using
a CNN during the leaf-off season. A similar study on a subtropical region of Eastern China
used three deep learning models to classify ten tree species in the “National Garden City”
of Lin’an, finding accuracies as high as 92.6% [21]. The authors of [22] also used very high
resolution RGB imagery and CNNs for mapping nine woody plant species over 51 ha in
two temperate forest regions of Germany, attaining a mean F1-score of 73%. Finally, a study
in the subalpine region of the northwestern Alps classified five tree species encroaching
into an abandoned native grassland using RF, finding that a pixel-based approach attained
the highest accuracy of 86% [23]. We looked to combine the findings of these papers,
including using leaf-off imagery, deep learning applications, and pixel-, and object-based
approaches, and apply them to semi-arid grasslands and savannas, which supply a majority
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of the world’s animal products and have been fundamentally changed by woody plant
encroachment [24].

Our study had the overall goal of determining if affordable RGB drone imagery can be
used for classifying woody plant species encroaching on semiarid grasslands and savannas.
Specific objectives were to (1) compare classical and traditional machine learning algorithms;
(2) compare pixel-based, object-based, and post-processing methodologies; (3) develop a
methodology for classifying plant species that combines a deep learning approach with
drone imagery; and (4) assess classification accuracies and develop recommendations.

2. Materials and Methods
2.1. Study Area

The study site (Figure 2) is located within the Sonora A&M Agrilife Research Station
(latitude 30.27, longitude−100.57), which occupies approximately 1401 ha (3462 acres) in
the Edwards Plateau ecoregion of central Texas. This ecoregion is generally classified as
semiarid, receiving on average 550–600 millimeters of rain per year. Rainfall is distributed
evenly across the year, with summer months (May to October) seeing slightly higher
amounts. Soils in this region are clayey and dark in color; most soil depths measure less
than 254 mm (10 in.), but in some areas they are greater than 508 mm (20 in.). The site is
characterized by karst topography—generally a mix of limestone and dolomite, which can
be seen rising above the surface in many areas. The region’s vegetation structure consists
of mixed grasses (tall, medium, and short) and forbs intermixed with woody species [25].

2.2. Data Collection and Preprocessing

The drone imagery was acquired between 10 a.m. and 12 p.m. on 3 December 2018,
with a DJI Phantom 3 Pro (Shenzhen Dajiang Baiwang Technology Co., Ltd., Shenzhen,
China) drone with a Sony 1/2.3” CMOS RGB Sensor and a FOV 94◦ 20 mm lens (Sony
Semiconductors Solutions Corporation., Ltd, Kanagawa, Japan). A total of 999 images were
collected at a flying height of 50 m, covering approximately 346 acres of the 3462-acre site
in 6 consecutive flights, each taking approximately 14 min, with a total flight time of about
84 min. Weather conditions were sunny with no wind. The flight took place in December
to take advantage of the individual woody species’ unique ecophysiologies; during this
season, the mesquite trees are leaf-off, the live oaks are showing a decline in greenness, and
the junipers are dark shades of green.

Using the structure-from-motion (SfM) image reconstruction workflow implemented
in Pix4Dmapper software (version, 4.6.4), we created a 3D point cloud (point density
195.6/m2), a geometrically corrected orthomosaic, a digital surface model (DSM), and a
digital terrain model (DTM) over the study site. The gridded datasets (orthomosaic, DSM,
and DTM) had an effective ground sample distance of 2.45 cm/pixel.
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Additional information layers, as seen in Figure 3, were created by means of feature
engineering; these were used for the traditional and machine learning classification but left
out of the VGG-19 CNN classification to highlight the exceptional capability of the CNN
to detect complex class patterns from standalone RGB imagery. For the particular camera
used, the blue channel has a response curve of 400–560 nm with a peak at 460 nm, the green
channel has a response curve of 400–640 nm with a peak at 540 nm, and the red channel
has a response curve of 400–700 nm with a peak at 580 nm. These additional information
bands were created via the following formula:

Green–Red Difference = (G− R)/(G + R) (1)

Green Leaf Index = (2×G− R− B)/(2×G + R + B) (2)

Canopy Height Model (CHM) = DSM−DTM (3)

where G = green wavelength (peak response at 540 nm); R = red wavelength (peak response
at 580 nm); and B = blue wavelength (peak response at 460 nm).
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Figure 3. The 3 data layers created to improve the traditional and classical machine learning clas-
sifications. (a) The 10 cm orthomosaic. (b) The Green-Red Difference layer only discerns junipers
(displayed as dark brown). (c) The Green Leaf Index layer is able to discern the mesquites (displayed
as dark green) and the juniper (displayed as brown). (d) The Canopy Height Model layer discerns
the tops of individual woody plants with lighter green/brown and the edges of tree canopies as
darker green.
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The three features were selected for different purposes. The green–red difference
and chlorophyll features distinguish more finely between the various levels of greenness
between tree species [26], while the canopy height model (CHM) detects differences in
the height of woody plants. The three features were stacked along with the RGB bands,
creating a six-band dataset, and can be seen in Figure 3. The stacked data file was then
resampled from 2.45 cm to 5 cm, at 10 cm, and at 15 cm to reduce the size of the data.
Using image interpretation based on the presence of mixed pixels, the ability to accurately
identify tree species, and overall image quality, we selected the resampled 10 cm mosaic for
classification. Lastly, a simple decision tree classifier was used to mask out CHM values
under 0.5 m for the majority of pixels representing ground properties and small herbaceous
species. A similar step was carried out in [27] using a CHM to mask out values over 1 m to
mask out tree species. For our site, a 1 m mask was unnecessary as the terrain is generally
flat and many of the herbaceous species are shorter than 50 cm; furthermore, using a 1 m
mask would have concealed a large number of young trees that should have been included
in the classification.

2.3. Species Classification Using Traditional and Classical Machine Learning Methods

The classification scheme we selected included five classes: ground, shadow, juniper
(both blueberry and redberry species), live oak, and mesquite. The shadow class was
included to distinguish dark void areas from tree canopies and dark green junipers (most
shadows cast on open ground were removed by the CHM mask). The ground class was
included for the same reason—to distinguish among sunlit void areas, tree canopies live
oaks, and leaf-off mesquites. Classification accuracy was assessed for the following five
methodologies: (1) pixel-based classification with ML, SVM, and RF; (2) small-object-based
classification with ML, SVM, and RF; (3) large-object-based classification with ML, SVM,
and RF; (4) pixel-based classification with a post-processing majority filter; and (5) VGG-19
CNN deep learning classification.

For the training data, we selected 600 pixels per class on the 10 cm six-band ortho-
mosaic, on the basis of the key characteristics for training area datasets listed in [28] as
well as an expert understanding of the landscape and image analysis. We evaluated the
separability of the collected training data based on the Jeffries–Matusita distance, which
calculates interclass separability using the different spectral and physical band statistics
used in the training area dataset. The range of values produced by this method is 0.0–2.0,
with a score of 1.9 or better being ideal [29]. The J–M distance was calculated via the
following formulas:

J_xy = 2
(

1− e−B
)

, (4)

B = 1/8 ((x− y)̂t ) ∗ ((Σx + Σy)/2)̂(−1) ∗ (x− y) + (1/2 ln((|(Σx + Σy)/2)|) / (|Σx|̂(1/2)|Σy|̂(1/2)))) , (5)

where x is the vector of first-class spectral response; y is the vector of second-class spectral
response; Σx= covariance matrix of sample x; and Σy= covariance matrix of sample y.

The J–M distance between all classes was greater than 1.9 except between juniper and
live oak. The result for the latter two was expected because of their similar heights and
spectral components (Table 1). A dendrogram, commonly used to hierarchically cluster
taxa or classes, yielded results similar to those of the separability report—showing a close
similarity between the juniper and live oak classes due to their spectral and physical
similarities (Figure 4). In contrast, the J–M distance between classes, such as mesquite and
shadow, which have very different spectral signals, was large.
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Table 1. Class separability values using Jeffries–Matusita distance.

Jeffries–Matusita Distance Ground Shadow Juniper Live Oak Mesquite

Ground - 1.9999 1.9999 1.9501 1.9515

Shadow 1.9999 - 1.9983 1.9995 1.9977

Juniper 1.9999 1.9983 - 1.8800 1.9996

Live Oak 1.9501 1.9995 1.8800 - 1.9570

Mesquite 1.9515 1.9977 1.9996 1.9570 -
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Figure 4. Dendrogram showing clustering and interclass distances for the five training classes.

Ideally, for testing data to ensure unbiased assessments of the accuracy of our classifi-
cation results, in situ ground reference test pixels would have been collected [30]. However,
because these were not available, we instead used visual interpretation of the original
2.45 cm raw images in combination with expert knowledge of the landscape and the tree
species as a basis for collecting testing data on our 10 cm stacked orthomosaic (this method
has been verified as a viable alternative for ground reference test information) [31]. We
calculated the number of total testing pixels using the following formula [32] (p. 137):

N =
B

4b2 (6)

where N = number of testing samples; B = the upper (α/k) × 100th percentile of the chi
square (χ2); and b = the desired precision.

The formula requires a minimum of 757 total testing pixels, but having 5 classes, we
decided to select 1000 testing pixels, 200 for each class. We therefore generated 5000 random
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pixels across the orthomosaic, which were reduced to 200 pixels for each class, evenly
distributed across the image (avoiding mixed pixels and class boundaries).

2.3.1. Image Segmentation

To enable comparisons between pixel-based and object-based approaches in classi-
fying species, we carried out two separate segmentations in ESRI ArcMap®. The specific
segmentation algorithm used was mean shift, which works by moving a window to fit
around the center of a centroid placed in an area of maximum pixel density. ArcMap’s
implementation of the mean shift segmentation segments the images on the basis of max-
imum object size, spectral detail (ranging from 0 to 20) and spatial detail (ranging from
0 to 20). We performed parameterization iteratively, using varying values and visually
interpreting the results. The final two segmentations contained the same spectral and
spatial detail parameters of 17. The first segmentation limited object size to a minimum
of 10 pixels (referred to as small-object-based classification because it consists of only the
smallest discernable objects). The second segmentation limited object size to a minimum of
100 pixels (referred to as large-object-based classification because it was the largest setting
possible without taking in a large number of mixed class objects). Figure 5 illustrates the
two segmentations.
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Figure 5. A display of the two segmentations performed on the orthomosaic. (a) The 10 cm orthomo-
saic. (b) The small-object segmentation limited object size to a minimum of 10 pixels, after which
lowering the minimum size was deemed over-segmented. (c) The large-object segmentation limited
object size to a minimum of 100 pixels, after which increasing the minimum size incurred a large
number of mixed pixels.

2.3.2. Image Classification

We applied support vector machines, random forest, and maximum likelihood al-
gorithms to classify species over our study site using both pixel-based and object-based
methodologies. The support vector machines algorithm [33] is a nonparametric method
that does not rely on training data normality or any assumptions regarding the under-
lying distributions of the training data but is designed to find the optimal hyperplane
that separates the training dataset into discrete predefined classes [34]. The random forest
algorithm [35] is an ensemble classifier that combines a number of decision trees (the
number set by the user); these decision trees split at nodes on the basis of a random sub-
set of predictors—the result being the sum of the majority votes from all the individual
decision trees. The maximum likelihood algorithm was chosen due to its popular use in
analyzing remotely sensed images and reliability in classifying a variety of cover types and
conditions [36]. It works by using training data to determine class-specific mean vectors
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and variance–covariance matrices, producing probability density functions. The density
functions are used to calculate the probability of every pixel in an image belonging to each
predetermined class, with the highest computed class probability being assigned to the
output classification image.

We used the ML, SVM, and RF algorithms for standard pixel-based classification
on the stacked orthomosaic and performed parameter tuning for the ML, SVMs, and RF
algorithm by cross-validation on three unique subsamples of the training data (accounting
for 10%, or 60 pixels, for each class) and visually assessed the results.

For the final ML classifications, no probability threshold was set in order to classify
every pixel, and the data scaling factor was set to 1023 based on a 10-bit radiometric
resolution provided by our camera sensor.

The final SVM classifications used a radial basis function kernel whose value depends
strictly on the separation between an input pixel and the hyperplane separating the in-
formation classes. The gamma value was set to 0.091, which decides the curvature of the
separating hyperplane, with higher values resulting in greater curvature and a tighter fit
around the data values, and a penalty parameter of 100, which balances the trade-off be-
tween training errors and forcing rigid margins. Increasing the penalty parameter increases
the effect misclassified points have on the hyperplane, which can lead to overfitting.

The final RF classifications used 1000 decision trees, with each tree simulating a
random vector sampled from the training data with the same distribution. Each tree
consisted of a max tree depth of 50, which caps the number of decision nodes needed before
casting a vote for the output classification image.

A majority filter was applied to the resulting classified images, by means of a 3 × 3 kernel
moving across the image at a 1-pixel step interval. For replacement to occur, the neighboring
pixels surrounding the central pixel must have a simple class majority and be contiguous
around the center of the filter kernel to minimize the corruption of cellular spatial patterns.

We also applied object-oriented classification to the two segmented images (small-
and large-object segmentations) using ML, SVM, and RF algorithms. The same parameters
applied to each algorithm in the pixel-based classification were applied to both the small-
and large-object segmented images.

2.4. Species Classification Using a Deep Learning Method

A variety of deep learning convolutional network (CNN) models have been proposed
for various environmental applications, including object detection and semantic segmen-
tation. Popular ones include VGG [37], Resnet [38], Inception V3 [39], and Xception [40].
The main advantage of deep learning CNNs over classical machine learning models lies in
their feature engineering, scalability, and high performance. In this study, we evaluated
the VGG-19 CNN due to its popular use in remote sensing applications and excellent
results [41–44].

2.4.1. VGG-19 Model Overview

Developed in 2014, VGG-19 has proven over the years to be a competitive deep
learning model when tasked with classifying land cover and tree species classes from
remotely sensed images [41–44]. The VGG-19 CNN algorithm uses a SegNet encoder–
decoder architecture, whereby the encoding CNN learns relevant, low-level features about
the target class from the received RGB image and passes the information on to the decoder,
which formulates a prediction using max pooling indices for every pixel in the RGB
image. Specifically, the VGG-19 CNN takes 224 × 224 RGB input images and moves them
through 19 weighted convolutional layers with a fixed-kernel filter of 3 × 3 and a stride of
1 pixel. Within every convolutional layer, each neuron/pixel is connected to a few nearby
neurons/pixels in the previous layer, with the exact same set of weights used for each local
connection. This process enhances the capability of the model to identify local features,
uninfluenced by pixels across the image; and it also provides an equal chance for features
to be detected anywhere throughout the image. At the end of each convolutional stack,
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the volume size is reduced by a fixed-kernel filter of 2 × 2 with a stride of 2 max pooling
layers, which highlights the most obvious feature (largest value) in the patch. The stack of
convolutional layers is followed by three fully connected layers, such that each neuron in a
layer is connected with every neuron in the previous layer with its own weight. Lastly, a
softmax layer normalizes the output of the network to a probability curve comprising the
predicted output classes for each pixel.

2.4.2. Training Label Collection

Collecting training samples for the VGG-19 semantic segmentation method required
a different approach. Rather than single pixels being collected, sample images with all
pixels labeled with one of the five classes were created from full drone scenes. For labeling
convenience, 50 512 × 512-pixel images were labeled in MATLAB®Image Labeler appli-
cation. The images covered a total of 635m2, including 127 junipers, 103 live oaks, and
36 mesquites (appropriately representing each tree species’ relative abundance in our study
area). To create a training set for model fitting, we subsampled each of the 50 images to
randomly select 1000 224 × 224 images. Figure 6 shows sampled labeled data.

2.4.3. VGG-19 Model Training

We trained the VGG-19 model within the MATLAB programming environment using
the computer vision and deep learning toolboxes. Since the VGG-19 model is a pretrained
model, our training process was in essence an adaption of the model to new classes which
it was not originally trained on, often referred to as transfer learning. Prior to training, the
collected data, comprising the 1000 raw 224 × 224 RGB images and their associated labeled
images, were split into training (75%) and validation (25%) sets. We then set up the training
process in MATLAB by specifying the input training and validation data, the required
input size (224 × 224), the pretrained model (VGG-19) and the number of semantic classes
(in our case, 5). Considering the unbalanced sampling across the five semantic classes,
weights were incorporated, calculated as the inverse frequency of each class, to strengthen
the robustness of our model. Furthermore, to enhance the accuracy of the network, we then
augmented the training data by randomly shifting, rotation, and reflecting them to create
different versions of the data [45,46]. With a fully specified model, we trained it using mini
batch stochastic gradient descent with momentum (SGDM) as the optimizer with 75% of the
labeled data and 25% of the data for validation. Learning parameters, including schedule
type, rate, factor, and mini batch size, followed the inputs set by [47]. Model training was
accomplished over 100 epochs on a 64-bit Dell Workstation (Intel®Xeon®Processor with
256 GB RAM, NVIDIA™ Quadro K5200 GPU with 8 GB RAM) and took about 2 days to
complete. Once model training was completed, we applied it to the 10cm RGB orthomosaic
to generate a field-level classification map.
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Figure 6. Labeled training images used to run the VGG-19 CNN. Images were carefully selected to
accurately represent the class features in our study area. (a) A labeled image containing juniper and
live oak, as well as some open area. (b) A labeled image containing a heavily forested scene with
all three woody plant species. (c) A labeled image containing an open area, juniper, live oak, and
large shadows.

2.5. Accruacy Assessment

For consistency, the accuracy of each methodology was tested by producing an error
matrix using the same 1000-point testing data set. These error matrices include both
overall accuracies (OA) and kappa coefficients (KC), which were calculated using the
following formulas:

OA = TC/N (7)

KC = N ∑r
i−1 xii −∑r

i−1(xi + Xx+1)/N2 −∑r
i−1(xiiXx+1) , (8)
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where TC = total number of correctly labeled pixels, N = total number of testing pixels,
r = number of rows and columns in the confusion matrix, Xii = observation in row i and
column i, Xi+ = marginal total of row i, and X + I = marginal total of column i. OA and KC
are standard metrics for assessing image classification accuracy, with the OA quantifying
the accuracy of the entire product and the KC serving as a more robust measure that takes
into account the probability of chance agreements.

We also included user (UA) and producer (PA) accuracies in our accuracy assessments
to provide a more encompassing evaluation of the quality of our products. The UA refers
to the point of view of the user who plans on using the classified map. It is defined as the
probability that a classified pixel is in fact the class it says it is. The PA refers to the point of
view of the map maker. It is defined as the probability of real features on the ground being
correctly shown on the classified map. They were calculated using the following formulas:

UA = A/B (9)

PA = A/C (10)

where A = the number of pixels correctly identified in a given map class, B = the total
number of pixels claimed by the map to be in that class, and C = total number of pixels in
the reference class.

3. Results

Our assessments of accuracy for the five classification methodologies (pixel-based,
small-object-based, large-object-based, pixel-based with a post-processing majority filter,
and VGG-19 CNN) showed accuracies ranging from 77.1% to 96.9% (Table 2). The highest
accuracy was achieved by the VGG-19 CNN deep learning methodology with an OA
of 96.9% and a KC of 96.1%. The lowest accuracy was recorded for the large-object-
based ML methodology with an OA of 77.1% and KC of 71.4%. Aside from these two
methodologies, every method–algorithm combination attained an OA and KC between
85 and 94%, definitively showing that affordable RGB drone imagery is indeed capable of
classifying woody plant species encroaching on semiarid grasslands and savannas.

Table 2. Overall accuracies and kappa coefficients for the classical and traditional machine learn-
ing methods.

Overall Accuracy (%) Kappa Coefficient (%)

Pixel-Based

ML 88.2 85.3

RF 87.3 84.1

SVM 90.4 88.0

Small-Object-Based

ML 90.2 87.8

RF 90.5 88.1

SVM 90.1 88.9

Large-Object-Based

ML 77.1 71.4

RF 88.5 85.6

SVM 90.3 87.9

Majority Filter

ML 91.6 89.5

RF 92.3 90.4

SVM 93.8 92.3

3.1. Species Classification Using Traditional and Classical Machine Learning Methods

The non-post-processing pixel-based and large-object-based classification methodolo-
gies in combination with the ML and RF algorithms were found to be the least accurate
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(both showed OAs below 90%). On the other hand, both the small-object-based method
and the pixel-based method with the post-processing majority filter showed OAs of over
90% for all three algorithms (the majority filter method performing slightly better for each
algorithm). Further, regardless of the methodology used, the SVM algorithm outperformed
both RF and ML and was the only algorithm that achieved a 90% accuracy for the large-
object-based method. Figure 7 shows a subsection of the ML, RF, and SVM classifications,
and Figure 8 illustrates the four methodologies in combination with SVM.

Producer accuracy (PA) and user accuracy (UA) were highest for the ground, shadow,
and mesquite classes, with many in the mid-90% range (Table 3). The lowest PAs and UAs
were seen for the live oak and juniper classes, with most falling below 90% for most methods
and algorithms. The lowest UAs were found for the juniper class via large-object-based
methodology (68.6% with RF and 63.8% with ML).
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Figure 7. A comparison of the 3 traditional and classical machine learning algorithms used to classify
the woody plant species in our study area. (a) The 10 cm orthomosaic. (b) ML tended to overestimate
mesquite cover, as well as total tree cover with what was generally shadow. (c) RF was similar to
ML, overestimating tree cover with shadow. (d) Overall, SVM was more robust in parsing between
shadow and canopy cover for the three tree species.
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Figure 8. A comparison of the 4 methodologies (using SVM) employed to classify the woody plant
species in our study area. (a) The 10 cm orthomosaic. (b) The pixel-based method provided decent
accuracies but suffered from a strong salt-and-pepper effect (c) The small-object-based method
attained better classification accuracies than the pixel-based method, while also providing a clearer
representation of the landscape (d) The large-object-based classification most accurately depicted tree
canopies; however, it lacked overall and class accuracies, due to a greater number of mixed pixels.
(e) The post-classification majority filter attained the highest scores overall and class accuracies;
however, it tended to underestimate total canopy coverage for all three woody plant species.
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Table 3. User and producer accuracies for the traditional and machine learning methods.

Ground
(UA/PA)(%)

Shadow
(UA/PA)(%)

Juniper
(UA/PA)(%)

Live Oak
(UA/PA)(%)

Mesquite
(UA/PA)(%)

Pixel-Based

ML 92.7/95.0 98.8/84.0 77.9/86.5 80.0/84.0 94.8/91.5

RF 90.1/91.0 93.4/92.5 77.3/87.0 82.3/74.5 94.3/91.5

SVM 93.7/96.5 95.9/94.0 79.0/90.0 86.7/78.0 98.4/93.5

Small-Object-Based

ML 92.2/89.0 97.8/90.5 93.9/85.0 75.0/94.5 97.4/92.0

RF 89.9/93.5 91.5/96.5 86.7/88.0 85.9/85.5 99.4/89.0

SVM 96.8/90.5 94.4/92.5 85.8/90.5 85.2/86.0 94.1/96.0

Large-Object-Based

ML 99.0/51.0 87.6/53.0 63.8/99.5 77.6/90.0 79.3/92.0

RF 98.5/96.5 96.3/78.0 68.6/98.5 93.5/71.5 97.0/98.0

SVM 97.2/70.5 97.5/97.0 90.2/97.0 75.9/91.5 95.5 /95.5

Majority Filter

ML 95.1/96.0 98.9/86.0 81.7/93.5 88.4/87.5 96.5/ 95.0

RF 94.0/93.5 94.0/94.5 84.8/95.0 93.8/82.5 96.0/96.0

SVM 97.0/96.5 97.5/95.5 83.0/97.5 94.8/81.5 99.0/98.0

3.1.1. Pixel-Based Classification

The pixel-based method produced the best results when classified using SVM, attain-
ing an OA of 90.4% and KC of 87.8%. ML outperformed RF when using a pixel-based
approach with an OA of 88.2% to 87.3% and a KC of 85.3% to 84.1%. UAs and PAs were
high for the ground, shadow, and mesquite class with averages above 90% among the
three algorithms tested. However, the UA and PA for the juniper and live oak class were
significantly lower. The UAs for the juniper class in particular were low, with accuracies
below 80%. Furthermore, the PAs for the live oak class in particular were low, with only
ML producing an accuracy above 80%. Overall, the results were acceptable but displayed a
heavy salt-and-pepper effect that can be attributed to the high spatial resolution.

3.1.2. Small-Object-Based Classification

The small-object-based method produced similar results for SVM, RF, and ML with
OAs and KCs of 90.1%/ 88.9%, 90.5%/ 88.1%, and 90.2%/ 87.8%, respectively. In com-
parison to the pixel-based method, the small-object-based method had more consistent
UA and PA accuracies for all the classes. Specifically, only the UA for the juniper class
using ML produced an accuracy of less than 80%. Overall, the results are comparable to
those produced by the pixel-based method, including the salt-and-pepper effect, which
was still present.

3.1.3. Large-Object-Based Classification

The large-object-based method produced high accuracies for SVM and RF with OAs
and KCs of 90.3%/ 87.9%, and 88.5%/ 85.63%, respectively. ML accuracy dropped sig-
nificantly with an OA and KC of 77.1% and 71.4%. Interestingly for SVM, the juniper
class outperformed all other methods for PA and UA, both with accuracies above 90%.
Conversely, ML had its lowest UA and PA with accuracies in each class below 80%. This
highlights the robustness that classical machine learning algorithms (SVM, RF) have over
traditional algorithms such as ML. Furthermore, this methodology greatly decreased the
salt-and-pepper effect, allowing the user to better visualize species-specific tree crowns.

3.1.4. Pixel-Based Classification with a Post-Processing Majority Filter

The pixel-based classification with a post-processing majority filter produced the
highest OAs and KCs for the traditional and classical algorithms, with the highest accuracy
attained in combination with SVM (OA: 93.8% and KC: 92.3%). Additionally, UA and PA for



Remote Sens. 2022, 14, 1665 17 of 22

all three algorithms and across each class never dropped below 80%, attaining the highest
percentages for any method. Overall, this method provides an advantage in increased
accuracies but retains a prominent salt-and-pepper effect that hinders interpretability of
the classification map. This could possibly be mitigated by using larger filter windows,
which may also change accuracies.

3.2. Species Classification using a Deep Learning Method

The VGG-19 CNN deep learning methodology, which can be seen in Figure 9, pro-
duced the highest accuracies across all methodologies with an OA of 96.9% and a KC of
96.1% (Table 4). All PA and UA values were well above 90%, with tree species classes
achieving values in the mid-to-high 90% range (Table 5). This methodology, though highly
accurate, requires a suitable GPU to train the model. Furthermore, labeling training data
is a lengthy process, and parameterization of the model takes an increased level of exper-
tise that may limit its usability. For these reasons, it would not be recommended to land
managers as the primary methodology for classification.
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Table 4. Overall accuracies and kappa coefficients for the deep learning method.

Overall Accuracy (%) Kappa Coefficient (%)

Deep Learning VGG-19 96.9 96.1

Table 5. User and producer accuracies for the traditional and machine learning methods.

Ground
(UA/PA) (%)

Shadow
(UA/PA) (%)

Juniper
(UA/PA) (%)

Live Oak
(UA/PA) (%)

Mesquite
(UA/PA) (%)

Deep Learning VGG-19 95.7/99.0 99.5/96.0 94.3/99.5 97.0/95.5 98.4/94.5

4. Discussion

All the methodology and algorithm combinations we assessed achieved acceptable
results, demonstrating that RGB images captured by drone can be used to accurately map
woody plant species in semiarid regions. The VGG-19 CNN model achieved the highest
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overall accuracy (96.9%). SVM came in second with an average classification accuracy of
91.2% across all methods, followed by RF (89.7%) and ML (86.8%). The increased spatial
resolution due to the low altitude of the flight, along with the innate differences among
the woody species in seasonality and spectral qualities, creates a unique situation in the
Edwards Plateau—such that accurate classification is possible only with bands in the visible
spectrum. Acquiring imagery in December, when mesquites are leaf-off, live oaks begin
to lose color, and junipers are fully leafed, takes advantage of conditions of stark contrast
between the species. However, acquiring imagery in early March, when live oaks are
thinning out and going through a short period of leaf senescence while mesquites have
yet to regrow their leaves, might yield similar or possibly better results—particularly in
distinguishing between live oaks and junipers in dense, multistoried canopies.

4.1. Object-Based vs. Pixel-Based Classification

Object-based classification is generally thought to be a better method than pixel-based
classification, as it greatly reduces the salt-and-pepper effect seen in many pixel-based
classification images. In [48], using ML on terra advanced space-borne thermal emission
and reflection radiometer (ASTER) imagery for vegetation classification in northern Cal-
ifornia, the authors compared pixel-based image analysis and object-based analysis and
found that the latter dramatically outperformed the former (83.25% to 46.48%). Similarly,
when [49] used a multitude of traditional classification algorithms to compare object-based
and pixel-based methods for classifying agriculture crops in southern Spain, they found
that the accuracies of object-based classifications were on average 4% higher than their
pixel-based counterparts. Unlike the results found in study [23], which concluded that a
pixel-based approach was better in classifying woody encroachment into grasslands, we
found that object-based approaches performed better when properly segmented, as well as
providing a better outline of canopies. Finally, Ref. [50] used QuickBird imagery to classify
urban land cover in central Phoenix, Arizona and found that object-based classification
outperformed pixel-based classification in overall accuracy (90.4% to 67.6%). The findings
of our study are similar, with small-object-based classification achieving better results than
pixel-based classification, but the margins were not as large as those reported in other
studies; overall accuracies with the ML, RF, and SVM algorithms were higher by 2%, 2.9%,
and 0.7%, respectively. Increasing the maximum pixel size per object from 10 to 100 caused
a decrease of 11.2% for ML and a decrease of 0.1% for SVM, while the overall accuracy for
RF increased by 1.2%. These results display the robust ability of SVM to provide an accurate
classification regardless of the method used. Algorithm-specific hyper-parameterization
can be used to find the optimal maximum object size, but this was not the primary concern
of our study. The decrease in ML classification accuracy is notable but expected given the
underlying assumptions in maximum likelihood classification. At the larger object size,
there was a higher chance of creating objects with mixed spectra, which likely violated the
underlying normality assumptions.

4.2. Post-Processing Application

The use of a majority filter for post classification smoothing on the pixel-based clas-
sification outputs resulted in the highest overall accuracies for the ML, RF, and SVM
algorithms, which were greater by 3.4%, 5%, and 3.4%, respectively, than those achieved
via standard pixel-based or object-based classification. The authors of [51], using Landsat
thematic mapper imagery and topographic data, classified land cover classes with the RF
algorithm and found that post classification smoothing increased overall accuracy results
by up to 6%. Our accuracy improvements were not as great, which is most likely due to the
large difference in spatial resolutions (0.1 m vs. 30 m). However, it is important to note that
even though the majority filter produced the highest overall accuracies for ML, RF, and
SVM, there was still a considerable salt-and-pepper noise associated with the classifica-
tion. The salt-and-pepper effect, due to the increased spatial and radiometric resolution
provided by drones, was greatly reduced for the small-object-based and large-object-based
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classifications, with the large-object-based classification producing the clearest outlines of
tree canopies, as illustrated in Figure 8.

4.3. Tradional vs. Classical Machine Learning Classification

Both machine learning algorithms, SVM and RF, outperformed the traditional ML
algorithm with all the methodologies, the exception being that with the pixel-based method,
ML had a 0.9% greater overall accuracy than RF. Overall, SVM performed better than RF
and ML across the board, which was to be expected; the SVM algorithm is generally
claimed to be the best at dealing with classifications of higher information classes such
as woody plant species, with the RF algorithm coming second [52,53]. Further, the SVM
was also the most robust of the three algorithms, yielding accuracies above 90% with all
the methodologies. This robustness can be explained by its non-parametric nature, which
enables it to properly find an optimal class-separating hyperplane, regardless of the number
of training samples used or their inherent variability and number of outliers [54].

4.4. Deep Learning Application

It was the fourth algorithm assessed, the VGG-19 CNN algorithm, that achieved the
highest overall classification accuracy, as well as the highest average per-class accuracy,
for the woody plant species at 96.9%. This greater accuracy can be attributed to both the
number of training data used to train the model, and the quality of the training data. For
deep learning algorithms, every pixel in the image must be labeled, which requires detailed
knowledge of the study area. Thus, labeling training data can be an arduous process, and
deep learning model training can be lengthy. However, data augmentation techniques,
such as rotation, mirroring, and splicing, enable a larger number of high-quality training
samples to be produced [40,41].

Other CNN architectures have been widely used in solving classification problems
from remotely sensed images; however, VGG-19 remains a strong competitor for such
tasks. In 2021, [42] applied pretrained models, InceptionV3, Resnet50V2, and VGG-19,
to LCLU classification in the UC Merced dataset, resulting in accuracy performances of
92.46, 94.38, and 99.64%, respectively. Within the same year, [43] implemented a pretrained
VGG-16 model (same architecture as VGG-19 with three fewer convolutional layers) for
LULC classification using the RGB version of the EuroSat dataset, achieving an accuracy
of 99.17%. In 2019, [44] gathered a combination of LiDAR and high-resolution RGB data
by plane to classify 18 tree species in a tropical wetland forest using three deep learning
models (i.e., AlexNet, VGG-16, and ResNet50). VGG16 outperformed the other two models,
scoring the highest overall classification accuracy of 73.25%. Studies [20–22], which used
various CNNs to classify tree species in humid climates and urban areas, garnered similar
results to ours, showing that the combination of deep learning and high-resolution drone
imagery can provide high classification accuracies in other landscapes as well. Testing other
deep learning models in semiarid woody encroached landscapes would provide useful
information; however, it is out of the scope of this study, as we simply wanted to test the
efficacy of using affordable RGB drone data to identify encroaching woody plant species
and develop recommendations based on our results.

4.5. Recommendation

We recommend a large-object-based SVM classifier when classifying woody plant
species in semiarid grasslands and savannas from drone imagery. This methodology did
not produce the highest overall accuracy but had exceptional results nonetheless, with
an OA above 90%. It also classified juniper, the most abundant species in our study
area, with a higher degree of accuracy than the other non-deep learning methodologies.
Furthermore, using SVM in combination with large-object-based classification allowed us
to clearly visualize tree crowns. Lastly, gathering training data and processing times were
also much faster when compared to properly training and applying the VGG-19 CNN to
the orthomosaic.
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5. Conclusions

Our findings show that RGB drone sensors are indeed capable of providing highly
accurate classifications of woody plant species in semiarid landscapes—comparable to
and even greater in some regards to those achieved by aerial imagery using hyperspectral
sensors in more diverse landscapes. One reason for the high quality of the classifications
we were able to obtain could be the innate seasonal diversity of the woody plant species
found in the semiarid Edwards Plateau. Using drones enables continuous surveillance of
an area, with little preflight planning required. This advantage over using aerial or satellite
imagery means that land managers and scientists can more easily investigate site-specific
and species-specific problems, including the woody plant encroachment that has seriously
affected many such areas.

The best overall accuracies are achieved by pairing drone imagery with a deep learning,
convolutional neural network algorithm, such as VGG-19, which can be replicated with the
labeling of new images every time new data are gathered. However, the tedious nature of
labeling a large number of training samples, GPU requirements, and long model training
times makes this method difficult to implement. For this reason, further studies in these
landscapes should be undertaken to test other deep learning models to see which performs
best and to train models with smaller samples of training data to see how accuracies and
processing times are affected. Testing of different models and of varying numbers of
training data is needed to find a balance between long processing times and acceptable
classification accuracies. Another avenue that would add to our knowledge base would
be to gather data during summer months, when all the wood plant species are in full
bloom, to gain insights into possible limitations of RGB drone imagery in these landscapes.
Additionally, yet another avenue for increasing our understanding of the capability of
high-resolution RGB drone imagery would be to perform similar studies in other semiarid
grasslands and savannas regions of the world with a different variety of encroaching woody
plant species.

An exciting future possibility would be to expand the study further through data
fusion with National Agricultural Imagery Program (NAIP) imagery that provides country
wide 1-meter ground sample distance every 3 years. Data fusion would allow for plot-level
evaluation of woody plant encroachment to be applied across the entire Edwards Plateau
region of Texas and other semiarid regions of the continental United States (CONUS).
Additionally, NAIP imagery being acquired every 3 years allows us to track change, thereby
mapping the spread of woody species across semiarid regions of the CONUS. Furthermore,
NAIP imagery is publicly available on the Google Earth Engine (GEE) providing interested
parties the ability to use Google’s powerful cloud computing capabilities.

Finally, our recommendation to those working in these landscapes is to use an object-
oriented SVM classifier due to its ease of implementation, fast turnaround time, relatively
high overall and tree class accuracy, and accurate depiction of tree crowns. This study
provides important groundwork for such efforts by demonstrating that using RGB imagery
captured by drones is a cost-effective and time-efficient strategy for classifying woody plant
species in semiarid grasslands and savannas.
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