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Abstract: Stereomatching plays an essential role in 3D reconstruction using very-high-resolution
(VHR) remote sensing images. However, it still faces unignorable challenges due to the multi-
scale objects in large scenes and the multi-modality probability distribution in challenging regions,
especially the occluded and textureless areas. Accurate disparity estimation in stereo matching for
multi-scale objects has become a hard but crucial task. In this paper, to tackle these problems, we
design a novel confidence-aware unimodal cascade and fusion pyramid network for stereo matching.
The fused cost volume from the coarsest scale is used to generate the initial disparity map, and then
the learnable confidence maps are generated to construct the unimodal cost distributions, which
are used to narrow down the next-stage disparity search range. Moreover, we design a cross-scale
interaction aggregation module to leverage multi-scale information. Both smooth-L1 loss and stereo
focal loss are applied to regularize the disparity map and unimodal cost distribution, respectively.
Compared to two state-of-the-art stereo matching networks, extensive experimental results show that
our proposed network outperforms them in terms of average endpoint error (EPE) and the fraction
of erroneous pixels (D1).

Keywords: stereo matching; unimodal distribution; cross-scale interaction

1. Introduction

Stereo matching, estimating disparities from stereo image pairs, is one of the most
fundamental problems in computer vision tasks and remote sensing applications such as
earth observation [1,2], autonomous driving [3], robot navigation [4], SLAM [5], etc. [6].
Owing to the increasing resolution and volume of remote sensing images, precise 3D
reconstruction using multi-view VHR remote sensing images becomes possible, providing
a new way to observe on-ground targets. As the fundamental task of 3D reconstruction,
stereo matching finds pixelwise correspondences from rectified stereo image pairs and
estimates horizontal disparities, which can be further used to calculate elevation and
construct 3D models. Typically, large-scene remote sensing images contain objects of
various sizes and heights, such as skyscrapers, residential buildings, and woods. Multi-
scale objects result in different disparity ranges, which make stereo matching methods
difficult to extract accurate correspondences.

Traditional stereo matching algorithms can be implemented using a four-step pipeline:
matching cost computation, cost aggregation, disparity computation, and refinement [7].
Numerous methods were proposed during past decades, they are mainly divided into three
categories, i.e., global, local, and semi-global methods. Global methods usually solve an
optimization problem by minimizing a global objective function containing some regular-
ization terms [8,9], suffering from an expensive time cost. On the contrary, local methods
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make themselves much faster than global methods by only considering neighbor infor-
mation [7,10–12], but they often lose estimating accuracy. Lastly, the semi-global methods
trade off the time cost and accuracy by proposing more robust cost functions [13,14]. On
behalf of the widely used semi-global cost aggregation methods, the Semi-Global-Matching
(SGM) algorithm [15] optimizes the global energy function with the aggregation in many
directions. Although many significant algorithms have been proposed in traditional ways,
they still suffer in textureless, occluded, and repetitive situations.

Benefiting from the strong representations of the convolutional neural network (CNN-
based method), deep model has achieved promising results in those challenging areas.
Generally, these deep networks are classified into two categories, non-end-to-end and
end-to-end networks. The first category combines traditional steps to improve disparity
estimation accuracy. They leveraged CNN to match the points with deep feature repre-
sentation. Some of them aggregated traditional algorithms with CNN to calculate precise
matching cost. For example, CNNs have been applied to learn how to match correspond-
ing points in MC-CNN [16]. Another approach [17] using CNNs treated the problem of
correspondence estimation as similarity computation, where CNNs compute the similarity
score for a pair of image patches. Displets [18] utilized object information by modeling
3D vehicles to resolve ambiguities in stereo matching. In addition, ResMatchNet [19]
learned to measure reflective confidence for the disparity maps to improve performance in
challenging areas.

Nowadays, the end-to-end stereo matching networks are widely applied because the
methods combining CNNs and traditional cost aggregation and disparity refinement often
obtain satisfactory results in some challenging areas. The end-to-end methods are able to
incorporate the four traditional steps to gather perception features more efficiently. The
construction of cost volume is an indispensable step which is typically a 4D tensor with a
size of [height × width × disparity × feature]. Existing state-of-the-art stereo matching
networks can be categorized into two categories based on the cost volume construction
ways: 2D and 3D convolution-based networks. The 2D methods usually leverage full
correlation operation [20] of the left and right feature maps to construct 3D cost volume,
which include the first end-to-end trainable stereo matching network DispNet [20], MAD-
Net [21], and AANet [22]. The second category mostly uses direct feature concatenation
without the decimation of feature channels, which generate a 4D cost volume. For example,
GC-Net [23] took a different approach by directly concatenating left and right features,
and thus 3D convolutions were required to aggregate the resulting 4D cost volume. In
addition, PSMNet [24] further improved GC-Net by introducing more 3D convolutions for
cost aggregation and accordingly obtains better accuracy. GANet [25] noticed the draw-
backs of 3D convolutions and replaced them with two guided aggregation layers to further
improve the performances. Actually, the 3D methods usually outperform 2D methods a
lot on computer vision benchmarks, though they always require higher computational
complexity and memory consumption. An exception to those concatenation methods, the
GWCNet [26] is proposed to trade off the loss of full correlation and concatenation, in
which group-wise correlation is applied to balance that problem.

Aiming at alleviating the expensive computational and time cost in 4D cost volumes,
multi-stage methods based on multi-scale pyramidal towers [8,21,27] are proposed. These
methods used cascade cost volumes to narrow down the disparity search range and progres-
sively refine the estimated disparity from coarse to fine. Recently, CasStereo [28] extended
such framework in multi-view stereo, which generates the next scale’s disparity search
space by uniformly sampling a predefined range. In addition, UCSNet [29] proposed
adaptive thin volumes by constructing uncertainty-aware cost volume in multi-view stereo.
Most recently, CFNet [30] shared similarities with [28,29], which generates the next-stage
search range with learned parameters. Considering the multi-modality of disparity prob-
ability distributions, ACFNet [31] directly supervised the cost volume with unimodal
ground truth distributions. In addition [30], adopted from [29,31], defined an uncertainty
estimation to quantify the degree of the cost volume tending to be multi-modal distribution.
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Consequently, our proposed method aims to improve the stereo matching accuracy of
remote sensing images by absorbing the advantages of multi-stage methods and making
them suitable for the characteristics of remote sensing images.

Multi-view VHR remote sensing images acquired from pushbroom cameras can be ap-
plied to precise 3D reconstruction due to the growing resolution [32]. However, compared
to the natural images, there are more difficult scenes in VHR remote sensing images [33].
First, the disparities in remote sensing stereo pairs can be both positive and negative accord-
ing to the complicated viewing conditions. We illustrate the disparity range (in Figure 1)
of each ground truth DSP (disparity map) in IGARSS2019 [34] data fusion contest dataset
US3D [34,35]. Second, a lot of challenging areas exist which easily produce ambiguous
disparity estimation results, including occluded areas and textureless areas with repetitive
patterns which cause difficulties in obtaining accurate correspondences. In addition, the
disparity probability distributions in those areas are susceptible to multi-modal. Last, multi-
scale objects in remote sensing images, which contain various disparities, further increase
the difficulty to find the suitable disparity search range. As shown in Figure 2, comparing
with the proposed network, the CFNet [30] fails to produce good results on US3D.
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Figure 1. The disparity range in VHR remote sensing dataset US3D, where every scatter represents one
ground truth DSP and the Dmax, Dmin denote the maximum and minimum disparity value, respectively.

Left CFNet Our Ground Truth

Figure 2. An example on multi-scale disparity estimation of US3D. From left to right: left image,
disparity maps predicted by CFNet, the proposed network, and the ground truth.
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To this end, two motivating and challenging problems in terms of remote sensing
images arise: how to estimate precise disparities for multi-scale objects in large scenes and
how to regularize the multi-modality probability distributions in such challenging areas.
In this paper, we propose a novel confidence-aware unimodal cascade and fusion pyramid
network for multi-scale stereo matching of VHR remote sensing images. Specifically, toward
the characteristics of various disparity search ranges in remote sensing images, we modify
the group-wise cost volume to cover the whole disparity search range. As for the multi-scale
cost aggregation problems, existing cross-scale aggregation algorithms [22,36] adaptively
combine the results of cost aggregation at multiple scales. Different from those methods, we
build cross-scale cost volume interaction in a cascade framework for remote sensing images.
Last but not least, considering the multi-modality of disparity probability distributions,
we propose a multi-scale module to generate learnable confidence maps, which are used
to generate the next stage search range, and a multi-scale unimodal distribution loss is
applied to regularize cost distribution.

The rest of this paper is organized as follows. Section 2 first illustrates the overall
framework of the proposed confidence-aware cascade network and then introduces each
module of the network in detail. In Section 3, the experimental results of stereo matching
for multi-scale objects in remote sensing images are shown, then both qualitative and
quantitative analyses demonstrate the superiority of the proposed network. In Section 4,
ablation experiments on different settings are conducted to prove the effectiveness of each
module in the proposed network. Finally, the conclusions are drawn in Section 5.

2. Method

In this section, the proposed cascade stereo matching network with cross-scale in-
teraction and confidence map is demonstrated in detail. First, the whole structure of our
proposed network is illustrated. Then, the fused cost volume for the coarsest scale is
introduced, which consists of the reconstruction group-wise cost volume for VHR remote
sensing images. Moreover, the confidence-aware disparity refinement method embedded
in the cascade framework is presented. Last, the smoothL1 loss and unimodal cost distri-
bution regularization loss are elaborated, which are employed for disparity map and cost
distribution, respectively.

2.1. The Architecture of the Proposed Network

The overall architecture of the proposed network is shown in Figure 3. Given a
rectified remote sensing image pair Il and Ir, we first employ a siamese UNet-like [37,38]
module to extract multi-scale features, which shares an encoder-decoder architecture with
skip connections between multi-scale feature maps (as shown in Figure 4). The encoder is
composed of five residual blocks followed by a SPP module to better incorporate multi-
scale context information. The encoder module is similar to HSMNet [37] and CFNet [30]
and which is proven to be efficient and contains various context information. Moreover, the
decoder upsamples the hierarchical feature maps and concatenates them with the feature
maps from skip links of the encoder. Then, the extracted multi-scale features are fed into
multi-scale group-wise cost volume construction.

Different from one-stage cost aggregation methods [23–25], multi-stage cost aggrega-
tion methods [28–30] are proven to be more effective, which can reduce the computational
complexity and time cost by progressively refining the disparity estimation. We divide
multi-scale feature maps into fused and cascade cost volumes to predict multi-resolution
disparity, respectively, and we fuse multi-scale cost aggregation results to capture low and
high resolution information. In addition, we build a multi-scale confidence prediction mod-
ule to regularize cost distributions and leverage the learned confidence map to generate
the next stage’s disparity search range progressively. The training loss functions employed
in our method are the stereo focal loss [31] and smoothL1 loss [24,25], which are used to
regularize cost distribution and disparity, respectively. The details of the aforementioned
modules will be discussed in the following sections.
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Figure 3. The architecture of the proposed cascade confidence-aware pyramid network for stereo matching.
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Figure 4. The architecture of the siamese feature extraction module.

2.2. Fused Cost Volume of the Coarsest-Scale Feature

In the cascade multi-scale cost aggregation frameworks, generating low-resolution
initial disparity maps is indispensable. Different from the existing methods [29,39] which
do not use low-resolution feature maps, CFNet fuses three lowest resolution feature maps
to generate a more accurate initial disparity map in an encode-decoder process. Noticing
the effectiveness of this module, we adopt the same cost volume construction in CFNet,
which uses both concatenated and group-wise correlation [26] feature maps to generate
low-resolution cost volume. The detail of the combined volume is given as:

Ci
concat(d

i, x, y, f ) = Fi
l (x, y)⊕ Fi

r(x− di, y)

Ci
gwc(d

i, x, y, f ) =
1

Ni
c/Ng

〈
Fi

l (x, y), Fi
r(x− di, y)

〉
Ci

combine = Ci
concat ⊕ Ci

gwc

(1)
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where Fi
l and Fi

r are the extracted feature maps at scale i and Nc represents the number of
feature channel. Ng is the group size of correlation. 〈, 〉 denotes the inner product and ⊕ is
the feature concatenation.

By densely sampling the whole disparity range in low resolution, the hypothesis plane
interval equals to 1, by which we can efficiently generate the initial cost volume with size
H/2i ×W/2i × Dmax/2i × F. Then, the improved encoder-decoder architecture with 3D
hourglass aggregation module is used to fuse the three lowest cost volumes. As shown
in Figure 5, specifically, the combination volumes from 1/32, 1/16 scale, firstly employed
four 3D convolution layers and skip connections, respectively, are concatenated into the
scale 1/8. In addition, the 3D hourglass network is implemented to further aggregate the
fusion cost volume, and the intermediate outputs are used for the following cross-scale
cost aggregation and the confidence-aware algorithm can be employed based on the final
output of this scale.

3D Conv

3D DeConv

3D Conv, Stride 2

Combination volume

Initial disparity
map

Cross-Scale
Module 1

Cross-Scale
Module 2

Figure 5. The architecture of thefused cost module in our network.

As shown in Figure 1, due to the various disparity ranges in remote sensing images,
the cost volume and its disparity regression range need to be reset to accommodate remote
sensing images. According to the disparity regression algorithm [23], the probability of
each disparity d is calculated from the predicted cost cd via the softmax operation. Then,
the continuous disparity maps d̂ can be calculated by the weighted sum of d. In this paper,
we reconstruct the three initial coarsest-scale cost volumes with the range of [−Di

max, Di
max]

same to the corresponding disparity regression range. As shown in Figure 6, the coarsest
cost volumes have size of [2× Fi × Hi ×Wi], which are suitable for the characteristics of
remote sensing images, where Di

max is the max disparity at scale i and Fi, Hi, Wi denote
the dimension size of feature, height, and width at scale i, respectively. Thus, the three
coarsest-scale predicted disparity maps d̂i can be calculated as follows,

d̂i =
Di

max

∑
d=−Di

max

d× so f tmax(−ci
d). (2)

where so f tmax means the softmax operation, and ci
d denotes the estimated cost volume at

scale i. so f tmax(−ci
d) is the discrete disparity probability distribution.
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Stacked Feature Map

Figure 6. The reconstruction of cost volume for remote sensing images.

2.3. Confidence-Based Unimodal Distribution Regularization

Aiming at generating the next stage disparity search range based on the initial fusion
disparity estimation, existing methods [28] make a straightforward, uniformly sampling
with a predefined range. However, such a method cannot adaptively adjust pixel-wise
property. The pixels in challenging areas should empirically expand their search ranges. To
tackle this problem, refs. [30,31] propose a variance-based disparity range search algorithm
and a pixel-wise confidence map to adaptively quantify the various search ranges. The
degree of multimodal distribution is highly correlated to the probability of prediction
error. Different from the previous works, we adopt the learnable confidence estimation
networks [31] to embed in the multi-scale variance-based disparity refinement framework.
The multi-scale confidence estimation network and cascade disparity refinement framework
are presented in the following subsection.

Cost volume usually reflects the similarities between corresponding pixel pairs, where
the truly matched pixel should have the lowest cost or the highest similarity [31]. This hy-
pothesis requires the cost distribution is unimodal peaked at the true disparity and increases
with the distance to the true position. The unimodal distribution truth is defined as:

P(d) = so f tmax(−
∣∣d− dgt

∣∣
σ

)

=
exp(−cgt

d )

∑Di
max

d′=−Di
max

exp(−cgt
d′ )

(3)

where cgt
d =

|d−dgt|
σ , σ > 0 is the variance that controls the sharpness of the peak around

the true disparity. It is clear that pixels across different challenging areas should have
different cost distribution. For example, a pixel at a robust corner usually has a sharp peak,
while pixels in textureless regions may have flat distribution. Consequently, we add a
confidence estimation network to adaptively predict the σ for each pixel. In the meantime,
the predicted confidence maps are used to compute the next stage disparity search range
and employ the multi-scale stereo focal loss combined with P(d).

The confidence estimation network takes the predicted cost volume as input and
uses a few layers to predict a confidence map for each pixel. The network consists of a
3× 3 convolutional layer followed by BN and ReLU, and another 1× 1 convolutional layer
followed by sigmoid activation, after which we can predict a confidence map f ∈ [0, 1]H

i×Wi
.

The larger confidence value refers to a more robust correspondence. Then, the σ of cost
distribution truth is calculated as:

σi = α(1− f i) + β (4)
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where α > 0 is the scale factor and β > 0 is the lower bound for σ and avoids numerical
error of zero-dividing. Accordingly, the cost distribution truth in Equation (3) should
be modified.

2.4. Cascade Cost Volume for Disparity Refinement

Given the predicted confidence maps, the variance value σi can be computed through
Equation (4). Therefore, it is reasonable to implement the confidence-aware variance
to evaluate the disparity search range of the next stage, where lower confidence value
corresponds to a wider search space to correct the wrong estimation [30]. Thus, the next
stage’s disparity search range can be computed as:

di−1
max = δ(d̂i + (si + 1)σi + εi)

di−1
min = δ(d̂i − (si + 1)σi − εi)

−Di
max ≤ di

max, di
min ≤ Di

max

(5)

where δ means bilinear interpretation. si, εi are two learnable hyperparameters, which
are initialized as 0. The two learnable parameters are proven to be more robust [30]
than human-selected parameters. Finally, the next stage’s disparity search range can be
uniformly sampled as:

di−1 = di−1
min + n(di−1

max − di−1
min)/(Ni−1 − 1)

n ∈ 0, 1, 2 . . . Ni−1 − 1
(6)

where Ni−1 is the number of disparity hypothesis planes at stage i − 1. Then, the cost
volume of the next stage with size H

2i−1 × W
2i−1 × Ni−1 × F is generated.

After that, we employ a similar 3D hourglass cost aggregation module in 1/8 scale
to predict the refined disparity map. Thus, the coarse-to-fine cascade disparity estimation
framework is built by progressively narrowing down the disparity search range.

2.5. Cross-Scale Cost Aggregation

The cross-scale interaction in stereo matching, not only introduced in the traditional
algorithm [36] but the learning-based methods [22,40], is observed as beneficial to aggregate
multi-scale feature information. In addition, the cross interaction modules in HRNet [41]
are proposed for learning sufficient feature representations for human pose estimation.
With the observation application on remote sensing images that the recent popular methods
pay more attention to large-scale objects, as shown in Figure 2, we add the cross-scale
interaction module to further aggregate rich cost information in our cascade framework.

With the analyses in [22,36], we add a similar combination manner in HRNet, which
adaptively fuse the cost volume results performed in different scales. Specifically, the
cross-scale combination is:

Ĉi =
i

∑
k=1

fk(C̃k)

fk =

{
τ , k = i

δ(.)⊕ 1× 1conv , k > i

(7)

where Ĉi is the cost volume after cross-scale cost aggregation, while C̃k is the intermediate
outputs of different scales. In addition, fk defines a general combination function of
different-scale cost volume. Specifically in the function fk, the τ denotes the identify
function, while ⊕ means bilinear upsampling (δ) to the consistent resolution i followed by
a 1× 1 convolution layer.
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2.6. Loss Function

Considering the loss function, we first adopt the smooth L1 loss to supervise the
multi-scale estimated disparity map and adopt the stereo focal loss, which is proposed
in [22], to further regularize the cost distribution based on Pp(d), Pgt(d). Due to the low
sensitivity to outliers compared to L1 loss [42], smooth L1 loss is widely used in object
detection and stereo matching, which is given as follows:

LSL =
1
N

N

∑
i=1

smoothL1(di − d̂i), (8)

where

smoothL1(x) =

{
x2/2, if |x| < 1
|x| − 0.5, otherwise

where N is the valid disparity in ground truth, d denotes the disparity label, and d̂ is the
predicted disparity.

In order to supervise distribution loss between the predict and ground truth and
considering the severe sample imbalance problem since one pixel only has one true disparity,
the stereo focal loss [31] is proposed to focus on truth disparities, which is inspired by the
focal loss [16] designed to solve the sample imbalance problem in object detection [43]. The
stereo focal loss is defined as:

LSF =
1
N

N

∑
i=1

 Di
max

∑
d=−Di

max

(1− P(d))−γ · (−P(d) · logPgt(d))

 (9)

where γ > 0 denotes a focusing parameter, and the loss is deprecated to cross entropy loss
when γ = 0, while γ > 0 performs more weights to positive disparities so that the positive
disparities only compete with a few negative ones. In conclusion, our final loss functions
consist of the aforementioned losses defined as:

L = λ1LSF + λ2LSL (10)

where λ1,2 are two trade-off hyperparameters. In addition, LSF is used to supervise cost
volume distribution, while LSL is to supervise disparity maps.

3. Result

In this section, we first introduce the dataset and metrics for evaluation and experi-
mental settings. Then, the experimental results compared to other state-of-the-art networks
are presented to evaluate the performance.

3.1. Datasets and Evaluation Metrics

We conduct extensive experiments on two datasets: SceneFlow and US3D. Both
datasets contain positive and negative disparities, and details are listed in Table 1.

Table 1. The settings of two datasets.

Stereo Pair Mode Patch Size Training Images Testing Images

SceneFlow RGB 960× 540 70,908 8740
US3D RGB 1024× 1024 4292 50

(1) The SceneFlow dataset (https://lmb.informatik.uni-freiburg.de/resources/datasets/
SceneFlowDatasets.en.html, accessed on 8 February 2022) [20] is a large-scale synthetic dataset
including 35,454 positive training and 4370 test images with a resolution of 960× 540, so as
the negative ones. The RGB images in SceneFlow are rendered into cleanpass and finalpass

https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html


Remote Sens. 2022, 14, 1667 10 of 19

settings, where cleanpass includes lighting and shading effects. In contrast, the finalpass
images also contain motion and defocus blur. We use the whole positive and negative
finalpass images to pre-train our network. An example is shown in Figure 7, where there
are similar-scale objects in the foreground.

(a) Left Image (b) Left Disparity Map

(c) Right Image (d) Right Disparity Map

Figure 7. Visualization of SceneFlow dataset. (a) The left image. (b) The disparity map based on left
image. (c) The right image. (d) The disparity map based on right image.

(2) The US3D dataset (https://ieee-dataport.org/open-access/data-fusion-contest-
2019-dfc2019, accessed on 8 February 2022) is the track2 data of the 2019 IEEE Data Fusion
Contest [34,35]. The stereo pairs in this dataset are from 69 VHR WorldView-3 multi-view
remote sensing images, which are acquired from 2014 to 2016 over Jacksonville and Omaha
in the United States. The stereo pairs in this dataset are geographically non-overlapped
with the rectified size of 1024× 1024. The whole dataset has 4292 and 50 stereo pairs
for training and testing, which contain various landscapes such as residential buildings,
skyscrapers, woods, and rivers. An example is shown in Figure 8, which contains more
complex multi-scale objects compared with SceneFlow.

(a) Left Image (b) Left Disparity Map

(c) Right Image (d) Right Disparity Map

Figure 8. Visualization of US3D dataset. (a) The left image. (b) The disparity map based on left
image. (c) The right image. (d) The disparity map based on right image.

https://ieee-dataport.org/open-access/data-fusion-contest-2019-dfc2019
https://ieee-dataport.org/open-access/data-fusion-contest-2019-dfc2019
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In order to evaluate our proposed network, two quantitative metrics, the average
endpoint error in pixels (EPE) and the fraction of erroneous pixels (D1), are used to assess
the performance. D1 is robust to outliers with large disparity errors, while EPE measures
errors to sub-pixel level.

3.2. Implementation Details

We use PyTorch to implement our network and employ the Adam optimizer with
β1 = 0.9, β2 = 0.999 to train the whole network in an end-to-end way. The input size
of images is set to 512× 512. The asymmetric chromatic augmentation and asymmetric
occlusion [30,37] are used for data augmentation.

We implement a two-stage strategy to train our network. Specifically, we first pre-train
our model in the SceneFlow dataset from scratch for 20 epochs, and then finetune our
pre-trained model on US3D dataset for 300 epochs. In the whole training process, the initial
learning rate is set to 0.001 and is downscaled by 10 after epoch 200. We normalize the pixel
to [0, 1] to decrease the radiometric influence in remote sensing images. Every experiment
is conducted on 2 NVIDIA Titan-RTX GPUs with every 8 mini-batch.

The disparity regression range is set to [−128, 128]. Since the variance θp reflects the
shape of unimodal distribution, it is bounded in [α, α + β]. For the best performance of
disparity estimation for remote sensing images, we set the α = 1.0, β = 1.0, respectively.
Then, the parameter γ in stereo focal loss is set to 5.0 to balance positive and negative
disparity samples. As for the three weighted parameters in smooth L1 loss, we follow
the settings in previous stacked hourglass networks [24,25,30,32], and set 0.5, 0.7, 1.0 for
the three intermediate outputs respectively. In our final loss function, the λ1, λ2 are set to
1.0, 0.8, respectively, to balance the three training losses.

3.3. Comparisons with Other Stereo Methods

To further evaluate the effectiveness of the proposed network, we conduct the compar-
ative experiments with state-of-the-art stereo matching networks, including CasStereo and
CFNet which are also based on cascade disparity refinement frameworks, AANet proposed
for real-time stereo matching, PSMNet which is a typical stereo matching network, and
AcfNet improving PSMNet with cost regularization. The end-point error (EPE) and 3-pixel
error (D1) are used to assess the quantitative performance, where EPE is the mean disparity
error in pixels and 3-pixel error is the average percentage of pixel whose EPE is bigger
than 3 pixels. In order to illustrate the visual results of the improvements, we compute
the pixel-wise error map to evaluate the prediction error; cold colors in the error map
denote small prediction errors, while warm colors denote large prediction errors. The
quantitative result is shown in Table 2, which reflects the performance of networks trained
on both the SceneFlow and US3D test datasets. Obviously, our network outperforms them
on remote sensing images pretrained on SceneFlow. That is mainly because the proposed
network holds the ability to estimate accurate disparities for multi-scale objects in remote
sensing images. Subsequently, we illustrate some visual results of US3D samples with two
multi-stage cascade networks to further show the improvements on multi-scale objects.

Table 2. The quantitative results of different network.

Networks
SceneFlow US3D

EPE (Pixel) D1 (%) EPE (Pixel) D1 (%)

PSMNet 1.20 4.69 1.82 14.17
AANet 1.13 4.51 1.91 14.33
AcfNet 1.15 4.69 1.73 12.51

CasStereo 1.10 4.50 1.85 13.93
CFNet 1.02 4.42 1.63 12.72

Our 0.95 4.39 1.41 10.28
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Herein, Figure 9 illustrates the visual performance of disparity estimation between our
method with different algorithms. There are multiple landscapes in multi-scale scenarios.
Obviously, from the disparity map and error map, our method shows many improvements
in such multi-scale disparity estimation, while the other performs badly in large-scale or
small-scale disparity estimation. This proves the effectiveness of our proposed multi-scale
module. It is noteworthy that the insight of cascade disparity refinement framework has
also been investigated in CasStereo and CFNet. CasStereo predicts an initial disparity esti-
mation by constructing higher-resolution sparse cost volume and progressively, uniformly
samples a pre-defined range to generate the next stage disparity search range. In addition,
CFNet argues that the fusion of small resolution cost volume can generate a more accurate
initial disparity map than higher-resolution sparse cost volume. However, from the quanti-
tative and visual illustration in implementing the aforementioned methods on VHR remote
sensing images, CasStereo cannot perform well on such larger-scale disparity estimation
since the initial high-resolution sparse cost volume cannot catch a sufficient large context
with the first stage’s network. In contrast, CFNet performs well in large-scale disparity by
losing the disparity accuracy in such a small scale, which proves the effectiveness of initial
cost volume fusion. The large-scale disparity information can be well initialized based
on such small resolution cost volume. Nevertheless, more complex scenarios make such
cascade disparity refinement frameworks perform worse without multi-scale information
interaction. Consequently, our method leverages sufficient multi-scale cost volume inter-
action to tackle this problem in VHR remote sensing images. From the illustration from
Figure 9, our method with cross-scale cost volume interaction performs best both in the
large and small scale of disparity estimation.

Figure 9. Cont.
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Stereo Pair CasStereo CFNet Our Ground Truth

Figure 9. The visualization comparison results of different cascade networks on US3D dataset.
For each example, the first row shows the disparity map, and the second row shows the error
map. Cold colors in the error map denote small prediction errors, while warm colors denote large
prediction errors.

4. Discussion

In this section, we conduct ablation experiments for evaluating the effectiveness of
each module in our proposed network.

4.1. Analysis of the Variance-Based Methods

Variance estimation is an important component of the disparity refinement framework,
which can automatically adjust the flatness of the unimodal distribution according to the
matching uncertainty. The variance of unimodal distribution can be uniformly set for all
pixels, while CFNet proposes adaptive uncertainty maps based on the pixel-wise disparity
candidates. Different from these methods, we leverage a learnable cost refine module to
compute confidence maps. For comparison, we respectively implement the uniform setting,
uncertainty-based method in CFNet, and our confidence-based module on US3D dataset.

Figure 10 shows several pixel-wise results from SceneFlow and US3D, where the
confidence maps show that the synthetic SceneFlow has many simple structures, while
there are more complex scenarios in VHR remote sensing images. As expected in such
challenging regions: occlusions, thin structures, textureless patterns; the confidence map in
our method provides high variances to flatten the corresponding disparity cost distributions,
which can balance the cost aggregation for different pixels. Table 3 shows the results of
implementing different variance-based methods. The results demonstrate the effectiveness
of adaptive variance estimation. Comparing with the uncertainty-based method in CFNet,
our learnable confidence-based method gives more improvements.
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Table 3. The quantitative results of different variance-based methods.

Networks
US3D

EPE (Pixel) D1 (%)

Our(uniform) 1.62 12.13
Our(with uncertainty) 1.45 10.59

Our(with learned confidence) 1.41 10.28

Left Image Ground Truth Our Prediction Error Map Confidence Map

Left Image Ground Truth Our Prediction Error Map Confidence Map

Figure 10. The visualization results of confidence map for SceneFlow and US3D dataset. Cold colors
in the error map denote small prediction errors, while warm colors denote large prediction errors. In
confidence map, bright colors mean small variances, while dark colors denote high variances.

4.2. Analysis of the Cross-Scale Interaction Module

To further evaluate the effectiveness of the cross-scale cost volume aggregation module,
we add such modules in CasStereo and CFNet which are called CasStereo-c and CFNet-c,
respectively. The quantitative results are listed in Table 4. Comparing with the results
from Table 2, equipped with our proposed cross-scale interaction module, CasStereo-c and
CFNet-c both improve a lot in terms of EPE and D1. Figure 11 shows the visual results
of disparity estimation of re-implemented CasStereo-c, CFNet-c and our method. As we
expect, the disparity maps and corresponding error maps both illustrate the significant
improvements in multi-scale regions, which prove the effectiveness of the proposed cross-
scale interaction module in VHR remote sensing scenarios.
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Table 4. The quantitative results of re-implemented methods with cross-scale module.

Networks
US3D

EPE (Pixel) D1 (%)

CasStereo-c 1.52 11.63
CFNet-c 1.47 10.41

Our 1.41 10.28

Figure 11. Cont.
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Stereo Pair CasStereo-c CFNet-c Our Ground Truth

Figure 11. The visualization comparison results of cascade networks combining with cross-scale
interaction module on US3D dataset. For each example, the first row shows the disparity map, and
the second row shows the error map. Cold colors in the error map denote small prediction errors,
while warm colors denote large prediction errors.

4.3. Analysis of the Loss Settings

In our proposed network, the stereo focal loss and smooth L1 loss are employed to
supervise cost volume distribution and disparity estimation map, respectively. First, to
evaluate the effectiveness of stereo focal loss applied in remote sensing images, we equip
our method with stereo focal loss, cross entropy loss, and none. Table 5 illustrates the
results. It is obvious that the stereo focal loss performs better than cross entropy loss, which
demonstrates the effectiveness of balancing weight from positive and negative disparities.

Table 5. The quantitative results of different loss function.

Networks
US3D

EPE (Pixel) D1 (%)

Our + None 1.47 10.41
Our + Cross Entropy Loss 1.43 10.41

Our + Stereo Focal Loss 1.41 10.28

In order to find the optimal λ1, λ2 setting in our final loss function, we implement
different experimental settings of λ1, and λ2 between [0, 1]. As shown in Table 6, the weight
setting of 0.8 for stereo focal loss and 1.0 for smooth L1 yields the best performance.

Table 6. The quantitative results of different parameters in final loss.

Loss Weight
EPE (Pixel)

λ1 λ2

1.0 0.0 1.45
1.0 0.1 1.45
1.0 0.3 1.44
1.0 0.5 1.43
1.0 0.8 1.41
1.0 1.0 1.42

5. Conclusions

In this paper, we develop a novel confidence-aware unimodal cascade and fusion
pyramid network to improve the disparity estimation for multi-scale objects in VHR
satellite images. We first use the fused cost volume from the coarsest scale to generate an
initial disparity map, and then construct the unimodal cost distributions by a learnable
confidence prediction network, which are able to narrow down the next-stage disparity
search range. Moreover, we design a cross-scale interaction aggregation module to leverage
multi-scale information. In the whole training process, both smooth-L1 loss and stereo



Remote Sens. 2022, 14, 1667 17 of 19

focal loss are applied to regularize the disparity map and unimodal cost distribution,
respectively. Our network shows a strong ability to handle multi-scale disparity estimation.
Experiment results show that our network performs well compared to two state-of-the-art
stereo matching networks with higher precision.

Nowadays, with the gradual growth of data volume of remote sensing images, it is
difficult to annotate enough ground truth for a deep learning model to train. Thus, the deep
model should perform well on unseen scenarios; however, our network cannot generate
satisfactory results for the domain adaptation task of stereo matching. Therefore, in order
to make our proposed network work for other datasets without ground truth, we plan to
try it in self-supervised ways and extract domain-invariant features.
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