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Abstract: Hyperspectral image (HSI) classification has been marked by exceptional progress in recent
years. Much of this progess has come from advances in convolutional neural networks (CNNs).
Different from the RGB images, HSI images are captured by various remote sensors with different
spectral configurations. Moreover, each HSI dataset only contains very limited training samples and
thus the model is prone to overfitting when using deep CNNs. In this paper, we first propose a 3D
asymmetric inception network, AINet, to overcome the overfitting problem. With the emphasis on
spectral signatures over spatial contexts of HSI data, the 3D convolution layer of AINet is replaced
with two asymmetric inception units, i.e., a space inception unit and spectrum inception unit, to
convey and classify the features effectively. In addition, we exploited a data-fusion transfer learning
strategy to improve model initialization and classification performance. Extensive experiments
show that the proposed approach outperforms all of the state-of-the-art methods via several HSI
benchmarks, including Pavia University, Indian Pines and Kennedy Space Center (KSC).

Keywords: hyperspectral image classification; convolutional neural network; light-weight network;
3D asymmetric inception network; transfer learning

1. Introduction

Hyperspectral image (HSI) classification is an important research problem in remote
sensing (RS) and has a broad range of applications. Differing from RGB images, hyper-
spectral data is composed of spectral signatures and spatial contexts. On the one hand,
it provides abundant spectral–spatial information for “over-band” classification. On the
other hand, it raises challenges in extracting high-dimensional features [1–4].

The early HSI classification methods mainly focus on selecting or extracting spectral
features due to abundant spectral information derived from the hundreds of contiguous
spectral bands. Feature selection (also known as band selection) methods try to find the
most representative features (bands) from raw HSI data to preserve their physical meaning.
For instance, Wang et al. [5] used manifold ranking as an unsupervised feature-selection
method to choose the most representative bands for training the following classifiers. Yin
et al. [6] introduced a computational evolutionary strategy into the field of supervised
band selection, where the candidate band combinations are evaluated through an affinity
function driven by hyperspectral classification accuracy. Feature extraction approaches
usually learn representative features through linear or nonlinear transformation. For
instance, Huang et al. [7] extended the k-nearest neighbor technique and proposed a
feature extraction method called double nearest proportion feature extraction to reduce the
dimensionality. Based on linear transformation nonparametric weighted feature extraction
(NWFE), Kuo et al. [8] proposed kernel-based NWFE, which has the advantages of both
linear and nonlinear transformation.

Remote Sens. 2022, 14, 1711. https://doi.org/10.3390/rs14071711 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14071711
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3461-7995
https://doi.org/10.3390/rs14071711
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14071711?type=check_update&version=2


Remote Sens. 2022, 14, 1711 2 of 20

These spectrum-based approaches select or extract the features directly from the
pixel-wise spectra while ignoring the intrinsic geographical structure in HSI data. Recent
studies have shown that the combined use of spectral and spatial information can enhance
the ability to represent the extracted features. There are two categories of methods to
extract spectral–spatial information from HSI data. The first one extracts the spectral
signatures and the spatial contexts separately, and then combines them to perform pixel-
wise classification [9]. The second one treats the raw HSI data as a whole and extracts joint
spatial–spectral features directly by using a 3D feature extractor. For example, spectral–
spatial integrated features were extracted at different frequencies and scales using a series
of 3D discrete wavelet filters [10], 3D Gabor wavelets [11], or 3D scattering wavelets [12].
Since hyperspectral data is typically presented in the format of 3D cubes, the second
category of methods can result in a large number of discriminative features, which can
effectively improve the classification performance.

In the above traditional approaches, handcrafted features are typically used, and they
are expected to be discriminative and representative of the characteristics of HSI data.
Typically, the extracted features are based on domain knowledge, which may lose some
valuable details. In feature classification, Support Vector Machines (SVMs) [13] are often
employed because SVMs are robust at representing high-dimensional vectors, but their
capacity to represent is still limited to finite dimensions.

Since 2012, with the emergence of deep learning, the performance of many vision
tasks has been dramatically improved, including but not limited to object detection [14],
segmentation [15] and tracking [16]. In recent years, deep-learning-based methods have
been introduced in the field of HSI classification. In particular, supervised convolutional
neural networks (CNNs) and their extensions, including 1D-CNN [17,18], 2D-CNN [19,20],
3D-CNN [18,21], and ResNet [22,23], have been successfully employed to extract deep
spectral–spatial features and have demonstrated state-of-the-art performance. Usually, a
CNN consists of at least three convolutional layers for extracting both low-level and high-
level features. Moreover, instead of separating feature extraction and feature classification
as two steps, the CNN structure integrating feature extraction and feature classification
into one framework through back-propagation [24]. Since the extracted features directly
contribute to the final classification performance, deep learning methods achieve better
performance than traditional methods.

However, two constraints limit the state-of-the-art deep CNNs from being used directly
for HSI classification. The first factor is the different data format between RGB images
and HSI. Specifically, the RGB images can be well represented by a 2D CNN model to
extract features, while 3D CNN is preferable to preserve the abundant information being
extracted from the spectral signatures and the spatial contexts of HSI. However, the number
of parameters grows exponentially when the convolution moves from 2D to 3D [25]. A
3D CNN has a lot more parameters than a 2D counterpart due to its additional kernel
dimension, making it more difficult and expensive to train. The second factor is the limited
training sample dilemma. Generally, the feature representation ability of deep learning
models strongly depends on a large number of training samples. However, the manual
annotation for hyperspectral data is difficult, which results in the lack of labeled pixels.
Without sufficient training samples, a deep model that has a powerful representation
capacity may suffer from overfitting. Therefore, most of the existing CNN-based HSI
classification methods focus on using small-scale models with relatively less depth (no more
than 10 layers, generally) at the cost of a decrease in performance. However, leveraging
large-scale networks is still desirable to jointly exploit underlying the nonlinear spectral and
spatial structures of hyperspectral data residing in a high-dimensional feature space [26].

To address these inherent problems, in this paper, we propose a 3D asymmetric
inception network (AINet) and a data-fusion transfer learning strategy for HSI classification,
and our contributions can be summarized as four points:
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1. A novel deep light-weight 3D CNN, AINet, with asymmetric structure is proposed
to handle HSI classification, which uses the available small volume of HSI datasets to
train the very deep neural network and fully exploit the potential of CNN.

2. Considering the properties of hyperspectral images as well as spectral signatures are
emphasized over spatial contexts, an asymmetric inception unit (AI unit) is proposed.
To convey and classify the features effectively, we replace the 3D convolution layer with
two asymmetric inception units, namely the space inception unit and the spectrum
inception unit.

3. Data fusion transfer learning is exploited to improve model initialization. It increases
training efficiency and classification performance while compensating for data limita-
tions.

4. The proposed method were tested on three public HSI datasets. The experimental
results show that the proposed method achieves better performance than other state-
of-the-art deep learning-based methods.

2. Related Works
2.1. Convolutional Neural Network Architectures

Convolutional neural network (CNN) is one of the most popular deep learning meth-
ods, and many CNN-based HSI classification methods have been presented in recent years.
Three typical supervised CNN architectures, referred to as 1D, 2D, and 3D CNNs, were
investigated in HSI classification. In 1D CNN-based HSI classification approaches, the ker-
nels of a convolution layer convolve the input samples along the spectral dimension [17,18],
and thus the spatial information is lost. The conventional way to obtain deep spectral-
spatial representations by 2D CNNs is to train a model based on patch-based samples by
expanding input data with more spatial information [27]. Meanwhile, HSI data are always
compressed via a certain dimension-reduction algorithm, such as principal component
analysis (PCA), and then convolved with 2D kernels. For instance, Makantasis et al. [28]
exploited randomized PCA to condense the spectral dimensionality of the entire HSI first,
followed by applying a 2D CNN to extract deep features from the compressed HSI. Fur-
thermore, two stream CNN models are proposed to extract the spatial and spectral features
separately. For instance, Zhang et al. [27] proposed a dual-channel CNN model where
spectral features and spatial features are extracted via 1D CNN and 2D CNN respectively,
and then a softmax regression classifier is used to combine these two kinds of features
and predict classification results eventually. As the spatial features and spectral features
are extracted separately, they may not fully exploit the joint spatial/spectral correlation
information, which can be important for classification.

Since hyperspectral imagery is naturally a 3D data cube, it is reasonable to extract
deep spectral–spatial features through 3D CNNs. The first 3D CNN network for HSI
classification was proposed by Chen et al. [18] in 2016, and L2-norm regularization and
dropout are used. However, this is a shallow network, and it still suffers from overfitting
when there is a shortage of annotated datasets. Similarly, a simpler 3D CNN structure
using input cubes of HSIs with a smaller spatial size was presented in [21]. Later, Zhong
et al. [22] proposed a supervised spectral–spatial residual network (SSRN) with consecutive
spectral and spatial residual blocks to extract spectral and spatial features from HSI. Very
recently, Fang et al. [29] proposed a 3D dense convolutional network with a spectral-wise
attention mechanism (MSDN-SA) for HSI classification, where 3D dilated convolutions are
exploited to capture spectral-spatial features at different scales, and all 3-D feature maps are
densely connected to each other. The 3D CNN models generate classification maps with an
approach that can directly process raw HSI. However, the classification accuracy decreases
as the layers of the network become deeper. This is mainly due to the very limited HSI
dataset used for training the network.
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2.2. Efficient Deep Learning Models

Since AlexNet was proposed in 2012, a number of efficient deep learning models have
been proposed. Three of these models, GoogLeNet [30], ResNet [23], and MobileNet [31],
are related to our model proposed below. They also show the development trends of
deep learning, with increasing depth while requiring less computation. GooleNet is
the most basic of the so-called Inception series, ResNet is famous for its extreme depth,
and MobileNet is well known for its low computation cost. The three models and their
applications in HSI classification are described in detail below.

GoogLeNet consists of multiple inception modules, each of which contains four
different convolution paths, and it is the most basic model of the Inception series [30].
Based on GoogLeNet, Inception-V1 to Inception-V4 are proposed [32–35]. The main
advantage of an inception network is the ability to use multiple sizes of kernels for each
branch, which allows the generation of a more flexible map of features [36]. Hidalgo
et al. [37] proposed a data classification model that uses extended attribute profiles and an
inception network to generate deep spatial–spectral features. Recently, a novel attention
inception module was introduced to extract features dynamically from multiresolution
convolutional filters [36].

ResNet employs shortcut connections to overcome the degradation problem, where
accuracy becomes saturated and then degrades rapidly with the network depth increasing.
In addition, in order to reduce the time complexity, He et al. [23] proposed a novel structure
named “bottleneck”. Based on shortcut connection and the newly introduced bottleneck
layers, He et al. [23] increased the depth of the network to more than 1000 layers and
obtained excellent performance in image classification. Based on the shortcut connec-
tion, a supervised spectral–spatial residual network (SSRN) was proposed to mitigate the
decreasing accuracy phenomenon and improve the HSI classification accuracy.

MobileNet employs depthwise separable convolutions to reduce the computation
in the network and applies pointwise convolutions to combine the features of separate
channels. Based on MobileNet-V1, MobileNet-V2 was also proposed to employ inverted
residuals and linear bottlenecks, leading to better performance [31,38]. MobileNetV3 [39]
is tuned through a combination of hardware-aware network architecture search (NAS)
complemented by the NetAdapt algorithm and then enhanced by novel architecture ad-
vances. Some researchers have applied depthwise separable convolutions and pointwise
convolutions to convolutional neural network architecture to improve HSI classification
performance [40–42].

Our proposed asymmetric residual network not only benefits from the much deeper
and light-weight network design, but also from the asymmetric inception unit that we
tailored for the HSI dataset. Specifically, we propose an asymmetric inception unit (AI
unit), which consists of the space inception unit and the spectrum inception unit, to convey
and classify the features effectively.

2.3. Transfer Learning

Compared with the thousands of millions of annotated datasets used in vision tasks,
annotated data in existing HSI datasets is insufficient. Moreover, the imbalance among
HSI datasets of intraclass sets and those captured from different sensors also makes it
challenging to train the neural network. In the computer vision community, one common
solution to this problem is transfer learning. Transfer learning focuses on storing knowledge
gained while solving one problem and applying it to a different but related problem [43]. It
is defined as the ability of a system to recognize and apply knowledge and skills learned in
previous tasks to a novel task [44]. The concept behind transfer learning is that, in deep
neural networks, the bottom-level and middle-level features take up the majority of the
parameters stored in the CNN model, and usually capture the textures and edges of the
objects. Then, those low-level features designed for simple tasks such as detection can be
reused for more complex tasks such as segmentation and tracking. A common strategy
for transfer learning is to pretrain a model on one data set, where labeled samples are
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sufficient, such as ImageNet, and then transfer the pretrained model to the target data set
for fine-tuning.

Transfer learning offers two benefits: a better initialization of the model and a reduced
training time for the network. It is beneficial to use transfer learning for data sets with
very limited training samples, especially when the model is a deep CNN, which usually
has a large number of parameters. Since the structure of HSI data is complex and the
number of training samples is limited, transfer learning plays an instrumental role in
HSI image classification. In [45], transfer learning has been adopted, but the source data
sets and the target data sets are required to be gathered by the same sensor. Later, Lin
et al. [46] used canonical correlation analysis (CCA) to transfer knowledge between two
SAEs that were trained by source data and target data independently. Furthermore, the
authors investigate the multisource or heterogeneous transfer learning strategy for HSI
classification to alleviate the problem of small labeled samples [47,48]. In [49], Zhang et al.
proposed a cross-modal transfer learning strategy which transfers models between data
sets of different data modalities that exhibit different data characteristics, namely, from
natural RGB image modality to HSI modality. It has been shown that the most significant
benefit of the use of transfer learning is the improvement of model initialization, which is
very important for training the model with limited samples.

Our proposed network adopts a data fusion transfer learning strategy. Concretely,
the designed model is pretrained on HSI datasets captured by different sensors with 3D
pyramid pooling and then fine-tuned on the target datasets to achieve a better performance.

3. Methodology

Among the deep learning models used in HSI literatures, 3D-CNN performs better
than 2D-CNN for HSI classification due to the fact that 3D data formats are used in HSI. In
fact, different objects in HSI generally have different spectral structures. Convolving along
the spectral dimension is very critical. In addition, there are also some different objects
which have similar spectral structures. For these objects, it is also beneficial to convolve
along spatial dimensions to capture features, which can capture important spatial variations
observed with high-resolution data [27,28]. For 2D-CNN based methods, without spectral
dimension reduction, the number of parameters of 2D-CNNs will be extremely large due
to the hundreds of bands. Howover, if dimension reduction is conducted, it may destroy
the information of spectral structure which is critical for discriminating different objects.

Generally speaking, 3D-CNN-based approaches have better performance than 2D-
CNN-based approaches [18,22]. However, the existing 3D-CNN-based approaches still
have two deficiencies: (1) compared with 2D convolutions, 3D convolutions have more
parameters and 3D-CNN models are computation-intensive; (2) being limited by the
training samples in HSI datasets, 3D-CNN models employed in HSI classification almost
always consist of less than five convolution layers. However, a large number of experiments
in computer vision have proved that the deep depth of CNN is very significantly important
for improving the performance of tasks related to image processing [23,30].

In this section, we first introduces the proposed AINet, and then describe the proposed
data-fusion transfer learning strategy.

3.1. AINet for HSI Classification

Network Structure: Figure 1 shows the overall framework of the proposed AINet
for HSI classification. In order to utilize the spectral and spatial information contained
in HSI, we extract L× S× S-sized cubes from raw HSI data as samples, where L and S
indicate the number of spectrum bands and the spatial size accordingly (Following [18],
we set S to 27 in this paper). Then, the samples are fed into AINet to extract deep spectral-
spatial features, and finally the classification results are calculated. Inspired by the design of
ResNet [23], AINet employs a similar basic structure and introduces some key modifications
for tailoring on HSI dataset. AINet starts with a 3D convolution layer, then stacks six AI
units of increasing widths. It connects one 3D spatial pyramid pooling and one fully
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connected layer at the end. Specifically, the channels for the six AI units are 32, 64, 64, 128,
128 and 256, respectively. In order to reduce the dimension of features, four Max pooling
layers are added with kernel = [3, 3, 3], stride = [2, 2, 2] within the six AI units.

Figure 1. Framework of AINet. On the left, the L× S× S-sized samples from the neighborhood
window centered around each target pixel are extracted, and then the samples are fed into AINet to
extract deep spectral–spatial features. Finally, the classification scores are calculated by the classifier.

3D Pyramid Pooling: Before the fully connected layer, a 3D pyramid pooling method
is used to map features of different sizes to vectors with fixed dimensions. Different HSI
datasets are usually captured by different sensors and with various numbers of spectrum
bands, for example, the Pavia University dataset has 103 bands and the Indian Pines dataset
contains 200 bands. With 3D pyramid pooling layer, the same network can be applied to
different HSI datasets without any modification. In this paper, the 3D spatial pyramid
pooling layer is composed of three-level pooling (1× 1× 1, 2× 1× 1, 3× 1× 1). As the last
AI unit has 256 channels, the outputs of 3D pyramid pooling layer are 256× 6× 1× 1-sized
cubes.

Training and Loss: We employ log softmax [50] as the activation function in the fully
connected layer. During training, we take negative log likelihood as the loss function,
and add L2 regularization term with weight 1 × 10−5 to the loss function for alleviating
over-fitting. The optimizer is stochastic gradient descent (SGD) with momentum [51]. For
all of the experiments, the same setting is adopted, where momentum, weight decay, batch
size, epochs and learning rate are 0.9, 1 × 10−5, 20, 60 and 0.01, respectively. In the last 12
epochs, the learning rate decreased to 0.001.

3.2. AI Unit

Because 3D convolution can learn the spectral and spatial information from the raw
HSI datasets, the 3D-CNN based methods achieve the most advanced performance for HSI
classification. However, compared with 2D convolutions, 3D convolutions are prone to
overfitting and are computation-intensive. In order to address these problems, we propose
an asymmetric inception unit (AI unit), which consists of the space inception unit and the
spectrum inception unit. The structure of AI unit is illustrated in Figure 2.

In the space inception unit, there are three space convolution paths. Path one has
one pointwise convolution layer only, path two consists of one pointwise convolution
layer and one 2D convolution layer with 1× 3× 3-sized kernels, and path three has one
pointwise convolution layer and two 2D convolution layers. The outputs of each path are
concatenated in channel, and are added to the output of the shortcut connection. Inspired
by the Inception networks [35], we set the three paths with different widths. For each unit,
we set the widths of three paths with a split ratio 1:2:1. In the last two paths, the width of
the pointwise convolution layer is half of that of the other convolution layers. For instance,
in the AI unit with 32 channels, the width of the first path is 8. For the second path, the
widths of the pointwise convolution layer and 1× 3× 3-sized convolution layer are 8 and
16 respectively. The widths of the three layers of the last path are 4, 8 and 8 accordingly.
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In the overall structure, the structure of spectrum inception unit is similar to the space
inception unit, except that that 1× 3× 3-sized 2D convolution layers in the space inception
unit are replaced with 3× 1× 1-sized 1D convolution layers.

Figure 2. Illustration of an AI unit. In AI unit, 3D convolution layer is replaced with two asymmetric
inception units, i.e., space inception unit and spectrum inception unit. In the space inception unit, the
input cube is fed into three different paths. In path one, a pointwise convolution layer is applied. In
path two, one pointwise convolution layer and one 2D convolution layer are used. In path three, one
pointwise convolution layer and two 2D convolution layers are used. The outputs of each path are
concatenated in channel, and are added to the output of the shortcut connection. The structure of
spectrum inception unit is similar to the space inception unit, except that 1× 3× 3-sized convolution
layers are replaced with 3× 1× 1-sized convolution layers in spectrum inception unit.

In HSI datasets, the spectral resolution is much higher than the spatial resolution, and
the spectral information is much richer. Therefore, in the process of spectral–spatial features
extraction, we pay more attention to spectral feature extraction. In the proposed AINet,
there are six AI units. The four units located in the middle can be divided into two groups,
and each group stacks two units of equal width. Here, instead of stacking two same AI
units in each group, we stack one space inception unit and two spectrum inception units.
This is different from some popular networks, such as ResNet [23] and MobileNet [31],
which build the whole model by stacking the same units. Figure 3 shows the difference
between one AI unit and two AI units.

Figure 3. Illustration of stacking two AI units. (a) AI unit ×1; (b) AI unit ×2. Instead of stacking two
AI units with the same type, we stack one space inception unit and two spectrum inception units to
form AI unit ×2 as shown in (b).

3.3. Transfer Learning with Data Fusion

In RGB images classification, pretraining networks on the ImageNet dataset which
has over 14 million hand-annotated images and over 20,000 categories is common, and
it is very useful for improving the performance and overcoming the problem of limited
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training samples. The diversity of datasets used for pretraining is a key factor in transfer
learning. For example, pretraining the same model on a dataset with a million images and
a thousand categories always achieves better results than pretraining the same model on a
dataset with 10 million images and 10 categories. We believe that model pretraining with
more diverse samples may result in better generalization ability.

For further improving the performance of HSI classification, we propose a data-fusion
transfer learning strategy. As shown in Figure 4, the strategy is composed of data-fusion
pretraining and finetuning: (1) data-fusion pretraining—during pretraining, the proposed
network is trained on two different HSI datasets to improve the diversity of samples and
obtain a robust initialized model; (2) fine-tuning—after the pretrained model is acquired,
the new model is initialized using the parameters of the pretrained model for the target
HSI dataset. The fully connected layers of the proposed model are randomly initialized
with a Gaussian distribution.

Figure 4. Data-fusion-based transfer learning. (a) Data-fusion pretraining: during pretraining, the
proposed network is trained on two different HSI datasets for improving the diversity of samples and
obtaining a robust initialized model. (b) Fine-tuning: after the pretrained model is acquired, the new
model is initialized using the parameters of the pretrained model for the target HSI dataset. Here, the
fully connected layers of the proposed model are randomly initialized with a Gaussian distribution.

During pretraining, the proposed network is trained on two source HSI datasets. Here,
Pavia Center dataset and Salinas dataset are used as source HSI datasets for pretraining.
Among the several public HSI datasets, those two datasets have the largest number of
labeled samples. To be more specific, the model is initialized with Gaussian distribution on
one-source HSI dataset and pretrained for N epochs, and then the feature extraction part
is fixed and the classifier is reinitialized with Gaussian distribution. Later on, the feature
extraction part and classifier on the other source HSI dataset are pretrained for N

2 epochs
with a different learning rate. In this paper, N is set to 10 and the learning rate used for the
feature extraction part is tenth of that used for the second pretraining HSI dataset.

After pretraining the model on the two source HSI datasets, we transfer the entire
model except for the classifier, to construct the fine-tuning model for initialization of the
target HSI dataset. Then the transfer part and the new classifier are fine-tuned at the same
learning rate for training the second source HSI dataset.

4. Experiments
4.1. Datasets and Experiments Setting

In this paper, we compare the proposed AINet with a traditional approach and five
CNN-based approaches for HSI classification on three public HSI datasets, including
Pavia University, Indian Pines and KSC. In the transfer-learning experiment, the Pavia
Center dataset and the Salinas dataset are employed as the source datasets. The false-color
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composite and ground truth of each dataset are shown in Figure 5. A brief introduction
of each dataset is given in the following part and more information can be found on
the website http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_
Scenes (accessed on 20 February 2022). The code of the proposed algorithm can be found
at: https://github.com/UniLauX/AINet (accessed on 20 February 2022).

Figure 5. False-color composites (first row) and ground truths (second row) of experimental HSI
datasets. Each color represents one kind of object. (a) Pavia University; (b) Indian Pines; (c) Kennedy
Space Center; (d) Pavia Center; (e) Salinas.

Pavia University and Pavia Center datasets were captured by Reflective Optics System
Imaging Spectrometer (ROSIS) sensor in 2001. After several noisiest bands being removed,
Pavia University has 103 bands and Pavia Center has 102 bands. Both datasets are divided
into 9 classes.

Indian Pines and Salinas datasets were acquired by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) sensor in 1992. After correction, each dataset has 200 bands
and contains 16 classes.

KSC was acquired by the AVIRIS sensor in 1996, and after removing water absorption
and low SNR bands, 176 bands were used for analysis. For classification purposes, 13 classes
are defined.

For the three target HSI datasets, samples are divided into training samples and testing
samples. For comparison purposes, we follow [18] to set the samples distribution for Indian
Pines and KSC datasets. As for the Pavia University dataset, 200 random samples are taken
from each class as training samples. Tables 1–3 provide the split details. For the two-source
HSI datasets, the description of the two datasets is shown in Tables 4 and 5.

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://github.com/UniLauX/AINet
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Table 1. Samples distribution for Pavia University dataset.

No. Class Name Training Samples Test Samples

1 Asphalt 200 6431
2 Meadows 200 18,449
3 Gravel 200 1899
4 Trees 200 2899
5 Painted metal sheets 200 1145
6 Bare Soil 200 4829
7 Bitumen 200 1130
8 Self-Blocking Bricks 200 3482
9 Shadows 200 747

total 1800 40976

Table 2. Samples distribution for Indian Pines dataset.

No. Class Name Training Samples Test Samples

1 Alfalfa 30 16
2 Corn—notill 150 1198
3 Corn—mintill 150 232
4 Corn 100 5
5 Grass—pasture 150 139
6 Grass—trees 150 580

7 Grass—pasture-
mowed 20 8

8 Hay—windrowed 150 130
9 Oats 15 5
10 Soybean—notill 150 675
11 Soybean—mintill 150 2032
12 Soybean—clean 150 263
13 Wheat 150 55
14 Woods 150 793

15 Buildings–Grass–
Trees–Drives 50 49

16 Stone–Steel-Towers 50 43

total 1765 6223

Table 3. Samples distribution for KSC dataset.

No. Class Name Training Samples Test Samples

1 Scrub 33 314
2 Willow Swamp 23 220

3 Cabbage Palm
Hammock 24 232

4 Cabbage Palm / Oak
Hammock 24 228

5 Slash Pine 15 146

6 Oak / Broadleaf
Hammock 22 207

7 Hardwood Swamp 9 96
8 Graminoid Marsh 38 352
9 Spartina Marsh 51 469
10 Cattail Marsh 39 365
11 Salt Marsh 41 378
12 Mud Flats 49 454
13 Water 91 836

total 459 1297
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In the transfer learning experiment, we randomly extracted 200 samples from each
class of Pavia Center dataset, 100 samples from each category of Salinas dataset as test
samples, and take the rest as training samples.

Table 4. Samples distribution for Pavia Center dataset.

No. Class Name Samples

1 Water 824
2 Trees 820
3 Asphalt 816
4 Self-Blocking Bricks 808
5 Bitumen 808
6 Tiles 1260
7 Shadows 476
8 Meadows 824
9 Bare Soil 820

total 7456

Table 5. Samples distribution for Salinas dataset.

No. Class Name Samples

1 Brocoli_green_weeds_1 2009
2 Brocoli_green_weeds_2 3726
3 Fallow 1976
4 Fallow_rough_plow 1394
5 Fallow_smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes_untrained 11,271
9 Soil_vinyard_develop 6203
10 Corn_senesced_green_weeds 3278
11 Lettuce_romaine_4wk 1068
12 Lettuce_romaine_5wk 1927
13 Lettuce_romaine_6wk 916
14 Lettuce_romaine_7wk 1070
15 Vinyard_untrained 7268
16 Vinyard_vertical_trellis 1807

total 54,129

4.2. Performance Comparison of Different Network Structures

In this section, we compare the proposed AINet with a traditional method and five
CNN-based HSI classification methods, that are SVM-3DG [52], 1D-CNN, 2D-CNN, 3D-
CNN [18], MSDN-SA [29], SSRN [22]. The experiments with the same settings are ran for
5 times to obtain the average performance. The experimental results are listed in Tables 6–8,
where the number of training samples, the number of parameters used in the convolution
layers, the depth of CNN models, overall accuracy (OA), average accuracy (AA) and kappa
coefficient (K) are reported. OA is the ratio between the number of correctly classified
samples in the test set and the total number of test sets. AA is the mean of the OA of
all the categories. K is a coefficient which measures inter-rater agreement for qualitative
items [53]. The classification maps are shown in Figures 6–8. From Tables 6–8, we can
see that the proposed AINet achieves the highest classification performance on all of the
datasets. For instance, in the Indian Pines dataset, OA of AINet is 99.14, which is 9.15%
better than that of 2D-CNN, 1.58% better than that of 3D-CNN and 0.74 better than that of
SSRN. The experiments indicate that all of the 3D-CNN-based HSI classification methods
are superior to 2D-CNN. From 3D-CNN, MSDN-SA, SSRN to AINet, the depth of the
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models is increasing and the classification accuracy keeps improving. In particular, the
depths of the four models are 4, 7, 12, 32 respectively. Although AINet is much deeper than
SSRN, AINet has slightly more parameters than SSRN and much fewer than 3D-CNN.

Table 6. Classification results for the Pavia University dataset.

Models SVM-3DG [52] 1D-CNN [18] 2D-CNN [18] 3D-CNN [18] MSDN-SA [29] SSRN [22] AINet

# train 3930 3930 3930 3930 3930 1800 1800
# param. \ 2898 0.183 M 5.849 M 3.058 M 0.453 M 0.487 M

depth \ 4 4 4 7 12 32

OA 90.18 ± 0.95 89.01 ± 1.31 91.13 ± 1.49 95.63 ± 0.79 96.85 ± 0.71 98.98 ± 0.73 99.42 ± 0.89
AA 91.47 ± 0.90 89.15 ± 0.87 92.58 ± 1.77 95.67 ± 0.86 97.36 ± 0.38 99.07 ± 1.46 99.51 ± 0.58
K 87.39 ± 0.96 87.47 ± 1.60 89.63 ± 0.94 95.38 ± 1.58 95.85 ± 0.93 98.64 ± 1.31 99.22 ± 1.73

Table 7. Classification results for the Indian Pines dataset.

Models SVM-3DG [52] 1D-CNN [18] 2D-CNN [18] 3D-CNN [18] MSDN-SA [29] SSRN [22] AINet

# train 1765 1765 1765 1765 1765 1765 1765
# param. \ 25,920 0.183 M 44.893 M 3.058 0.453 M 0.487 M

depth \ 6 4 4 7 12 32

OA 85.87 ± 0.91 87.81 ± 1.28 89.99 ± 1.62 97.56 ± 1.21 98.02 ± 1.85 98.40 ± 0.90 99.14 ± 1.74
AA 89.74 ± 0.82 93.12 ± 0.86 97.19 ± 1.96 99.23 ± 1.94 98.69 ± 0.94 98.52 ± 1.98 99.47 ± 1.64
K 84.08 ± 1.54 85.30 ± 1.69 87.95 ± 0.86 97.02 ± 1.97 97.75 ± 1.21 98.14 ± 0.75 99.00 ± 1.27

Table 8. Classification results for the KSC dataset.

Models SVM-3DG [52] 1D-CNN [18] 2D-CNN [18] 3D-CNN [18] MSDN-SA [29] SSRN [22] AINet

# train 459 459 459 459 459 459 459
# param. \ 14,904 0.183 M 5.849 M 3.058 M 0.453 M 0.487 M

depth \ 5 4 4 7 12 32

OA 88.24 ± 1.36 89.23 ± 1.69 94.11 ± 1.36 96.31 ± 0.98 97.95 ± 1.91 98.65 ± 1.37 99.01 ± 0.69
AA 85.68 ± 1.87 83.32 ± 1.05 91.98 ± 1.19 94.68 ± 2.04 97.80 ± 1.94 97.78 ± 1.32 98.65 ± 0.59
K 87.04 ± 0.65 86.91 ± 1.47 93.44 ± 0.98 95.90 ± 1.08 97.70 ± 1.65 98.54 ± 0.89 98.90 ± 1.15

Figure 6. Classification maps for Pavia University dataset. (a) Ground-truth map; (b) SVM-3DG;
(c) 1D-CNN; (d) 2D-CNN; (e) 3D-CNN; (f) MSDN-SA; (g) SSRN; (h) AINet.
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Figure 7. Classification maps for Indian Pines dataset. (a) Ground-truth map; (b) SVM-3DG; (c) 1D-
CNN; (d) 2D-CNN; (e) 3D-CNN; (f) MSDN-SA; (g) SSRN; (h) AINet.

Figure 8. Classification maps for KSC dataset. (a) Ground-truth map; (b) SVM-3DG; (c) 1D-CNN;
(d) 2D-CNN; (e) 3D-CNN; (f) MSDN-SA; (g) SSRN; (h) AINet.

4.3. Classification Results with Spatially Disjoint Samples

Previous research [4,54,55] has pointed out that the random-sampling strategy has a
significant impact on the reliability and quality of the solution, since this may make it easier
for the networks to classify the test samples during the inference stage (as the network
has already processed them in some way during training). As compared to disjointed
samples, randomly selected samples may result in significant spatial overlap of the training
and test samples, which may overestimate classification performance. Because of this, the
results obtained by the model may not be realistic, since artificially optimistic results may
be obtained. To obtain more realistic results and a more accurate evaluation of the models,
in this subsection, a sampling strategy based on selecting spatially separated samples is
used to evaluate the model. The classification results on two sampling strategies of all
compared methods in Section 4.2 are summarized in Table 9–11.
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Table 9. Classification results with spatially disjoint samples for the Pavia University dataset.

Models SVM-3DG [52] 1D-CNN [18] 2D-CNN [18] 3D-CNN [18] MSDN-SA [29] SSRN [22] AINet

OA 79.97 ± 1.96 79.18 ± 1.39 75.41 ± 1.79 77.25 ± 1.08 76.88 ± 2.14 81.98 ± 1.24 83.04 ± 1.28
AA 80.99 ± 0.79 79.47 ± 0.86 76.56 ± 1.36 78.56 ± 2.14 78.07 ± 1.35 83.67 ± 2.43 85.64 ± 0.86
K 78.53 ± 1.42 77.31 ± 1.38 74.14 ± 1.03 75.61 ± 1.62 75.78 ± 1.94 80.49 ± 0.87 82.49 ± 1.36

Table 10. Classification results with spatially disjoint samples for the Indian Pines dataset.

Models SVM-3DG [52] 1D-CNN [18] 2D-CNN [18] 3D-CNN [18] MSDN-SA [29] SSRN [22] AINet

OA 77.54 ± 1.36 78.21 ± 1.79 76.06 ± 1.54 75.49 ± 2.16 78.29 ± 0.46 79.94 ± 1.84 85.97 ± 1.08
AA 79.92 ± 1.24 79.72 ± 1.56 78.70 ± 0.89 76.66 ± 1.18 79.21 ± 0.79 80.78 ± 2.06 87.09 ± 1.27
K 76.91 ± 0.98 76.32 ± 0.93 74.26 ± 1.28 73.87 ± 1.78 75.78 ± 1.47 76.47 ± 1.19 83.14 ± 0.86

Table 11. Classification results with spatially disjoint samples for the KSC dataset.

Models SVM-3DG [52] 1D-CNN [18] 2D-CNN [18] 3D-CNN [18] MSDN-SA [29] SSRN [22] AINet

OA 80.64 ± 1.58 79.36 ± 1.50 77.54 ± 1.26 79.10 ± 1.23 79.03 ± 1.36 78.12 ± 1.07 80.92 ± 1.02
AA 82.74 ± 1.24 80.94 ± 1.22 79.65 ± 1.24 82.28 ± 0.98 82.93 ± 1.20 80.77 ± 1.65 83.26 ± 1.27
K 78.48 ± 0.68 77.95 ± 1.81 76.34 ± 2.04 78.77 ± 1.42 77.41 ± 0.96 75.78 ± 1.34 77.57 ± 1.81

As can be seen, 2D-CNN, 3D-CNN, MSDN-SA and SSRN suffer an accuracy deteriora-
tion. In addition, the performance of 2D-CNN and 3D-CNN endures a drastic decline. As
the spatial resolution of the Indian dataset is lower than that of the other two datasets, 2D-
CNN and 3D-CNN algorithms that focus more on spatial information decline significantly
in this dataset. Although AINet also experiences performance degradation, it still achieves
the highest OA, AA and K.

4.4. Results of Transfer Learning

In this section, we combine the proposed AINet with data-fusion-based transfer
learning to further improve the classification performance. In [45], the authors adopted
transfer learning in their framework, but restricts that the data used for pretraining must
be collected by the same sensor as the target data. In contrast to previous work, we have
not imposed restrictions on the datasets used for pretraining, which makes these results
more applicable than previous works.

Here, we employ five HSI datasets in total. Three datasets, Pavia University, Indian
Pines and KSC, are used as target datasets. Two datasets, Pavia Center and Salinas, are
used as source datasets. Both the source dataset Pavia Center and the target dataset Pavia
University were collected by the same sensor ROSIS, so their spatial and spectral properties
are similar. The source dataset Salinas and the target dataset Indian Pines were taken by
the same sensor AVIRIS and their spatial and spectral resolution are roughly identical. The
last target dataset, KSC, was also collected by AVIRIS, but KSC has 176 bands, which is
much more than Salinas and Indian Pines. As a result, the basic attributes involved in KSC
are rather different from those in Salinas and Indian Pines.

In transfer-learning experiments, we implement the experiments with four different
transfer-learning strategies, named AINet+T1, AINet+T2, AINet+T3 and AINet+T4, respec-
tively. In AINet+T1, we pretrain the proposed model with Pavia Center data at first, then
transfer the pretrained model to target datasets and fine-tune it on target datasets. Similarly,
in AINet+T2, we firstly pretrain our proposed model on Salinas, then transfer and fine-tune
the pretrained model to target datasets. Different from AINet+T1 and AINet+T2, both
AINet+T3 and AINet+T4 have two pretraining stages, in which different source datasets
are used for pretraining. In AINet+T3, we pretrain the model on Pavia Center dataset in
the first stage and pretrain the model on Salinas dataset in the second stage. In AINet+T4,
we inverse the order of using source datasets to pretrain.
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The experimental results of transfer learning are listed in Table 12 and shown in
Figures 9 and 10. For each target dataset, we randomly choose 15 and 30 samples from
each class as the training samples and reserve the rest as test samples.

Table 12. Transfer learning results for the three target datasets.

Training Samples 15 30

Dataset Pavia University

OA AA K OA AA K
AINet 84.22 ± 0.72 86.36 ± 0.89 79.67 ± 1.34 91.94 ± 0.87 93.52 ± 0.90 89.48 ± 0.82

AINet+T1 87.86 ± 0.69 88.94 ± 0.84 84.20 ± 0.76 93.25 ± 0.77 95.06 ± 0.98 91.17 ± 0.85
AINet+T2 84.29 ± 0.58 84.02 ± 1.19 79.64 ± 0.29 89.63 ± 0.59 90.41 ± 1.30 86.22 ± 0.79
AINet+T3 89.91 ± 1.67 89.58 ± 1.49 86.80 ± 0.89 93.73 ± 0.46 94.04 ± 1.07 91.77 ± 1.20
AINet+T4 90.31 ± 1.23 90.57 ± 0.85 87.32 ± 0.78 94.17 ± 1.16 94.52 ± 1.39 92.32 ± 0.89

Dataset Indian Pines

OA AA K OA AA K
AINet 75.77 ± 1.82 86.43 ± 0.95 72.68 ± 1.79 87.79 ± 1.29 93.76± 0.98 86.12 ± 1.84

AINet+T1 76.14 ± 1.69 86.37 ± 1.54 73.14 ± 1.83 86.76 ± 1.65 93.21 ± 0.87 84.92 ± 0.75
AINet+T2 78.74 ± 0.74 88.09 ± 0.99 76.10 ± 1.18 88.93 ± 1.89 94.32 ± 1.05 87.42 ± 1.48
AINet+T3 79.35 ± 1.37 88.00 ± 1.79 76.70 ± 1.74 89.30 ± 0.87 94.34 ± 0.85 87.83 ± 1.24
AINet+T4 79.21 ± 0.47 88.39 ± 0.49 76.55 ± 1.13 89.07 ± 0.28 94.29 ± 0.86 87.64 ± 1.76

Dataset KSC

OA AA K OA AA K
AINet 89.07 ± 0.67 88.61 ± 0.31 87.83 ± 0.87 96.75 ± 1.98 96.14 ± 0.74 96.36 ± 0.66

AINet+T1 91.40 ± 1.65 89.80 ± 1.49 90.39 ± 0.59 96.46 ± 1.28 96.07 ± 1.49 96.13 ± 0.89
AINet+T2 92.10 ± 1.62 91.75 ± 2.17 91.21 ± 0.91 97.05 ± 0.52 97.48 ± 0.58 96.70 ± 1.38
AINet+T3 93.68 ± 2.07 93.48 ± 1.49 92.97 ± 0.65 97.60 ± 1.20 97.71 ± 0.48 97.31 ± 1.27
AINet+T4 93.77 ± 0.55 93.03 ± 0.91 93.06 ± 0.52 97.74 ± 1.57 97.93 ± 2.21 97.87 ± 1.26

Figure 9. Transfer learning experiments with 15 training samples per class. (a) Pavia University;
(b) Indian Pines; (c) Kennedy Space Center.
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Figure 10. Transfer learning experiments with 30 training samples per class. (a) Pavia University;
(b) Indian Pines; (c) Kennedy Space Center.

5. Discussion
5.1. Assessment of the Asymmetric Inception Unit

In order to evaluate the performance of the asymmetric inception unit (AI Unit) in
the proposed framework, we replace the AI unit in the AINet with the residual unit as the
basic model. The details of the AI unit have been introduced previously (Section 3.2). In
addition, as described in Section 3.2, instead of stacking two AI units with the same type,
we stack one space inception unit and two spectrum inception units to form AI unit × 2.
To verify the performances of the basic network model, AINet (AI unit × 1) and AINet (AI
unit × 2), we apply them to three target data sets. For the three datasets, the number of
training samples is the same as Section 4.2. Table 13 list the experimental results. From
Table 13 we can clearly see that AI Unit improves the classification results for all three
datasets. Performance is boosted by a larger margin on the Indian Pines and KSC datasets
than on the Pavia University dataset. These tables jointly demonstrate the effectiveness of
AINet, being capable of providing the highest performance regarding a range of criteria,
including OA, AA and K. From the basic model to AINet (AI unit × 2), the performance
increases step by step. We argue that this is because the structure of AI Unit employed is
becoming more effective.

Table 13. Classification results for the three target dataset.

Dataset Pavia University

Training Samples 1800

Models Basic network model AINet (AI unit × 1) AINet (AI unit × 2)

OA 99.27 ± 1.24 99.36 ± 0.54 99.42 ± 0.89
AA 99.39 ± 1.41 99.44 ± 0.68 99.51 ± 0.58
K 99.08 ± 1.60 99.11 ± 0.46 99.22 ± 1.73

Dataset Indian Pines

Training Samples 1765

Models Basic network model AINet (AI unit × 1) AINet (AI unit × 2)

OA 98.85 ± 2.13 99.00 ± 0.90 99.14 ± 0.74
AA 99.52 ± 1.24 99.30 ± 0.31 99.47 ± 1.64
K 98.67 ± 1.13 98.71 ± 0.82 99.00 ± 1.27

Dataset KSC

Training Samples 459

Models Basic network model AINet (AI unit × 1) AINet (AI unit × 2)

OA 97.12 ± 0.38 98.29 ± 1.04 99.01 ± 0.69
AA 96.47 ± 0.88 97.01 ± 0.87 98.65 ± 0.59
K 97.01 ± 0.94 97.15 ± 1.27 98.90 ± 1.15
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5.2. Assessment of the Data Fusion Transfer Learning

The experimental results of transfer learning are listed in Table 12 and shown in
Figures 9 and 10. From the experimental results, we can see that transfer-learning strategies
are beneficial for improving the performance of AINet, especially when the available
training samples are relatively small. When we extract 15 samples per class for training,
the transfer-learning strategy AINet+T1 obtains OA gains of 3.64% for Pavia University,
0.37% for Indian Pines and 2.33% for KSC, respectively. The gain provided by transfer
learning drops with the increase in training samples. We conjecture that as the number of
training samples increases, the model can directly obtain more guidance information from
the target HSI data set. Therefore, the AINet can work well even without transfer learning.

Compared with pretraining the model with a single source dataset, pretraining the
model with multiple source datasets is more effective. As we can see from Table 12, excellent
performances are always achieved by AINet+T3 and AINet+T4, which fuse two different
source datasets in the pretraining stage. For instance, in Pavia University, AINet+T4
improved the OA from 84.22% to 90.31% (improved by 6.09%). However, AINet+T1 just
improved the OA to 87.86%, 2.45 percentage points lower than that of AINet+T4. We
conjecture that this is mainly because the model pretrained with a multiple-source dataset
has a better generalization ability than the model pretrained with a single-source dataset.
From Figure 10, we can see that when we increase the number of training samples to 30 per
class, pretraining the model with a single heterogeneous dataset (the dataset collected by
different sensors) may harm the performance, but, pretraining the model with multiple-
source datasets still boosts the performance.

6. Conclusions

This paper proposes a 3D asymmetric inception network (AINet) for hyperspectral
image classification. Firstly, compared to traditional 3D CNNs, AINet proposed a light-
weight but much deeper architecture that can exploit the potential of deep learning to
extract representative features while alleviating the problems caused by limited annotated
datasets. Secondly, considering the property of hyperspectral images, spectral signatures
are emphasized over spatial contexts in the proposed AI Unit. Furthermore, a data-fusion
transfer learning strategy is adopted to improve the initialization of the model and the
classification accuracy.

We conduct comparison experiments on three challenging public HSI datasets and
compare our proposed AINet with deep learning based HSI classification methods. The
results of comparison experiments have demonstrated that our proposed AINet achieves
competitive performance with others. Although AINet is much deeper than SSRN, the
parameters of AINet are slightly more than that of SSRN and much less than that of 3D-
CNN. In fact, benefiting from the AI Unit, AINet contains much less parameters and higher
performance than the basic network model. In addition, we have performed experiments
to verify the effectiveness of our proposed data fusion transfer learning strategy. Results
show that compared with pretraining the model with a single-source dataset, pretraining
the model with multiple-source datasets is more effective.

In the future, there are two topics we are keen to pursue. Investigating the reduction
of the training time brought by transfer learning is the first, and the second is taking use of
some policies to overcome the data imbalance in HSI classification.
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