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Abstract: Recreational surf-cameras (surfcams) are ubiquitous along many coastlines, and yet are
a largely untapped source of coastal morphodynamic observations. Surfcams offer broad spatial
coverage and flexibility in data collection, but a method to remotely acquire ground control points
(GCPs) and initial camera parameter approximations is necessary to better leverage this existing
infrastructure to make quantitative measurements. This study examines the efficacy of remotely
monitoring coastal morphodynamics from surfcams at two sites on the Atlantic coast of Florida,
U.S.A., by leveraging freely available airborne lidar observations to acquire remote-GCPs and open-
source web tools for camera parameter approximations, ignoring lens distortion. Intrinsic and
extrinsic camera parameters are determined using a modified space resection procedure, wherein
parameters are determined using iterative adjustment while fitting to remote-GCPs and initial camera
parameter approximations derived from justified assumptions and Google Earth. This procedure
is completed using the open-source Surf-Camera Remote Calibration Tool (SurfRCaT). The results
indicate root mean squared horizontal reprojection errors at the two cameras of 3.43 m and 6.48 m.
Only immobile hard structures such as piers, jetties, and boulders are suitable as remote-GCPs, and
the spatial distribution of available points is a likely reason for the higher accuracy at one camera
relative to the other. Additionally, lens distortion is not considered in this work. This is another
important source of error and including it in the methodology is highlighted as a useful avenue for
future work. Additional factors, such as initial camera parameter approximation accuracy, likely
play a role as well. This work illustrates that, provided there is sufficient remote-GCP availability
and small lens distortion, remote video monitoring of coastal areas with existing surfcams could
provide a usable source of coastal morphodynamic observations. This is further explored with a
shoreline change analysis from the higher-accuracy camera. It was found that only the largest (>6 m)
magnitude shoreline changes exceed the observational uncertainty driven by shoreline mapping
error and reprojection error, indicating that remotely calibrated surfcams can provide observations of
seasonal or storm-driven signals.

Keywords: surf-cameras; coastal morphodynamics; shoreline change; photogrammetry; space resection

1. Introduction

Coastal morphodynamics occur over a range of time and space scales. For example,
nearshore sandbars of length scales O (1–100 m) can migrate in the cross-shore direction
meters to tens of meters per day in response to wave-generated bottom currents and short
wave asymmetry [1–3]. Alternatively, convergent longshore sediment transport gradients
created by complex inner-shelf bathymetry can drive the development and maintenance of
cape features that are tens of kilometers in length over years to decades [4,5]. This array
of process scales creates a well-established challenge to the study of coastal systems: a
technique that is useful to observe coastal morphodynamics at one scale may not prove
feasible at another [6–10]. As a result, many techniques have been developed to observe
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coastal morphodynamics in the field, each optimal for application over a finite range of
time and space scales [11].

Video monitoring via fixed, shore-based camera stations is widely used by coastal
researchers to obtain morphodynamic observations. The coastal zone presents many
optical signals that can be linked to morphodynamic processes through established pho-
togrammetric and computer vision techniques [12,13]. Further, fixed camera stations offer
near-continuous daylight observations at a high spatial resolution over several kilome-
ters at low cost, providing a valuable source of morphodynamic data. Coastal video
monitoring has helped strengthen the understanding of many processes and parameters, in-
cluding, among others: sandbar and shoreline behavior over a range of timescales [7,14,15],
nearshore wave transformation and dissipation [16,17], and swash characteristics [18].
Both Splinter et al. [8] and Andriolo et al. [19] provide detailed reviews of coastal video
monitoring applications that have been established to date.

Quantitative observations in the studies described above require projective mapping
between image coordinates and real-world coordinates. The projection requires information
about the parameters describing the camera and lens as well as information about the
camera position and rotation. The information is typically found by identifying the real-
world location of objects, called ground control points (GCPs) and the corresponding
image coordinates of GCPs. Camera and lens information are often found in a separate
step from camera position and rotation, although all information is determined using a
least-squares fit.

Recently, researchers have developed methods to perform video monitoring with
existing coastal video cameras deployed for recreational purposes (surf-cameras or surf-
cams). Surfcams provide a continuous stream of video data without the need for camera
station equipment or installation and exist at many more beaches than research-grade
imaging stations, where projective mapping between the image- and world-coordinates
is known [19,20]. However, surfcams were not deployed for scientific aims. Therefore,
surfcams are not usually optimized for morphodynamic studies, and special considerations
must be made regarding their use. Mole et al. [21] and Bracs et al. [22] were among the first
to explore the use of surfcams to quantitatively monitor coastal changes, each using com-
mercial surfcams and software in Australia to monitor shoreline change with reasonable
accuracy. Valentini et al. [23] utilized a commercial surfcam in France to reconstruct inter-
and sub-tidal bathymetry with errors below 0.5 m. Finally, Andriolo et al. [19] applied the
C-Pro Matlab tool developed by Sánchez-Garcia et al. [24] to a surfcam in Portugal, finding
that surfcam images could be transformed to real-world space (geo-rectified) with errors
generally below 2 m. Each of these later studies reported errors that are similar to those
from traditional fixed camera stations.

Similar to traditional coastal video monitoring studies, nearly all applications of
surfcams for coastal monitoring have relied on in situ observations of GCPs and intrin-
sic/extrinsic camera parameters (location, viewing angles). The fact that surfcams exist
in many places throughout the world, and their web-streaming imagery can be accessed
from anywhere, presents an opportunity to study beaches far from a researcher’s physical
work location in near real-time without field costs. However, site visit requirements largely
preclude this opportunity. Thus, a method to remotely obtain the necessary information to
transform between image and real-world coordinates could be useful to unlock surfcams’
potential for coastal morphodynamic studies. Andriolo et al. [19] present the first and
only remote use of a surfcam for morphodynamic observations. They use freely available
web tools (Google Earth) to obtain initial camera parameter approximations and GCP
locations, and the C-Pro software tool to complete the space resection procedure [24] to
robustly transform image coordinates to real-world coordinates, despite uncertainties in
the observations. They report median reprojection errors below 3 m for the technique,
although some checkpoints obtained residuals on the order of 10 m or more. However,
their approach to obtaining estimates of GCP elevation relies on the application of shoreline
position and water level models to create an intertidal bathymetry map from the imagery
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collected over the course of a tidal cycle, with the GCP elevations interpolated from this
map. This procedure prevents the use of GCPs outside of the intertidal zone, presenting
a major limitation to the transferability of the method to other locations, which may be
micro-tidal and/or contain candidate GCPs outside this relatively narrow zone.

In this study, we examine the feasibility of a more general method to remotely use
surfcams for morphodynamic observations that utilizes freely available airborne lidar
observations to identify GCPs. Remote-GCPs derived from the lidar data are used alongside
initial camera parameter approximations derived from Google Earth in a modified space
resection procedure to remotely geo-rectify images from two surfcams on the Atlantic coast
of Florida, U.S.A. This procedure is facilitated by the open-source Surf-Camera Remote
Calibration Tool (SurfRCaT), which provides these capabilities in a self-contained, graphical
user-interface-driven software application [25].

2. Study Sites and Surfcams

The surfcams used in this work are located at the north and south ends, respectively,
of Jupiter Island, a 25-km-long barrier island on the Atlantic coast of Florida (Figure 1). The
northern camera overlooks a portion of St. Lucie Inlet (Figure 1a,b1,c1), and will be referred
to hereafter as the St. Lucie camera, whereas the southern camera overlooks Jupiter Inlet
(Figure 1a,b2,c2), and will be referred to hereafter as the Jupiter camera. Jupiter Island lies
in a microtidal setting (mean tidal range < 1 m). Analysis of wave observations since 2006
from the nearest buoy, located 44 km to the north–northwest of St. Lucie Inlet in 16.2 m
depth, indicates an average significant wave height of 0.96 m and period of 7.39 s [26]. The
98th percentile significant wave height and wave period from this record are 2.18 m and
10.22 s.
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Figure 1. Surf-camera study sites. (a) Location of the surfcams on the north and south ends of Jupiter
Island, Florida. (b) Satellite images of the surf-camera locations (red dots) and optical axes (yellow
lines) for the St. Lucie (b1) and Jupiter (b2) cameras. (c) Example snapshots from the St. Lucie (c1)
and Jupiter (c2) cameras.

The St. Lucie camera is situated atop a condominium building at an elevation of ~20 m
(NAVD88). A sand spit within the camera’s field-of-view periodically forms inside the
atypically shaped jetties/breakwaters at the mouth of the inlet (Figure 1). The spit exists
because the northern jetty was designed as a “weir-jetty” such that prevailing southward
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longshore currents transport sediment through the weir, allowing sand to accumulate
inside the inlet mouth as a spit [27]. The spit is monitored and regularly dredged by the
U.S. Army Corps of Engineers.

The Jupiter camera is situated atop a condominium building at an elevation of ~45 m
(NAVD88). This camera is a pan-tilt-zoom (PTZ) camera, cycling between four unique
views with a dwell of approximately 30 s at each. The camera overlooks an embayed beach
adjacent to the Jupiter Inlet south jetty, and a short stretch of beach adjacent to the north
jetty (Figure 1b2,c2). Jupiter Inlet is heavily managed, and the beach adjacent to the south
jetty is chronically erosive due to sediment starvation [28]. As such, beach nourishments
here are relatively frequent: a total of 26 nourishments have been completed since 1957,
with the most recent at the time of writing in 2020 [29].

Both cameras continuously capture and livestream video to the web [30,31] at a
resolution of 1080 × 1920 pixels. Partnerships with the owners/operators of the cameras
facilitated access to them and their web-streaming imagery.

3. Materials and Methods
3.1. Video Acquisition

After obtaining permission from the camera owners/operators, Python scripts were
created to download web-streaming imagery. Videos were obtained concurrently with in
situ measurements of GCPs (see Section 3.3) on 3 March 2020 for the St Lucie camera and 2
March 2020 for the Jupiter camera. Video from both cameras was acquired at 30 frames
per second, and still images were extracted for remote-GCP identification and subsequent
photogrammetric transformation.

3.2. Photogrammetric Transformations
3.2.1. Modified Space Resection

The relationship between a three-dimensional point on Earth and an image capturing
that point is described by the collinearity conditions:

x = x0 − f
(

m11(XA − XL) + m12(YA − YL) + m13(ZA − ZL)

m31(XA − XL) + m32(YA − YL) + m33(ZA − ZL)

)
(1)

y = y0 − f
(

m21(XA − XL) + m22(YA − YL) + m23(ZA − ZL)

m31(XA − XL) + m32(YA − YL) + m33(ZA − ZL)

)
(2)

where (x, y) are the image coordinates of the point, (XA, YA, ZA) are the real-world coordi-
nates of the point, (XL, YL, ZL) are the real-world coordinates of the camera sensor, (x0, y0)
are the principal point coordinates of the image, f is the calibrated principal distance (focal
length) of the camera, and mij are the elements of the image-space to object-space rotation
matrix composed of three rotation angles (ω, φ, κ).

The collinearity conditions contain nine parameters associated with the camera (XL, YL,
ZL, ω, φ, κ, f , x0, y0), which, once determined, allow for conversion between image space
and real-world coordinates (geo-rectification). The process of space resection involves deter-
mining the extrinsic camera parameters (XL, YL, ZL, ω, φ, κ) based on GCP observations, a
lab calibration to determine the intrinsic parameters ( f , x0, y0), and an initial approximation
of each extrinsic parameter. Initial approximations for each of the extrinsic parameters are
iteratively adjusted to converge on optimal values in terms of the reprojection error at the
GCPs. Space resection is well documented, and the reader is referred to Wolf et al. [32] for
more information.

Since surfcams are already deployed, performing lab-calibrations to determine in-
trinsic camera parameters is not possible (and doing so would undermine the goal of a
fully remote workflow). Thus, a modification to the traditional space resection procedure
is required. In this work, the three intrinsic parameters are included alongside the ex-
trinsic parameters in the iterative adjustment. The space resection problem is, therefore,
expanded to:
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where F and G denote Equations (1) and (2), respectively, evaluated at the current approxi-
mations of all unknown parameters; (dω, dφ, dκ, dXL, dYL, dZL, d f , dx0, dy0) are corrections
to each parameter; r is the numerator of the fraction in Equation (1); s is the numerator
of the fraction in Equation (2); q is the denominator of Equations (1) and (2); subscript n
denotes GCP number, and

(
Vxn, Vyn

)
are the x and y residuals for GCP n.

With nine parameters in the photogrammetric transformation (Equation (3)), the proce-
dure outlined above requires observations of at least five GCPs. Furthermore, correlations
may exist between extrinsic and intrinsic camera parameters; for example, a change in
ZL can be nearly perfectly compensated for by a change in f . A new two-step solution
methodology was developed to overcome potential correlations between intrinsic and
extrinsic parameters. In this approach, only a subset of the nine parameters are free to
adjust during each step. In the first step, the three rotation angles (ω, φ, κ) and three
camera intrinsic parameters ( f , x0, y0) are free to adjust, while camera location parameters
(XL, YL, ZL) remain fixed at their initial approximations. Then, the adjusted values for
the six free parameters in step one are used as initial approximations for step two, where
only (XL, YL, ZL) are free to adjust. This approach has the additional benefit of creating no
more than six unknown parameters for either step, allowing the solution to be determined
with as few as three GCPs. Andriolo et al. [19] effectively used a similar two-step solution
approach for photogrammetric transformations of surfcam images. Note that this technique
does not account for lens distortion.

3.2.2. Remote-GCP and Camera Parameter Extraction

The space resection process relies on initial approximations of the nine camera pa-
rameters. Initial approximations for some camera parameters were obtained via Google
Earth. The location of each camera (XL, YL) and the azimuth viewing angle (used later
along with assumptions of camera tilt and swing viewing angles to derive approximations
for ω, φ, κ; [32]) were extracted directly from Google Earth. As elevations reported from
Google Earth are unreliable [19], the elevation of the cameras (ZL) was extracted from
Google Earth by counting the number of stories of the buildings atop which the cameras sit
from available imagery, assuming a height of 4.27 m (14 feet) per story and that the base
of the buildings is at 0 m elevation. Initial approximations for the remaining parameters
were obtained with reasonable assumptions, as follows. Camera tilt, measured up from
nadir, and swing, measured counterclockwise from horizontal, was estimated as 80◦ and
180◦ (i.e., no swing), respectively, which appears to be reasonable after an examination of
images from many surfcams. Initial approximations for the principal point coordinates
(x0, y0) were taken as the center of the image. An initial approximation for the focal length
( f ) was obtained through a geometric consideration of the pinhole camera model as:

f =
W

2tan
(

α
2
) (4)

where W is the width of the camera sensor (taken as the width of the image) and α is the
camera’s horizontal field of view. We assumed α = 60◦ based on other known webcams
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used for environmental applications [21,22,33,34], although this could also be estimated
based on the method of e.g., [35].

GCPs were extracted remotely using freely available airborne lidar data. For each
camera, publicly available datasets from the National Oceanic and Atmospheric Admin-
istration [36] were parsed to find those that covered the estimated location (XL, YL) of
the camera. Datasets not covering the U.S. state and coast of the camera locations were
removed. The remaining datasets were then examined to determine their spatial coverage
by querying the file describing the geographic extent of the dataset. For each camera, an
applicable dataset was chosen, and data within an angular distance of ±20◦ of the assumed
azimuthal direction and within 500 m range of the camera were downloaded. Dataset 8950
(collected in 2018) was chosen for the St. Lucie camera, and dataset 6330 (collected in 2017)
for the Jupiter camera. Features that were visible in both the lidar point cloud and an image
from the camera were then identified as remote-GCPs by manually selecting them in both
datasets (Figure 2).
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The remote-GCP extraction and modified space resection procedures were conducted
using SurfRCaT. SurfRCaT facilitates downloading lidar data and remote-GCP matching for
any surfcam of interest through a graphical user interface-driven software application [25].
An image from each camera was then geo-rectified to real-world coordinates using the
adjusted camera parameter values from the modified space resection.

3.3. Accuracy Assessment of Photogrammetric Transformations

The accuracy of the transformation from image space to real-world coordinates was
assessed using points surveyed with real-time kinematic (RTK) GPS within the field of
view of the cameras. A 1.2 × 1.2 m wooden board was painted with a 2 × 2 black and
white checkerboard pattern and moved to various locations within the fields of view of the
cameras for this purpose. The center of the checkerboard was surveyed at each location and
subsequently identified in the image. Checkpoints were surveyed on the same day as the
images used for geo-rectification were collected, and camera locations were also surveyed
at this time. Remote-GCPs were not surveyed with GPS. The reprojected position of each
surveyed point was obtained by solving Equations (1) and (2) for the (XA, YA) real-world
locations of the points given their digitized image coordinates (x, y), the adjusted camera
parameter values from the space resection, and the measured real-world elevation ZA of
the points. The reprojected positions were compared with surveyed positions to determine
reprojection errors at each point (Euclidean distance), and accuracy statistics such as the
root-mean squared (RMS) reprojection error were derived.

4. Results

The reprojection residuals at surveyed points arising from the modified space resection
procedure at both cameras are shown atop geo-rectified images in Figure 3. For the
32 surveyed checkpoints at the St. Lucie camera (Figure 3a), the median reprojection
residual is 2.65 m, the mean residual is 2.92 m and the root mean squared (RMS) residual
is 3.43 m. All points obtained residuals below 10 m, and 28 of the 32 checkpoints (88%)
obtained residuals below 5 m; all those that did not are on the north-eastern edge of the
spit. The highest accuracy is found near the center of the image and spit, with accuracy
degrading away from this site in both longshore directions, although more so to the east
(Figure 3a). Residuals are dominated by error in the along-range direction (approximately
east-west in this case), rather than the cross-range direction (Figure 3a, inset).

At the Jupiter camera (Figure 3b), the median reprojection residual is 5.32 m, the mean
residual is 5.70 m and the RMS residual is 6.48 m. 35 of the 38 points (92%) obtained
residuals below 10 m, while 15 (39%) obtained residuals below 5 m. In general, the
calibration is most accurate for points in the middle of the alongshore region sampled by
the image, between ~300 and 500 m relative Northing, especially along the inland edge
of this region (Figure 3b). Two of the three southernmost checkpoints obtained residuals
above 10 m (15.91 m for the easternmost point and 11.54 m for the westernmost point),
indicating that this portion of the geo-rectified product is of relatively low accuracy. The
third checkpoint with a residual >10 m is found in the central portion of the geo-rectified
image (Figure 3b); the residual at this point is 11.06 m. As with the St. Lucie camera,
residuals are dominated by error in the along-range direction (approximately north–south
in this case) rather than the cross-range direction (Figure 3b, inset).

The initial approximations and final adjusted values for the camera parameters at
each camera are shown in Table 1. At both cameras, final values of camera location and
elevation (XL, YL, ZL) differ from initial approximations by <1 m, and look angles ω and κ
differ by <25◦. However, at both cameras, the final values of φ are >180◦ different from the
initial approximations. This is equivalent to similar tilt and swing values, but final azimuth
values >180◦ different from initial approximations (Table 1). Additionally, at both cameras,
the final value for the focal length ( f ) is about twice that of the initial approximation. At
the St. Lucie camera, the final values for the principal point coordinates (x0, y0) differ by
~100–200 pixels from initial approximations. At the Jupiter camera, the principal point



Remote Sens. 2022, 14, 1706 8 of 18

coordinates differ by ~500–1000 pixels and the final values are negative. The fact that
reasonable projections are obtained with final camera parameter values that may differ
substantially from initial approximations is discussed in Section 5.1.
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Table 1. Initial approximations and final adjusted values of the nine parameters included in the
camera calibrations.

Parameter Jupiter St. Lucie

init. approx. adjusted val. init. approx. adjusted val.
ω (◦) | azimuth (◦) 79.64 | 350 97.83 | 133.80 297.55 | 110 270.20 | 298

φ (◦) | tilt (◦) 9.74 | 80 225.93 | 84.56 292.39 | 80 118.43 | 90
κ (◦) | swing (◦) 1.72 | 180 9.18 | 176.46 205.30 | 180 180.70 | 179

XL (UTM m) 592,268.60 592,268.53 583,381.79 583,380.90
YL (UTM m) 2,979,958.33 2,979,959.05 3,005,482.72 3,005,482.16

ZL (NAVD88 m) 64.0 63.88 21.30 21.65
f (pix) 1662.77 3270.42 1662.77 3180.94

x0 (pix) 960.0 −1914.91 960.0 1186.42
y0 (pix) 540.0 −44.63 540.0 454.36
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5. Discussion

The fully remote photogrammetric transformations produced RMS errors of 3.43 m
and 6.48 m and median values of 2.65 and 5.32 m at the St. Lucie and Jupiter cameras,
respectively. These values are similar to the median error in the remote approach of
Andriolo et al. [19] of 2.2 m, particularly at the St. Lucie camera. As a comparison, satellite
images from the Landsat mission, which have recently become a widely used source of
shoreline change observations, are considered to have valid geometric accuracy when RMS
errors are <12 m [37].

Accuracy differences between the two cameras, in the context of differences between
them, could shed light on important considerations for fully remote applications of surfcams
for coastal morphodynamic measurements. Below, we investigate possible sources of error
at each camera, and illustrate the possible utility of the fully remote method through a case
study of the shoreline changes derived from the St. Lucie camera.

5.1. Sources of Error

Lens distortion has not been accounted for in the present study, and this is likely
a contributing factor to the observed reprojection errors. At both cameras, the adjusted
camera parameter values resulted in regions of maximum accuracy. For the St. Lucie
camera, the maximum accuracy zone is in the region at the center of the image, whereas
for the Jupiter camera, it is in the region at the edge of the image (Figures 2 and 3).
Accuracy degrading away from the center of the image is consistent with the typical
pattern of lens distortion, which is also at a minimum in the center of the image. This
suggests that not accounting for lens distortion could contribute to reprojection error at
the edges of the image at the St. Lucie camera, but not at the Jupiter camera. This may
be because the lens of the Jupiter camera produces less distortion than the lens of the St.
Lucie camera, although this is not visibly apparent. Given that both of the cameras have
low distortion (e.g., relatively straight horizon lines, Figure 1) but may have reprojection
errors due to distortion, accounting for this parameter may be critical for surfcams that
use higher distortion lenses. In the work of Sánchez-Garcia et al. [24], photogrammetric
transformations of surfcam images are made that account for lens distortion by using
the empirical inverse model for compensating lens distortion outlined by [38]. A similar
approach could be incorporated into SurfRCaT, and this is a prudent direction for future
research in order to increase the applicability of the tool. Distortion coefficients could also
be estimated based on the deviation from a straight line of the visible horizon, e.g., [39],
and this is the subject of ongoing work.

An important parameter in determining the accuracy of photogrammetric transforma-
tions is GCP selection. For photogrammetric applications it is generally ideal to identify
many GCPs, covering the entire image format [32,40,41]. However, this may not be feasible
when remotely identifying GCPs with airborne lidar observations. Only features that do
not change substantially over the timescale of years and that are easily identifiable in lidar
observations, such as piers, jetties, buildings, and/or boulders, can be used as remote-GCPs.
Years may separate the available lidar observations from the surfcam image being used; the
two lidar datasets used in this study were collected two and three years before the images
from the St. Lucie and Jupiter cameras were acquired, respectively. The identification
of small-scale features near or below the spatial resolution of airborne lidar observations
(typically on the order of 1 pt/m2) can also pose a challenge. For example, while a jetty
likely meets the requirement of temporal stability, it is difficult to co-identify a precise
point on the jetty in both the lidar data and the surfcam image due to spatial aliasing in
either/both datasets over the irregular surface of the jetty.

To illustrate these ideas, it is useful to consider that the two cameras present differences
in remote-GCP availability. Features suitable to serve as GCPs (buildings, jetties) lie
within an image region that covers only ~25% of the Jupiter camera image format. In
contrast, suitable GCPs cover ~50% of the St. Lucie camera image (see Figure 2). At
both cameras, a total of five GCPs were used, with two identified on jetties and the rest
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representing building corners. As can be observed from Figure 2, the co-identification
of precise points on the jetties was not possible. A best estimate was used, which likely
contributed to the observed reprojection errors. Ideally, only objects such as building
corners, where more precise positions can be obtained, should be used, although GCP
distribution is of the upmost importance, hence our decision to use jetties here. The fact
that reprojection errors are lower at the St. Lucie camera could indicate that remote-GCP
availability and distribution in the image is a primary limiting factor in acquiring fully
remote morphodynamic observations from surfcams. Indeed, the fact that surfcam images
often contain large areas (e.g., water, sky) without candidate GCPs reflects this limitation,
as this remote approach is not applicable in locations that entirely lack structures suitable
to serve as remote-GCPs.

Initial camera parameter approximations may also be a factor influencing the lower
reprojection errors at the St. Lucie camera. Site measurements via RTK GPS reveal that
our initial extrinsic camera parameter estimates, which we derived from Google Earth,
were closer to true values at the St. Lucie camera than at the Jupiter camera. For example,
initial estimates for camera location/elevation differed from the surveyed location by
18.5 m in the horizontal and 19.3 m in the vertical at the Jupiter camera and 9.1 m in the
horizontal and 1.2 m in the vertical at the St. Lucie camera. While this indicates a limitation
in the use of Google Earth to obtain initial approximations, especially to estimate ZL, it
also likely illustrates the established idea that better initial approximations often lead to
higher-accuracy transformations because they reduce the likelihood of convergence on a
(potentially suboptimal) local reprojection error minimum [32,42]. Difficulties in remotely
obtaining initial approximations is an additional limiting factor in fully remote applications
of surfcams. Theoretically, airborne lidar observations, rather than Google Earth, could
be used to derive more accurate (XL, YL, ZL) approximations, and future studies could
incorporate this method. Additionally, Sánchez-Garcia et al. [24] present a method to
obtain initial approximations for camera view angles (ω, φ, κ) using the horizon, and this
method could be incorporated in future work to reduce errors. Finally, using a direct
linear transform (DLT) approach [43] could produce initial approximations without remote
measurements of camera parameters [24]. This closed-form approach, however, is known
to be limited in terms of accuracy [44].

Due to the potential for limited remote-GCP distribution and potential errors in re-
motely derived initial approximations, our modified space resection utilizes an unbounded
adjustment of all parameters. This effectively compensates for errors in the inputs by
allowing the adjustment to converge to a local minimum in terms of reprojection error,
creating reasonable reprojections despite poor initial parameter estimates that may prevent
convergence on a global minimum [42]. This is shown in Figure 4, where the collinear
geometry created by both the initial camera parameter approximations and final adjusted
values are compared at each camera. Figure 4 illustrates that position of object projections
using the final adjusted values are similar to those obtained using initial approximations,
despite final values that sometimes substantially differ from initial approximations, such
as the negative principal point coordinates at the Jupiter camera (Table 1). It is also worth
noting that Equations (1) and (2) are equally valid for an image plane located in front of or
behind the camera; hence the ~180◦ difference between azimuth initial approximations and
final values. This method stands in contrast to traditional coastal video-imaging techniques,
where all camera parameters are precisely measured or solved [12]. However, the method
is comparable to Structure from Motion (SfM) techniques, where camera parameter values
generally only matter for the generation of a reasonable reprojection [42].
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5.2. Shoreline Change Case Study

To further explore the potential utility of remotely using surfcams to study coastal
morphodynamics, a shoreline change study was undertaken using observations from
the higher-accuracy St. Lucie camera. Morphodynamic studies using traditional fixed
camera stations do not typically report or discuss the observational uncertainty stemming
from the photogrammetric transformation from image to real-world coordinates. Instead,
observational error in the derived shoreline change is assessed by comparing video-derived
observations to those of a high-accuracy, in situ technique such as RTK GPS [7,11,45]. These
studies note that video-derived shoreline observation uncertainties stem from (1) error in
the (typically automated) identification of shoreline position and (2) error in the estimated
elevation of the shoreline derived from a water-level model (ranging in complexity from
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tidal elevation only to detailed two-dimensional hydrodynamic modeling). We will refer to
these sources of error in combination as shoreline mapping error. However, observational
uncertainty is also partly due to errors in the photogrammetric transformation (reprojection
error). The detailed photogrammetric methods underpinning the Argus program are
described in detail in Holland et al. [12], and they report reprojection errors of just a few
centimeters for fixed camera stations. Hence, this is likely only a small source of uncertainty
relative to those described above. However, for remote transformations of surfcams, such
as those described herein, reprojection errors are much larger (order meters, in this work)
due to the factors described in Section 5.1, and thus cannot be neglected.

In this case study, we will consider shoreline position change observations along the
spit within the field of view of the St. Lucie camera in the context of uncertainty driven
by both shoreline mapping error and reprojection error. The spit (Figure 1c1) is unique
in that its existence is due to anthropogenic engineering of the inlet to create a weir jetty
system [46]. In addition to the video downloaded in March, videos were downloaded
from the St. Lucie camera on most days in May and 1 August 2020. Every collected video
was sub-sampled to a frame rate of 1 Hz, and, for each video, all frames were averaged
to create a time-exposure image (timex). Each timex was geo-rectified to a planimetric
map using the adjusted camera parameter values given in Table 1 and a local camera-
centered coordinate system with x in the east–west direction and y in the north–south
direction. Timex images were geo-rectified to the mean water level at the initiation of video
collection as interpolated from the two closest NOAA water level stations: Trident Pier
(station 8721604), 150 km to the north; and Lake Worth Pier (station 8722670), 75 km to
the south. Water-level differences at the two stations were always less than 0.23 m. The
shoreline position on each timex was identified using the color channel divergence (CCD)
technique described in Plant et al. [45] and implemented in Harley [47]. Mapped shorelines
were then corrected for observed tidal elevation using the linear slope-based correction
neglecting wave setup described in Vos et al. [37], assuming a 1:10 cross-shore slope for
the entire feature. Visual field evidence confirms a steep slope along the feature, though
this was not directly measured. Water-level-corrected shorelines were then intersected
with two cross-shore transects placed on the seaward side of the spit using the method in
Vos et al. [48] to yield cross-shore shoreline position change time series at both transects.

We consider uncertainty in these shoreline change observations stemming from both
shoreline mapping error and reprojection error at the camera. Plant et al. [45] found
horizontal error in shoreline position observations derived from the CCD method to be
comparable to those of other methods, which have been documented at 5.1 m [7]. The
reprojection error is taken as the RMS value at the St. Lucie camera of 3.43 m. We derived
total shoreline observation uncertainty by adding these two sources in quadrature, resulting
in an observational uncertainty estimate of 6.1 m.

CCD-derived shorelines are shown in Figure 5. Observations on 5 March and 1 May
reveal a clockwise rotation and lateral extension of the spit over this two-month period,
with the head of the spit migrating westward out of the field of view of the camera (Figure 5).
The visible portion of the spit remained relatively stable throughout May, with the most
noticeable variability being in the sinuosity of the spit’s seaward (southern) edge (Figure 5).
Changes between 31 May and 1 August are relatively qualitatively small compared to
those between 5 March and 1 May, with a near disappearance of sinuosity along the spit’s
seaward edge (Figure 5).

Harley et al. [11] and Vos et al. [37] use the semivariogram as a method of quantitatively
assessing the typical timescales of variability in a shoreline signal relative to uncertainty
in the observational technique. While we do not have the necessary data to quantify
typical timescales of variability on this weir jetty spit with this method, we examined
the observations of shoreline change over multiple timescales relative to the derived
observational uncertainty. Figure 6 shows water-level-corrected shoreline position changes
at the two transects shown in Figure 5 (red transects on image in the lower left corner)
relative to uncertainty. This is shown for changes between every observation as well as
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end-point changes over each of the four weeks of near-daily observations in May. Figure 6
reveals that the largest magnitude shoreline changes at both transects—a 12 m retreat
between 31 May and 1 August at the eastern transect and a nearly 36 m retreat between
5 March and 1 May at the western transect in response to the large-scale spit reorientation
visible in Figure 5—are outside of uncertainty. However, none of the near-daily observations
in May, as well as only one of the four weekly scale changes at the western transect and none
at the eastern transect, are outside of uncertainty (Figure 6). Thus, the remotely calibrated
surfcam produces observations that only have a useful precision for the largest magnitude
shoreline changes. These large changes took place over timescales of 2–3 months.

Importantly, the observability of a morphodynamic signal from video imagery, as with
any data collection technique, is a function of the magnitude of the signal in relation to
observational uncertainty. Shoreline changes greater than the observational uncertainty
reported here (6.2 m) have commonly been reported over a range of timescales, including
as a result of storms [49–52], in response to seasonal variability in wave/water level
forcing [53,54], and over interannual and longer timescales [4,11,55,56]. Thus, this case
study illustrates that the method described here is useful for measuring large magnitude
shoreline changes in response to storms or longer timescales, provided similar reprojection
errors can be obtained as a function of lens distortion, remote-GCP availability, and initial
camera parameter approximation accuracy.
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Ultimately, this case study shows that the remote approach presented here could enable
morphodynamic observations from a large and growing network of existing surfcams in
the United States, provided there is sufficient remote-GCPs and small lens distortion. This
could allow for targeted studies at a coastline of interest, no matter the location relative
to the researcher’s physical work location, to take place relatively easily and without
field costs. Such studies could be performed in other countries as well, provided surfcam
images and open-source lidar data were available. While SurfRCaT was designed to
interface with a large repository of existing lidar datasets covering the United States [25],
the tool could be modified to utilize similar repositories from other countries, such as
the Actueel Hoogtemodal Nederland (AHN) in the Netherlands [57] and that provided
by the Terrestrial Ecosystem Research Network in Australia [58]. Such datasets may not
be available everywhere; in their absence, SurfRCaT could be modified to allow for any
point cloud file to be used, such as those collected via terrestrial lidar or structure from
motion photogrammetry. Given that most surfcams are in developed locations, targeted
studies utilizing the remote approach outlined here could focus on the morphodynamics
of human-altered coastlines, an understudied environment [59]. Additionally, remote
surfcam-based observations could provide validation for coastal change and coastal flood
models [60] with unprecedented spatial coverage. More generally, shoreline observations
from a variety of sites covering many coastal regions are necessary to garner a complete
understanding of the impacts of a changing climate on coastlines; remote calibration could
make surfcams a valuable and widely usable tool to obtain these.

6. Conclusions

This study examines the potential for remote observations of coastal morphodynamics
from pre-existing recreational surf-cameras (surfcams) using the open-source Surf-camera
Remote Calibration Tool (SurfRCaT). At two surfcams on the Atlantic coast of Florida, GCPs
were remotely extracted using openly available airborne lidar observations. The remote-
GCPs were used with initial camera parameter approximations derived from Google Earth
in a modified space resection procedure that includes the intrinsic parameters and uses a
two-step solution methodology to establish the relationship between image and real-world
coordinates, not accounting for lens distortion. Root mean squared reprojection errors of
3.43 m and 6.48 m were observed at the two cameras. The final adjusted camera parameter
values were similar to initial approximations for camera location and elevation, though
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they differed substantially for azimuth viewing angle and camera intrinsic parameters. The
lower reprojection errors at one camera could be linked to multiple factors, including the
fact that lens distortion was not accounted for. The inclusion of this parameter could be
necessary for the use of highly distorted surfcams, and its inclusion in the methodology
presented herein is a prudent direction for future research. The difference in errors could
also be linked to the wider distribution of remote-GCPs at that site, covering 50% of the
image as opposed to just 25% at the other camera. The difference illustrates the importance
of remote-GCP availability. Finally, initial approximations of camera location/elevation
are closer to the true values at the higher-accuracy camera, providing another possible
explanation, although errors in initial parameter approximations are compensated for
through an unbounded adjustment of all parameters in the modified space resection.

A case study of shoreline changes along a weir jetty spit derived from the higher-
accuracy camera was used to further explore the potential for remote observations of coastal
morphodynamics from surfcams. A comparison between shoreline change observations
and the observational uncertainty derived from both shoreline mapping error and reprojec-
tion error illustrated that large-magnitude (>6 m) shoreline changes spanning 2–3 months
were observable outside of uncertainty, although smaller magnitude daily–weekly scale
changes were not. Given that the observability of morphodynamic signals is a function
of the magnitude of the signal in relation to the observational uncertainty, this case study
illustrates that surfcams could be used remotely to observe morphodynamic signals such as
storm induced and seasonal shoreline changes. Given the high number of existing surfcams
in the United States, and likely in other parts of the world, we conclude that, provided there
are sufficient remote-GCPs and small lens distortion, the approach outlined here could
unlock a sizable new source of morphodynamic observations for coastal researchers.
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