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Abstract: A low-cost but accurate remote-sensing-based forest-monitoring tool is necessary for regu-
larly inventorying tree-level parameters and stand-level attributes to achieve sustainable management
of timber production forests. Lidar technology is precise for multi-temporal data collection but ex-
pensive. A low-cost UAV-based optical sensing method is an economical and flexible alternative
for collecting high-resolution images for generating point cloud data and orthophotos for mapping
but lacks height accuracy. This study proposes a protocol of integrating a UAV equipped without
an RTK instrument and airborne lidar sensors (ALS) for characterizing tree parameters and stand
attributes for use in plantation forest management. The proposed method primarily relies on the
ALS-based digital elevation model data (ALS-DEM), UAV-based structure-from-motion technique
generated digital surface model data (UAV-SfM-DSM), and their derivative canopy height model
data (UAV-SfM-CHM). Following traditional forest inventory approaches, a few middle-aged and
mature stands of Hinoki cypress (Chamaecyparis obtusa) plantation forests were used to investigate the
performance of characterizing forest parameters via the canopy height model. Results show that the
proposed method can improve UAV-SfM point cloud referencing transformation accuracy. With the
derived CHM data, this method can estimate tree height with an RMSE ranging from 0.43 m to 1.65 m,
equivalent to a PRMSE of 2.40–7.84%. The tree height estimates between UAV-based and ALS-based
approaches are highly correlated (R2 = 0.98, p < 0.0001), similarly, the height annual growth rate
(HAGR) is also significantly correlated (R2 = 0.78, p < 0.0001). The percentage HAGR of Hinoki trees
behaves as an exponential decay function of the tree height over an 8-year management period. The
stand-level parameters stand density, stand volume stocks, stand basal area, and relative spacing
are with an error rate of less than 20% for both UAV-based and ALS-based approaches. Intensive
management with regular thinning helps the plantation forests retain a clear crown shape feature,
therefore, benefitting tree segmentation for deriving tree parameters and stand attributes.

Keywords: UAV-ALS point cloud georeferencing; improved ICP via invariant ground surface feature;
tree parameterization; airborne lidar sensing; UAV optical sensing; sustainable timber production

1. Introduction

Forest ecosystems contain valuable resources and provide various biological, envi-
ronmental, and economic values. Timber production is still a significant supply need
even in the new era of greening the Earth. The forest management process for timber
production is a cycle of management practices, including forest regeneration, tending, and
harvesting, and utilizes detailed procedures of a silvicultural system. Continuous and
multiple processes of forest practices underpin the sustainability of timber production and
forest ecosystem development. Precise information on volumetric parameters and even
the competitive and health status of individual trees should be geospatially explicit to
enable the managers to identify their location and volume in order to facilitate appropriate
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practices. A tree-level forest database with sufficient and precise data can derive detailed
information to support the managers in generating appropriate management plans and
thus help achieve sustainability goals. Forest practices such as thinning or selection logging
may change forest structure and forest aesthetics, further affecting visitors’ experience in
a recreational forest. Appropriate design of logging practices is therefore very critical to
retain scenic beauty.

Pilot research [1] highlighted a precision forestry approach that integrates locations
and parameters of trees and a three-dimensional scenic beauty evaluation approach to
generate selection-logging scenarios for recreational forest management. The impact of
various thinning plans on forest scenic beauty was evaluated in advance via a digital-
forest-based public-participants geographic information system (PPGIS). Some research
recently proposed smart forestry [2,3], emphasizing that forest management should balance
forest protection and timber production [4]. In remote sensing, approaches should involve
collecting accurate volumetric parameters of individual trees and stand structure attributes
to enable better forest management decisions [5,6] to meet the need for multifunctionality.

During recent decades, a variety of remote sensing techniques using high-resolution
spaceborne and airborne optical images and airborne laser scanner (ALS) data have been
developed for segmenting and classifying tree crowns [7–11], deriving tree height and di-
ameter for volume/biomass estimation [12–16], and determining the dynamic change of
tree/stand properties [17,18]. The techniques of watershed segmentation [19], region-growing
approach [20], multi-level morphological active contour (MMAC) algorithm [9], multilevel
slicing and coding (MSAC) algorithm [21], k-mean clustering [22], and height-scaled crown
openness index (HSCOI) [23] have demonstrated their potential in tree-crown delineation and
tree parameters extraction using ALS data. The works of [24–26] also showed the possibility
of generating a tree-level canopy height model of forest stands from unmanned-aerial-vehicle
(UAV) point cloud data. The integration of UAV and ALS point cloud data has also been
demonstrated as valuable in estimating plot-level parameters of secondary forests [27] and
rapidly assessing snow cover and depth changes over forest areas [28].

Chamaecyparis obtuse (the Hinoki cypress, simply Hinoki hereafter) is a major species
of plantation forest for timber production in Japan. According to an official record [29],
the natural and planted Hinoki forests occupy 2.6 million hectares, accounting for 25%
of the forest areas in Japan. During the last decades, Hinoki forests have generally been
established/regenerated with a density of around 3000 to 5000 trees per hectare. Before
timber harvesting at the rotation age, a series of tending practices with diverse thinning
intensity are carried out over the growth period to gradually reduce the stand density and
release growth space enabling quantitative and qualitative increments of the trees. However,
timber management practices are labor/energy intensive. Repeated management activities
significantly increase labor costs and decrease returns due to low economic compensation
received through pre-commercial/commercial thinning [30]. This is evident in the case of
no increment in log price at harvesting time. Landowners, therefore, tend to be discouraged
from constantly managing forests; consequently, increasing return to natural resource
production scales has become a significant concern in private forest sectors. Construction
of reliable tree-level information with easier but also accurate and lower cost methods is of
particular significance for economic forest management. It would improve the cost–benefit
ratio and further optimize the supply chain management of timber production.

However, the ALS approach is too expensive for practical forest management, particu-
larly for small-scale private enterprises collecting multi-temporal datasets for frequently
deriving canopy height models and their changes over time. Although UAV-based lidar sys-
tems can provide very accurate point cloud data, the acquisition cost of the enterprise-grade
system or frequent data-collection service charges remains a substantial financial burden for
private small-scale forest managers. Achieving continuous forest inventory, periodical ALS
data collections at 5-year intervals on an ongoing basis throughout a management period of
timber production forest would require a significant financial investment. Consumer-grade
UAV-based photogrammetry techniques can provide an alternative option due to low oper-
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ation time and cost flexibility in collecting multi-temporal and very-high-resolution images
for retrieving volumetric information. The use of UAV photogrammetry can generate good-
quality ground surface data in open land or sparse forestland [31,32]. However, unlike the
excellent penetration ability of laser pulses, its ability to regenerate ground surface in dense
forests is extremely limited. Taking advantage of both ALS-based and UAV-based remote
sensing approaches, changes in tree parameters are most likely retrievable from UAV-based
digital-surface-model (DSM) data and ALS-based digital-elevation-model (DEM) data.

High-quality timber production is the primary goal of plantation forest management.
Trees are managed for a long rotation period. An appropriate plan prescribing intensive
management practices to control stand density and tree growth is the key to achieving the
production goal and even sustainability. Constantly gathering sufficient forest information
is particularly important for making plans regarding harvesting, regeneration, and thinning
to produce high-quality and valuable trees. Mature plantation forests were planted during
an era that lacked high-performance remote sensing technology and now occupy a huge
area of land. Although high-resolution remote sensing technology has been widely applied
to forest management, research exploring the use of consumer-grade remote sensing tools
for high-forest management is rare. Therefore, the objective of this study was to propose
a protocol of integrating both ALS and UAV point cloud data for extracting tree-level
volumetric parameters of commercially managed forests. The results determining trees’
total height, diameter, stem volume, and derivatives such as stand density and standing
timber stocks were examined based on in situ inventory data. Finally, the possibility of
retrieving tree height and growth rate via integrating single-temporal ALS reference data
and multi-temporal UAV RGB inventory data for forest management is concluded.

2. Materials and Methods
2.1. Study Site

The forest in Japan is distributed over a wide range of land. The forested area accounts
for 70% of the country’s land, of which 40% are plantation forests, and 60% are natural
forests. Most of the plantation forests planted after 1946 are matured and harvestable for
timber production. As mentioned above, Hinoki is one of the most popular species of planta-
tion forests. Two stands of Hinoki forests in the Kameyama area and the Owase area of Mie
prefecture, the center of Japan, were selected as the study sites (Figure 1). The Kameyama
stand is located at 34.50◦N and 136.20◦E, with elevation varying between 190 m and 250 m
above sea level, and the slope averaged at 12.57 ± 4.64 degrees or 22.63 ± 8.12 percent. The
Owase stand is located at 34.00◦N and 130.23◦E with an elevation from 350 m to 430 m and
an average gradient of 34.83 ± 6.76 degrees or 69.58 ± 11.85 percent. The age of the forest
at the Kameyama and Owase sites was 46 and 65 years old, respectively, when the inven-
tory [33] was carried out in 2019 and 2018, respectively (Table 1). The in situ inventory tree
parameters and aggregated stand attributes are used for accuracy assessment. For details
of the volumetric determination please refer to Section 2.3. Table 2 lists the inventory tree
parameters of both the Kameyama forest and the Owase forest at the inventory year. The
Owase forest was harvested after the list was made. In contrast to the rotation age, 65 years,
of the Hinoki timber production forests, the Owase stand is a mature forest. The Kameyama
stand is of commercial-thinning-stand age and is, therefore, a middle-aged forest.

Table 1. Summary of data collection with ALS, UAV, and in situ inventory.

Site In Situ
Inventory Date

UAV
Acquisition Date

Stand Age
in 2019

ALS
Acquisition Date

Stand Age
in 2013

Kameyama 26 July 2019 26 July 2019 46 24 November 2013 40
Owase 14 September 2018 14 September 2018 65 27 September 2013 60
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Figure 1. An illustration of the location and forest appearance of study sites from the air and the field.
The frame embedded on the upper left shows the whole area of Japan, and the red box in the frame
highlights central Japan, where the study sites are located. The grid marks on the map reveal the
longitude and latitude of the area.

Table 2. Summary of the descriptive statistics of tree parameters for Kameyama and Owase stands.

Site Kameyama Owase

Parameter ¶ DBH (cm) H (m) V (m3) DBH (cm) H (m) V (m3)

Minimum 20.50 17.30 0.2954 25.80 16.90 0.5651
Maximum 30.60 19.10 0.6303 40.80 24.10 1.4265

Mean 24.49 18.06 0.4287 32.09 21.04 0.8446
Standard deviation 2.61 0.53 0.0836 4.07 1.72 0.2464

¶ Parameters DBH, H, and V stand for the diameter at breast height, total height, and volume of trees, respectively.

2.2. Airborne Lidar Data and UAV Data Collection and Processing
2.2.1. ALS Data

The Etsumi Sankei Sabo Office of the Ministry of Land, Infrastructure, and Transport
(MLIT) supported the ALS data used in this study. The lidar data of the Kameyama
forest and the Owase forest was acquired on 24 November 2013, and 27 September 2013,
respectively, using a small-footprint multi-return lidar system (Leica Geosystems ALS70,
Heerbrugg, Switzerland) mounted on a Cessna Type 208 Aircraft by Kokusai Kogyo Co.,
Ltd. The flight altitude was around 1828–1981 m above the ground surface. The system
has an inertial position and attitude system (IPAS20) providing accurate position and
attitude information using a GNSS receiver, a high-accuracy IMU, and an integral processor.
It can achieve a positional accuracy of +/−15 cm RMS after post-processing. Based on
the evaluation of 212 ground control points (GCPs) that are evenly distributed over the
project areas, the official report of Kokusai Kogyo “Etsumisankei Aerial Laser Scanning
Project Report” stated that the ALS point cloud data had an error ranging from −0.114 m
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to 0.117 m; the averaged slant distance RMSE was 0.051 m, and standard deviation of
horizontal and vertical errors was 0.027 m and 0.047 m, respectively [34]. The lidar dataset
with canopy/ground pulse return densities of 21.6/1.2 and 23.4/4.3 points per square
meter was used to produce DEM, DSM, and canopy height model (CHM) images. An
additional ALS data that covered the Kameyama forest was acquired on 19 September
2020, using the Orion M300 lidar survey system mounted on a Cessna 208B Aircraft by
Aero Asahi Corporation. The flight altitude was 2000 m above the ground surface. The
canopy/ground point cloud data have a density of 16.4/2.5 points per square meter and
the positional error ranged from −0.057 m to 0.058 m and RMSE was 0.042 m [35]. This
dataset was used to evaluate the height growth rate of trees through the integration of the
2013 ALS dataset.

Based on the point cloud density of the study sites, the practical pixel size in the
rasterized image [9] was around 0.21–0.25 m for the canopy data and 0.48–0.91 m for the
ground data. In other words, the best resolution for a raster image was around 0.25 m and
0.91 m for presenting the canopy surface and ground surface models. To retrieve the crown
size of every single tree of the study sites, we tried to retain the performance of the high
canopy point cloud of the ALS data and generated a 0.25 m pixel size of the DSM image
(DSMALS). However, the generated DEM image originally had a pixel size of 1.0 m and
was then resampled to 0.25 m/pixel (DEMALS) for deriving the CHMALS.

2.2.2. UAV Data

The UAV data of the Kameyama forest and Owase forest were acquired in September
2018 and July 2019 using a UAV of DJI Phantom4 Pro carrying a 1 in, 20 megapixels sensor.
This platform is a consumer-grade and low-cost machine equipped with a GNSS unit
for receiving the GPS and GLONASS signals but without a real-time-kinematics (RTK)
facility for geolocating coordinates. The UAV flight mission was implemented via a Litchi
(VC-Technology, London, UK) UAV auto control system with parameter settings 100–150 m
above the land for the flight height, and 90% and 80% for the end lap and side lap of the
photographs. The raw RGB images had a resolution of 0.03 m. The difference in data
acquisition time between the ALS and UAV data provides the length of a growth period to
determine volumetric parameters of both individual trees and stands of the Hinoki forests.

UAV-SfM Raw Point Cloud Generation

A technique integrating the structure-from-motion (SfM) and multi-view stereo (MVS)
mounted in Agisoft Metashape 1.7.6 was applied to generate 2D orthophotos and 3D
point cloud data from the aerial photographs of the study sites [36–38]. The SfM-MVS
technique has built onto traditional stereoscopic methods due to advances in computer
vision algorithms, such as the scale invariance feature transform (SIFT) [39] and parallel
bundle adjustments on graphic processing units [24,36]. It can supply 3D point cloud data
with geographic coordinates.

In general, a UAV is equipped with a GNSS unit which records the geolocation of
the image center and exports the exchangeable image file format (EXIF) information to
photos, allowing the SfM technique to generate accurate point cloud data for further
applications. However, it is highly probable the point cloud data generated via the images
of a UAV equipped without an RTK-based positioning system (hereafter UAV-SfM) will
have significant locational errors and therefore introduce substantial bias to tree height
determination. Therefore, post-processing of georeferencing to the raw point cloud data is
mandated for deriving volumetric parameters of forest stands. Using extra GCP coordinates
collected via high-performance GNSS systems on the ground [24,25] can help to upgrade the
geolocation accuracy. However, given the condition of high canopy closure in Kameyama
and Owase forests, it is highly probable that the GNSS signal will be affected by the dense
canopy. In fact, mature plantation forest generally has a dense canopy. Thus, the proposed
algorithm is based on GCP-free consideration. The UAV-SfM point cloud data used for
deriving tree parameters and stand attributes is the final product whose accuracy has been
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evaluated using artificial-object-based checking points that are visually identifiable on the
ground and the orthoimage.

UAV-SfM and ALS Point Cloud Referencing Transformation

According to [40], two range images or datasets with the feature of the same reality ac-
quired from different views can be registered together with a performance of the minimized
registration error by the iterative closest point algorithm (ICP). As shown in Equation (1),
the UAV-SfM generated point cloud dataset (P) can be transformed onto the space of the
ALS point cloud dataset (P′) via the scale factor (s), rotation matrix (R), and translation
vector (t). Because the UAV-SfM generated point cloud dataset and the ALS point cloud
dataset have the same coordinate system, the scaling is supposed to be uniform and very
close to 1.0. Given a rigid transformation matrix (T) to integrate both R and t, the registered
point cloud dataset (P

′
) becomes the product of matrices T and P:

P
′
= sR(P) + t = TP (1)

RMSE = sqrt(∑N
i=1

(
p′i − qi

)2/N) (2)

In this study, the CloudCompare software is used for the ICP processing, in which
the UAV scene shape defined by P is registered to the ALS model shape Q. The calcula-
tion of the registration transformation in CloudCompare is an iterative process. For each
correspondence or paired point (p′i, qi), where p′i ∈ P

′
and qi ∈ Q, a residual error (ei) is

determined as the distance between p′i and qi. Let N be the number of correspondences,
the registration error is determined as the root-mean-square error (RMSE) as shown in
Equation (2). The iteration process will terminate when the difference of the registration
error RMSE between two successive iterations is smaller than the threshold value (τ), which
is 1.0 × 10−6 in this study. The raw point cloud (RPC) after the referencing transforma-
tion becomes an ICP registered point cloud and is denoted as UAV-SfM ICPPC. Figure 2
demonstrates the conceptual model of the ICP processing.
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Bias-Adjustment by Invariant-Ground-Surface Altitude

Since the forest canopy occupied most of the study areas, the calculated parameters of
the transformation matrix tend to be canopy-height oriented. In other words, in cases of
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registration for forest datasets gathered in different years, the transformed z-value of each
point is most likely either overestimated or underestimated. This is relative to primarily the
inherent bias in the UAV images’ coordinates and the height growth due to the difference
in data acquisition dates. After the ICP processing, the z-coordinate bias is assumed as
an additive effect and can be fixed simply by an adjustment factor. Taking the points of
the road surface in the areas as the references, the adjustment factor, abbreviated as dz, is
determined as:

dz = ∑n
i=1(zia − zir)/n (3)

where n is the number of the sample point and zia and zir stand for the actual value and the
registered value of the elevation for point i at the exact location. Relative to the elevation
of road surface, a positive/negative value of dz indicates a condition of over/under
registration transformation. Therefore, every single point (i) of the registered point cloud
dataset P′ whose z-value (zir) is further restored to z′ir using the additive formula as shown
in Equation (4). After the bias adjustment via the invariant ground surface feature, the
finalized UAV-SfM point cloud is considered as bias-free ICPPC and is abbreviated as
UAV-SfM BICPPC.

z′ir = zir + dz (4)

UAV-SfM-Based Canopy Height Model Generation

The generated UAV high dense point cloud data, BICPPC, was then rasterized to pro-
duce a 0.03 m/pixel of DSM data (DSMUAV) to retain the performance of areal information
in the raw photographs. Taking the ALS-based DEM data as the baseline of topography,
the CHMUAV data of the two forests was determined by subtracting the DEMALS from the
DSMUAV of the two study sites. After that, a method using PyCrown [41] was applied
to extract the tree height (HALS and HUAV) and crown width (CWALS and CWUAV) of
individual trees from the CHMALS and CHMUAV. This method integrates the local maxima
filter to identify treetop pixels followed by a watershed segmentation method to delineate
the tree crown [16]. Finally, the volumetric parameters of individual trees were used to
determine stand parameters. Figure 3 shows the detailed procedures of the point cloud
processing for generating gridded surface models and tree parameter estimation.

2.3. Determination of Tree Volumetric Parameters for Both ALS and UAV Datasets

Tree volumetric parameters such as volume (V), height (H), and diameter at breast
height (DBH) are generally highly correlated. Therefore, both H and DBH are mainly
used to estimate tree volume in forest inventory to support the needs of forest manage-
ment planning. In unmanaged forests, trees grow freely and tend to be competitive for
growth resources in a relatively limited neighboring space. The growth of tree height and
diameter will not be homogeneous and probably result in diverse sizes among individual
trees [5,12,15]. However, management practices such as pruning and thinning are generally
implemented regularly in managed forests, which allow the trees to grow freely under
more limited competition. Consequently, the volume, height, diameter, and crown width
(CW) of trees in the managed forest can develop following a homogeneous trend and the
volumetric parameters of individual trees can be predicted more accurately.

Recently, some studies have investigated the relationship of volumetric parameters
of the Hinoki forest based on intensive in situ inventory data and published a variety
of allometric models for use in forest management and planning. The DBH-H model
(R2 = 0.9192, n = 1835), as shown in Equation (5), uses H to predict the DBH of Hinoki
trees [42]; in addition, with Equation (6) (R2 = 0.9151, n = 608), the DBH can be determined
through both predictors H and CW [43]. Integrating both DBH and H variables, tree volume
V is determined using Equation (7) [44], a popular volume estimation model in the form of
the Schumacher–Hall formula [5]. The H was determined as the most considerable pixel
value within the region of a delineated tree crown, and the crown width was defined as
CW = 2(CA/π)0.5, where CA stands for the crown area of a single tree. Correspondingly, the
volume of every single tree was predicted using Equation (7), in which DBH was derived
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from Equation (5) using only H or Equation (6) via both H and CW. To summarize, the
DBH derived from Equations (5) and (6) was denoted as M1DBH and M2DBH, respectively,
and consequently, the resulted volume was marked as M3V and M4V.
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sites, respectively. See Table 1 for the details. The derived parameters of every single tree can be
stored as a GIS layer based on tree identity and coordinates for advanced applications.
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As previously mentioned, the acquisition date of the ALS data and UAV data has a
6-year or 5-year difference for the Kameyama forest and the Owase forest, respectively.
The tree height of the woods in 2013 (@T1 in Figure 3) derived from CHMALS should
be projected to the particular acquisition year of the UAV datasets (@T2 in Figure 3).
According to Nakajima et al. [45], the tree height of the Hinoki can be presented as a
function of site index (S) and tree age (t), as shown in Equation (8). With the CHMALS
determined tree height (H2013ALS) and the age of the Kameyama and Owase forest stands
in 2013 (correspondingly 40 and 60 years), the site index of each of the two forest stands
was estimated using Equation (8). After that, based on the age of the Kameyama forest in
2018 and the Owase forest in 2019 (correspondingly 46 and 65 years) and the estimated site
index, tree height for the Kameyama forest (H2018ALS) and the Owase forest (H2019ALS) was
derived. Because the site index is a growth model, DBH and V of every individual tree
derived from H2018ALS or H2019ALS are labeled as the ALS-GM dataset. Alternatively, the
tree parameters derived from HUAV are classified as the UAV-SfM dataset.

For the stand-level attributes, stand height, stand diameter, stand density, stand basal
area, volume stock, and relative spacing were derived from the tree-level data. The stand
height and stand diameter are determined as the average H and average DBH of trees
over the area of a stand or a plot. Stand density is presented as the number of stems per
hectare. Stand basal area and volume stock are calculated as the summation of basal area
and volume of trees per hectare. Relative spacing (Sr), the ratio of the average distance
between trees to the average dominant height (DoH, m) of the stand, is determined as
Sr = (10,000/N)0.5/DoH, where N is the number of trees per hectare.

DBH = 0.4327H 1.397 (5)

DBH = 1.3907H + 3.2727CW − 12.3153 (6)

log10 V = −4.31109 + 1.83546 × log10 DBH + 1.10655 × log10 H (7)

H = (49.4 − 6.98S) (1 − 1.030 × exp(−0.013t)) (8)

2.4. Deriving Annual Growth Rate of Tree Height

In the management of plantation forest, the trees occupy the main canopy, whose
heights at the rotation age are generally used to determine the site index of a forest stand.
The site index can be further applied to accompany the height observations to project
the possible timber production at a particular stand age. In other words, information
on tree-height growth is required for managers to carry out planning and recheck how
the trees reflect the practices implemented. Thanks to the support of the Mie Prefecture
Government, this study collected additional ALS and UAV datasets for examining the
following assumptions: integrating ALS-DEM and UAV-SfM-DSM is appropriate for gath-
ering multi-temporal height growth through UAV-SfM-CHM data; the tree height at a
particular reference age or year is the baseline value; and the height annual growth rate
(HAGR) can be determined for successive periods and further applied to predict height
growth for plantation forest management.

The HAGR is presented in a dependent scale (m/yr) and an independent scale (%/yr)
of the height measurement. In other words, taking the 2013 ALS as the baseline, the
ALS point cloud data acquired in 2020 and UAV-SfM data obtained in 2021 were used to
determine the height growth of the Hinoki in 7-year and 8-year growth periods, respectively;
and accordingly, the HAGR.

2.5. Assessment of Tree Height and Volume Models Performance

The performance of CHMALS and CHMUAV datasets in estimating the height and
volume of individual trees was evaluated via the in situ inventory data. The plot size in
the Kameyama and Owase forests was 144 and 244 m2, respectively. Each H and DBH of
every single tree was determined using Vertex3 and a tape measure on the same date when
UAV data was acquired in the inventory. The measures root-mean-square error (RMSE)
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and percentage root-mean-square error (PRMSE) were applied to evaluate the accuracy of
the estimations of tree-level and stand-level parameters. The RMSE has a unit identical to
the parameter, and the PRMSE is a relative measure of the RMSE to the average observed
data value in percentage.

3. Results
3.1. The Performance of the ICP and Bias-Adjustment Methods in Registering UAV-SfM Point
Cloud Data to the ALS Point Cloud Model

Figure 4 shows the point cloud profiles of a cross-section of forest canopy from the
study sites. As can be seen in Figure 4a, the UAV-SfM generated raw point cloud (RPC, the
yellow points) is distributed above the ALS point cloud (the blue points) with a deviation
of more than 30 m in altitude in the Kameyama forest. In contrast, the yellow points
aligned below the blue points at about a deviation of 8 m for the Owase forest (Figure 4b).
Altitudinal coordinates of the raw point cloud were changed with evident positive/negative
biases across the study sites. This discrepancy between the UAV-SfM-derived forest canopy
surface and the ALS approach agreed with the first assumption, i.e., the UAV point cloud
data should be georeferenced via ground control points to enable accurate retrieving of
canopy height.

After the ICP georeferencing transformation, the UAV-SfM point cloud is registered to
a space close to the ALS point cloud. The canopy surface of the target point cloud (ICPPC,
the orange band) is almost overlapping with the reference point cloud (the blue band) on
the same altitudinal level for the Kameyama forest (Figure 4c). However, the orange band
appears embedded in the blue band at a lower level for the Owase forest (Figure 4d). In
this study, the rotation was set to be three-dimensional, and the translation was set to be
along the x-, y-, and z-axes simultaneously. Because the acquisition year of ALS data is
5 years earlier than the UAV data for the Kameyana site and 6 years for the Owase forests,
the registered scene shape of UAV-SfM ICPPC should be over-tuned by a certain amount.
The amount is most likely close to the height growth of trees during the years and must be
calibrated. Taking the average altitude of the ground-surface point cloud surrounding the
forest, the constant for bias adjustment is determined as 1.2009 m for the Kameyama forest
and 1.3035 m for the Owase forest. Accordingly, the finalized point cloud dataset (BICPPC,
the red points) after the bias adjustment by additive rule is shown in Figure 4e,f.
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Figure 4. An illustration of point cloud registration of the Hinoki forest at the Kameyama site (left
column) and the Owase site (right column). (a,b) show a significant altitude difference between the
UAV-SfM RPC (the yellow points) and the ALS point cloud in 2013 (the blue points). The altitude
of RPC is overestimated in (a) but underestimated in (b). A horizontal shifting in (a) is also evident.
(c,d) display the approximation of the UAV-SfM ICPPC (the orange points) and the ALS point cloud.
The acquisition year of the ALS data is 5 and 6 years earlier than the UAV data for the Kameyama
and Owase forests, respectively. Orange points must be over-adjusted. The bias can be determined
as the altitudinal difference of a ground surface of the ICPPC and the ALS data because the ground
surface is normally with a fixed altitude. (e,f) demonstrate that the UAV-SfM BICPPC data (the red
points) is in line with the ALS point cloud. The adjustment scalar was 1.2009 m for the Kameyama
forest and 1.3035 m for the Owase site, determined as the average altitude of identifiable ground
surface points surrounding the forest.

To summarize, 79,425,619 points and 14,949,079 points out of the total points in the
raw dataset of the Kameyama and the Owase, respectively, were selected for deriving
the rotation matrix (3 × 3) and the translation vector (3 × 1) in the ICP process. The
density of the point cloud was 349.05 and 518.90 points per square meter for the Kameyama
and Owase sites, which was 15× and 18×more than the density of the ALS point cloud
data, respectively. As a result, the rigid transformation matrix, an augmented matrix
(4 × 4) composed of the rotation matrix and the translation vector, was derived and used
to transform the raw point cloud (the original space) to the registered point cloud (the
natural space) for the Hinoki forest at the Kameyama site (Equation (9)) and the Owase site
(Equation (10)). The scale factor of Equation (1) was determined as 0.996396 and 0.993830
for the Kameyama and Owase datasets, respectively. Correspondingly, the calculated
RMSE was 4.9423 m and 4.4347 m for the Kameyama and Owase forests; and the RMSE was
reduced to 1.1569 m and 1.4903 m after the bias adjustment via the road surface elevation.
In the transformation matrix, the offsets for the x-, y-, and z-axes were around 31.8 m,
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15.3 m, and 31.5 m for the Kameyama forest and 1.1 m, 2.6 m, and −8.0 m for the Owase
forest. The value of the z-axis offset 31.8 m and−8.04 m indicates that the UAV-SfM process
generated raw point cloud is higher or lower than its natural location by 31.8 m and 8.0 m.
The translation distances can be seen in Figure 4a,b.

T =


0.996331 0.000357
−0.00036 0.996396

−0.01141 31.756608
−0.00002 15.250034

0.011407 0.000028
0 0

0.996330 31.469931
0 1

 for the Kameyama site (9)

T =


0.993815 −0.00236
0.002338 0.993819

−0.00489 1.050710
−0.00398 2.553746

0.004895 0.000028
0 0

0.993811 −7.99019
0 1

 for the Owase site (10)

It is very hard to visually recognize points over dense canopy areas as the check
points in order to determine the evaluation. Fortunately, there were some solar panels
next to the Kameyama forest which are clearly recognizable on the UAV image. Based
on CloudCompare, edge points and the three-dimensional coordinates of the solar panels
can be easily identified. The corresponding ALS edge points’ locational information was
retrieved by colorizing the ALS point clouds with the class attribute, i.e., ground, solar
panel, and vegetation. A total of 30 points located on the corners of the panels (as shown in
Figure 5) were selected as independent check points for evaluating the geolocation accuracy
of the final product of the UAV-SfM point cloud. The coordinates of the check points from
the ALS and UAV-SfM datasets listed in Table 3 are based on the JGD2000 coordinate
system, Japan Plane Rectangular CS VI. As can be seen, the RMSE in the view of three-
dimensional distance (xyz), planar distance (xy), and altitudinal distance (z) was 0.3704 m,
0.1728 m, and 0.2128 m, respectively. Figure 6 demonstrates the possibility of UAV-SfM RPC
registration when a need for multiple referencing is raised. The approximation distance
between ICPPC2020 and ICPPC2013 shows a high agreement of the two datasets and
indicates the proposed algorithm of UAV-SfM RPC processing works. To accomplish the
whole UAV-SfM point cloud processing process, the last step is a bias adjustment to account
for the effects of canopy growth. After that, the BICPPC datasets based on 2013 and 2020
are finalized. Consequently, the difference of surface height in the road areas between
the BICPPC and ALS datasets can be an index of the point alignment performance. To
summarize, when the UAV-SfM2019 is georeference transformed based on the ALS2013, the
resulted BICPPC dataset has an MAE of 0.0521 ± 0.0360 m, while it was 0.0287 ± 0.0224 m
for the case based on ALS2020.

3.2. Tree Segmentation Accuracy of CHM Data via the UAV-SfM and ALS-GM Approaches

In forestry, a management plan is generally prepared to guide forest practice and to
derive projected attributes of forest stands. We can either indirectly draw the information
via a robust sampling scheme and analysis to meet this end for extensive forestland or
directly gather information from a whole inventory task for small forestland. In Figure 7,
the treetops and crown boundaries were automatically drawn by CHM image segmenta-
tion using a local maximum filtering and watershed segmentation in PyCrown. Table 4
summarizes the results of tree detection based on the number of trees delineated by manual
and automatic approaches. Of the 99 trees at the Kameyama site, the number of trees
detected via UAV-SfM-CHM and ALS-CHM dataset was 100 and 84, respectively, which
accounts for a 1.0% and 2.0% of the omission error rate (OE%) and commission error
rate (CE%) for the UAV and a 5.0% and 20.2% of the OE% and CE% for the ALS. In this
case, the ALS-CHM data appeared to be under-segmented and resulted in a false-negative
percentage more significant than the UAV-SfM-CHM. The number of trees at the Owase
site was over-estimated for both UAV and ALS datasets. The false-negative rate was lower
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than 10%, but the false-positive rate was more than 30%. The precision, recall, and F-score
are also listed in Table 4.
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Figure 5. An illustration of independent check points for registration performance evaluation of
the UAV-SfM-generated point cloud data. The left image shows the RGB-based orthophoto where
the solar panels are next to the Kameyama forest. The center image displays the UAV-SfM-BICPPC
data overlaid with check points, the red points, on the corners of some solar panels. The right image
demonstrates the ALS point cloud data with corresponding check points on the corners of the solar
panels in the center image. Based on the point cloud classes (blue: ground, yellow: solar panel, and
green: vegetation), the corner points can be visually recognized and selected as check points for
registration performance evaluation.

Table 3. Summary of accuracy evaluation of the registered UAV-SfM point cloud dataset (BICPPC).

ALS UAV−SfM Bias
Point ID x y z x y z xyz xy z

1 −117,575.54 336.32 215.89 −117,575.75 336.64 215.82 0.3916 0.0710 0.2724
2 −117,572.46 332.01 213.96 −117,572.59 332.22 213.80 0.2987 0.1650 0.1760
3 −117,600.53 315.30 217.48 −117,600.68 315.74 217.49 0.4629 0.0140 0.3272
4 −117,597.58 311.60 215.68 −117,597.89 311.55 215.55 0.3386 0.1290 0.2214
5 −117,570.15 329.72 214.23 −117,570.26 329.91 214.20 0.2182 0.0260 0.1532
6 −117,567.22 325.50 212.53 −117,567.12 325.49 212.22 0.3267 0.3100 0.0730
7 −117,595.74 309.10 215.77 −117,595.82 309.12 215.61 0.1790 0.1590 0.0582
8 −117,564.66 322.82 212.96 −117,564.79 323.16 212.88 0.3699 0.0760 0.2560
9 −117,561.67 318.90 211.24 −117,561.55 318.78 210.91 0.3699 0.3290 0.1196

10 −117,590.13 302.33 214.19 −117,590.30 302.45 214.02 0.2668 0.1700 0.1454
11 −117,586.45 298.53 212.35 −117,586.59 298.15 212.09 0.4820 0.2610 0.2866
12 −117,559.04 316.23 211.70 −117,559.11 316.35 211.50 0.2412 0.2010 0.0943
13 −117,555.71 311.90 209.19 −117,556.08 312.04 209.49 0.5002 0.3000 0.2830
14 −117,584.61 295.99 212.42 −117,584.87 295.73 212.70 0.4651 0.2820 0.2615
15 −117,580.90 291.07 210.96 −117,581.07 291.48 210.73 0.4990 0.2270 0.3142
16 −117,553.78 309.24 210.20 −117,554.07 309.37 210.00 0.3765 0.2010 0.2251
17 −117,550.79 305.16 207.53 −117,550.63 305.30 208.01 0.5280 0.4830 0.1509
18 −117,578.99 288.58 211.12 −117,579.16 289.03 211.17 0.4828 0.0480 0.3397
19 −117,576.14 284.80 209.35 −117,576.01 284.66 209.19 0.2514 0.1600 0.1371
20 −117,547.91 302.80 208.96 −117,548.17 302.85 208.88 0.2825 0.0850 0.1905
21 −117,544.94 298.68 206.99 −117,545.17 298.63 206.74 0.3391 0.2460 0.1650
22 −117,573.67 282.06 210.05 −117,573.92 282.21 209.90 0.3236 0.1480 0.2035
23 −117,543.53 295.77 207.21 −117,543.40 296.21 207.14 0.4604 0.0730 0.3214
24 −117,539.38 291.46 205.28 −117,539.43 291.90 205.16 0.4622 0.1240 0.3149
25 −117,564.57 271.27 206.19 −117,564.61 271.25 206.34 0.1591 0.1540 0.0281
26 −117,549.53 364.42 214.93 −117,549.22 364.74 214.90 0.4464 0.0280 0.3150
27 −117,546.41 360.27 213.18 −117,546.22 360.39 212.90 0.3588 0.2790 0.1595
28 −117,545.98 343.03 211.55 −117,546.31 343.01 211.36 0.3847 0.1900 0.2365
29 −117,610.64 243.15 208.09 −117,610.46 243.47 208.09 0.3643 0.0010 0.2576
30 −117,607.91 238.14 206.09 −117,607.88 238.56 205.85 0.4822 0.2400 0.2957

RMSE (m) 0.3704 0.1727 0.2128



Remote Sens. 2022, 14, 1713 14 of 25

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 26 
 

 

27 −117,546.41 360.27 213.18 −117,546.22 360.39 212.90 0.3588 0.2790 0.1595 
28 −117,545.98 343.03 211.55 −117,546.31 343.01 211.36 0.3847 0.1900 0.2365 
29 −117,610.64 243.15 208.09 −117,610.46 243.47 208.09 0.3643 0.0010 0.2576 
30 −117,607.91 238.14 206.09 −117,607.88 238.56 205.85 0.4822 0.2400 0.2957 

RMSE (m)       0.3704 0.1727 0.2128 

 
Figure 6. An illustration of point-cloud coincidence of UAV-SfM RPC referencing transformation 
via bi-temporal ALS point cloud data. The images on the left and center (a–i) show a flowchart-
based subfigure of the data flow and output of the processing. The images on the right (j,k) depict 
the histogram of ALS and UAV-SfM data approximation. (b) is the UAV-SfM RPC acquired in 2019 
and (a,c) are the referencing ALS point cloud data acquired in 2013 and 2020, respectively. (d) is the 
registered ICPPC data based on ALS2013. It shows the enlarged map of the box in the source image 
(a,b). (e,h) are the 2nd further enlarged maps of the box and the transect line in (d), respectively. 
Correspondingly, (g) is the ALS2020-registered ICPPC data. It displays the 1st enlarged map of the 
box in the source image (b,c). (f,i) are the 2nd further enlarged maps of the box and the transect line 
in (g), respectively. A collection of tree crowns is highlighted and visible from ICPPC2013 and 
ICPPC2020 and their enlarged maps. Changes in canopy surface from 2013 to 2020 over the profile 
of transect line, derived via the ALS data and UAV-SfM data, are viewable in (h,i). The changes 
presented by both the ALS and the UAV-SfM data in (j) are similar, ranging from −1 to +2 m and 
behaving as a Gaussian distribution. In (k), the ICPPC is laid on the ALS point cloud data based on 
the acquisition year. As can be seen, the alignment of both projected ICPPC2013-ALS2013 and 
ICPPC2020-ALS2020 show the acceptable results of the proposed method. 

3.2. Tree Segmentation Accuracy of CHM Data via the UAV-SfM and ALS-GM Approaches 
In forestry, a management plan is generally prepared to guide forest practice and to 

derive projected attributes of forest stands. We can either indirectly draw the information 
via a robust sampling scheme and analysis to meet this end for extensive forestland or 
directly gather information from a whole inventory task for small forestland. In Figure 7, 
the treetops and crown boundaries were automatically drawn by CHM image segmenta-
tion using a local maximum filtering and watershed segmentation in PyCrown. Table 4 

Figure 6. An illustration of point-cloud coincidence of UAV-SfM RPC referencing transformation via
bi-temporal ALS point cloud data. The images on the left and center (a–i) show a flowchart-based
subfigure of the data flow and output of the processing. The images on the right (j,k) depict the
histogram of ALS and UAV-SfM data approximation. (b) is the UAV-SfM RPC acquired in 2019
and (a,c) are the referencing ALS point cloud data acquired in 2013 and 2020, respectively. (d) is
the registered ICPPC data based on ALS2013. It shows the enlarged map of the box in the source
image (a,b). (e,h) are the 2nd further enlarged maps of the box and the transect line in (d), respectively.
Correspondingly, (g) is the ALS2020-registered ICPPC data. It displays the 1st enlarged map of the
box in the source image (b,c). (f,i) are the 2nd further enlarged maps of the box and the transect
line in (g), respectively. A collection of tree crowns is highlighted and visible from ICPPC2013 and
ICPPC2020 and their enlarged maps. Changes in canopy surface from 2013 to 2020 over the profile
of transect line, derived via the ALS data and UAV-SfM data, are viewable in (h,i). The changes
presented by both the ALS and the UAV-SfM data in (j) are similar, ranging from −1 to +2 m and
behaving as a Gaussian distribution. In (k), the ICPPC is laid on the ALS point cloud data based
on the acquisition year. As can be seen, the alignment of both projected ICPPC2013-ALS2013 and
ICPPC2020-ALS2020 show the acceptable results of the proposed method.

Table 4. Evaluation of the number of trees based on the image-interpretation-based manual delin-
eation method and the PyCrown technique-based automatic delineation method.

Area Method Ntrees ¶ Dtrees ¶ OE% EC% Precision Recall F-Score

Kameyama UAV
99

100 1.0 2.0 0.99 0.98 0.99
ALS 84 20.2 5.0 0.79 0.94 0.86

Owase
UAV

110
137 5.5 30.0 0.92 0.68 0.79

ALS 138 9.0 34.5 0.86 0.62 0.72
¶ Ntrees and Dtrees stand for the number of trees delineated by the manual delineation method and the PyCrown
technique, respectively.
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Figure 7. Detected treetops and segmented tree crowns overlaid with the ALS-CHM and UAV-SfM-
CHM images for the Kameyama forest (a) and the Owase forest (b). The black polygons were canopy
gaps at the Kameyama site (c) and bare land at the Owase site (d). The trees grown initially in this
bare land area were harvested before acquiring UAV data in 2018.

3.3. Estimated Accuracy of Tree Volumetric Parameters of UAV-SfM and ALS-GM Approaches
3.3.1. Tree Height

Figure 8 shows a scatter plot of the measured and estimated tree height of every single
tree in the Kameyama plot and Owase plot. As can be seen on the left of this figure, in
the Kameyama forest, tree height determined via ALS2013 point cloud fell onto the space
lower than the identity line (x = y) where the difference is caused by tree growth. Tree
height determined by the ALS-GM method spread closer to the identity line than ALS2013,
indicating that the site index model (Equation (8)) can provide moderate height growth
information to compensate for the difficulty of data collection, particularly the acquisition
time difference between the ALS data and inventory data. In contrast, the points of the
UAV-SfM-determined tree height were distributed around and much closer to the identity
line. This indicates that when the tasks of in situ inventory and UAV images acquisition
can be accomplished in the same period, the georeferenced UAV-SfM point cloud data
could provide appropriate height information of trees. For the Owase forest on the right of
Figure 8, the scatter plot revealed that the UAV-SfM method determined that tree heights
were also distributed closer to the identity line. The RMSE and PRMSE of the height
estimation in the Kameyama forest were 0.81 m and 4.50% for the ALS-GM point cloud
dataset, while 0.43 m and 2.40% for the UAV-SfM point cloud dataset (Table 5). In contrast,
the bias of height estimation in the Owase forest appeared larger for both ALS-GM and
UAV-SfM datasets; correspondingly, the RMSE and PRMSE were 0.99 m and 4.73% and
1.65 m and 7.84%.



Remote Sens. 2022, 14, 1713 16 of 25

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 26 
 

 

3.3. Estimated Accuracy of Tree Volumetric Parameters of UAV-SfM and ALS-GM Approaches 
3.3.1. Tree Height 

Figure 8 shows a scatter plot of the measured and estimated tree height of every sin-
gle tree in the Kameyama plot and Owase plot. As can be seen on the left of this figure, in 
the Kameyama forest, tree height determined via ALS2013 point cloud fell onto the space 
lower than the identity line (x = y) where the difference is caused by tree growth. Tree 
height determined by the ALS-GM method spread closer to the identity line than ALS2013, 
indicating that the site index model (Equation (8)) can provide moderate height growth 
information to compensate for the difficulty of data collection, particularly the acquisition 
time difference between the ALS data and inventory data. In contrast, the points of the 
UAV-SfM-determined tree height were distributed around and much closer to the iden-
tity line. This indicates that when the tasks of in situ inventory and UAV images acquisi-
tion can be accomplished in the same period, the georeferenced UAV-SfM point cloud 
data could provide appropriate height information of trees. For the Owase forest on the 
right of Figure 8, the scatter plot revealed that the UAV-SfM method determined that tree 
heights were also distributed closer to the identity line. The RMSE and PRMSE of the 
height estimation in the Kameyama forest were 0.81 m and 4.50% for the ALS-GM point 
cloud dataset, while 0.43 m and 2.40% for the UAV-SfM point cloud dataset (Table 5). In 
contrast, the bias of height estimation in the Owase forest appeared larger for both ALS-
GM and UAV-SfM datasets; correspondingly, the RMSE and PRMSE were 0.99 m and 
4.73% and 1.65 m and 7.84%. 

   

(a) (b) (c) 

Figure 8. Scatter plot of the estimated and observed tree heights for the Kameyama (a), Owase (b), 
and integration of the two (c). Dots with red regression lines and circles with green regression lines 
present HUAV-SfM and HALS-GM point cloud derived values. In general, the predicted height of UAV-
SfM and ALS-GM is linearly correlated to the measured height. In (c), the red line shows Y = 5.19 + 
0.71X (R2 = 0.95, p < 0.0001, standard error of estimates = 0.35) for the UAV-SfM; the greed line dis-
plays Y = 1.50 + 0.96X (R2 = 0.73, p < 0.0001, standard error of estimates = 1.20) for the ALS-GM. 

Table 5. A comparison of tree height determination via the georeferenced UAV-SfM point cloud 
data and ALS point cloud data. 

Site Dataset 
H estimates  

Mean ± Std (m) 
Estimation Error ¶  

Range (m) 
Estimation Error  
Mean ± Std (m) 

RMSE  
(m) 

PRMSE  
(%) 

Kameyama 
UAV-SfM 18.07 ± 0.55 −0.69–1.29 0.30 ± 0.31 0.43 2.40 
ALS-GM 18.71 ± 0.56 0.13–2.21 0.65 ± 0.48 0.81 4.50 
ALS2013 16.73 ± 0.50 −1.89–0.09 1.34 ± 0.42 1.41 7.78 

Owase 
UAV-SfM 20.25 ± 1.23 −1.58–1.31 0.91 ± 0.40 0.99 4.73 
ALS-GM 21.82 ± 2.10 −1.64–3.91 1.45 ± 0.80 1.65 7.84 

Measured height (m)

15 16 17 18 19 20 21

Pr
ed

ic
te

d 
he

ig
ht

 (m
)

15

16

17

18

19

20

21
HUAV-SfM 
HALS-GM 

1:1 Line

Measured height (m)

16 18 20 22 24 26
Pr

ed
ic

te
d 

he
ig

ht
 (m

)

16

18

20

22

24

26 HUAV-SfM 
HALS-GM 
1:1 Line

Measured height (m)

16 18 20 22 24 26

Pr
ed

ic
te

d 
he

ig
ht

 (m
)

16

18

20

22

24

26 HUAV-SfM 
HALS-GM 

1:1 Line
HUAV-SfM = f(HG)
HALS-GM = f(HG)

HUAV-SfM = 5.19 + 0.71 HG

HALS-GM = 1.50 + 0.96 HG

Figure 8. Scatter plot of the estimated and observed tree heights for the Kameyama (a), Owase
(b), and integration of the two (c). Dots with red regression lines and circles with green regression
lines present HUAV-SfM and HALS-GM point cloud derived values. In general, the predicted height
of UAV-SfM and ALS-GM is linearly correlated to the measured height. In (c), the red line shows
Y = 5.19 + 0.71X (R2 = 0.95, p < 0.0001, standard error of estimates = 0.35) for the UAV-SfM; the
greed line displays Y = 1.50 + 0.96X (R2 = 0.73, p < 0.0001, standard error of estimates = 1.20) for
the ALS-GM.

Table 5. A comparison of tree height determination via the georeferenced UAV-SfM point cloud data
and ALS point cloud data.

Site Dataset H Estimates
Mean ± Std (m)

Estimation Error ¶

Range (m)
Estimation Error
Mean ± Std (m)

RMSE
(m)

PRMSE
(%)

Kameyama
UAV-SfM 18.07 ± 0.55 −0.69–1.29 0.30 ± 0.31 0.43 2.40
ALS-GM 18.71 ± 0.56 0.13–2.21 0.65 ± 0.48 0.81 4.50
ALS2013 16.73 ± 0.50 −1.89–0.09 1.34 ± 0.42 1.41 7.78

Owase
UAV-SfM 20.25 ± 1.23 −1.58–1.31 0.91 ± 0.40 0.99 4.73
ALS-GM 21.82 ± 2.10 −1.64–3.91 1.45 ± 0.80 1.65 7.84
ALS2013 20.66 ± 1.99 −2.61–2.73 1.14 ± 0.89 1.45 6.87

¶ Error = estimated − observed, a positive value indicates overestimation and a negative underestimation. The
means and std (standard deviation) were calculated based on the absolute error of all sample trees. The ALS2013
provides the estimated height of trees in 2013 that can be a baseline for evaluating the height growth of the stands
when integrating the UAV-SfM-determined size of trees in the inventory year.

3.3.2. Tree Diameter

The diameter of the trees was estimated by the DBH-H model and DBH-H-CA model
using the ALS-GM and UAV-SfM datasets. A comparison of measured and predicted
values of the study sites is shown in Figure 9. As shown in Table 6, the DBH-H model had
an RMSE and PRMSE of 2.57 m and 10.47% in the estimation of M1DBHALS-GM and 2.32 m
and 9.48% in the estimation of M1DBHUAV-SfM for the Kameyama forest. This indicates
that the DBH-H model has a similar performance of diameter estimation using both the
ALS-GM and the UAV-SfM point cloud datasets in the stand with commercial-thinning
ages. However, this similarity was not observed in the matured forest in the Owase site. As
shown in Table 6, the estimation through the UAV-SfM dataset was better with an RMSE
and PRMSE of 3.84 m and 11.95%, where the improvement was around 2 m and 6%.
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Figure 9. Scatter plot of observations and estimates of tree diameter for the inventory plots in
Kameyama (a) and Owase forests (b). In (a,b), the dot and circle represent the estimation of Model-1
(Equation (5)) and Model-2 (Equation (6)) through the ALS-GM datasets, and the black triangle and
white triangle stand for the estimation of Model-1 and Model-2 through the UAV-SfM datasets. Please
see Table 6 for the details of accuracy measures.

Table 6. Summary of diameter estimation and accuracy evaluation for both Kameyama and Owase forest.

Site Dataset DBH
Equation

Range of
Estimates (cm)

Mean ± Std
(cm)

RMSE
(cm)

PRMSE
(%)

Kameyama

ALS-GM M1: Equation (5) 24.66–28.44 25.91 ± 1.08 2.57 10.47
M2: Equation (6) 20.43–30.75 24.32 ± 2.50 3.18 12.96

UAV-SfM M1: Equation (5) 23.03–26.85 24.67 ± 1.05 2.32 9.48
M2: Equation (6) 20.25–29.86 23.42 ± 2.43 3.27 13.36

Owase

ALS-GM M1: Equation (5) 24.84–39.79 32.19 ± 4.30 5.86 18.25
M2: Equation (6) 21.18–37.49 29.44 ± 3.84 5.58 17.38

UAV-SfM M1: Equation (5) 24.94–33.56 28.95 ± 2.46 3.84 11.95
M2: Equation (6) 21.25–32.95 27.25 ± 3.25 4.73 14.75

Unfortunately, the results show that the DBH-H-CA model is not superior in tree
diameter characterization for middle-aged and matured forest stands. The RMSE and
PRMSE of DBH estimation achieved by Equation (8) are mostly more prominent than
Equation (5) except for the estimation through the ALS-GM dataset in the Owase forest.
Tree crown size generally expands in accordance with the growth of tree size. However, it
is also highly subject to intensive pruning until commercial thinning for timber-production
forests. The results suggested that with tree height and canopy width used simultaneously
as predictors for DBH estimation it is highly possible to introduce uncertainty and impact
the estimation accuracy in a low-intensity managed forest. In general, a thinning will
lead to tree growth release, extending outward and leading the forest canopy to close
again in a relatively short period. A reasonable period for deriving tree parameters by the
UAV-SfM-CHM segmentation is approximately ten years.

3.3.3. Tree Volume

Integrating the point-cloud-determined tree height and the model-derived diame-
ter estimate, the volume of every single tree is calculated. According to the sources of
tree parameters, the volume of every single tree is determined using Equation (7) and
named M3VALS-GM, M4VALS-GM, M3VUAV-SfM, and M4VUAV-SfM, where M3 and M4 indicate
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the combination of DBH and volume models and ALS-GM and UAV-SfM are the point-
could datasets, respectively. The estimation is summarized in Table 7. The scatter plot of
estimated and measured values of tree volume, as shown in Figure 10, looks very simi-
lar to the pattern of the DBH scatter plot in Figure 9. Accurate measures of RMSE and
PRMSE revealed that M3VUAV-SfM made a better estimation for the Kameyama forest and
M4VUAV-SfM for the Owase forest with 0.0777 m/18.11% and 0.2146 m/25.40%, respectively.
Because M3VUAV-SfM achieved a performance (0.2280 m RMSE/26.99% PRMSE) very close
to M4VUAV-SfM for the Owase forest, it is also recommended for simplicity using the tree-
height-based diameter model and corresponding Schumacher–Hall volume model for tree
volume estimation.

Table 7. Summary of the tree volume estimation and accuracy evaluation for the Kameyama and
Owase forests.

Site Dataset Volume
Equation

Range of
Estimates (m3)

Mean ± Std
(m3)

RMSE
(m3)

PRMSE
(%)

Kameyama

ALS-GM M3: Equations (5) and (7) 0.4312–0.6271 0.4929 ± 0.0561 0.0940 21.92
M4: Equations (6) and (7) 0.3129–0.7172 0.4430 ± 0.1017 0.1117 26.05

UAV-SfM M3: Equations (5) and (7) 0.3603–0.5394 0.4332 ± 0.0494 0.0777 18.11
M4: Equations (6) and (7) 0.2956–0.6555 0.3975 ± 0.0921 0.1092 25.47

Owase

ALS-GM M3: Equations (5) and (7) 0.4393–1.5162 0.9016 ± 0.3062 0.3406 40.33
M4: Equations (6) and (7) 0.3280–1.3533 0.7619 ± 0.2567 0.2849 33.73

UAV-SfM M3: Equations (5) and (7) 0.4407–1.3105 0.8187 ± 0.2416 0.2280 26.99
M4: Equations (6) and (7) 0.3290–1.1468 0.6953 ± 0.2089 0.2146 25.40
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Figure 10. A comparison of the observed and estimated tree volume for the Kameyama (a) and Owase
forests (b). In (a,b), the dot and circle represent the estimation of Model-3 (Equations (5) and (7))
and Model-4 (Equations (6) and (7)) through the ALS-GM datasets, and the black triangle and white
triangle stands for the estimation of Model-3 and Model-4 through the UAV-SfM datasets. Please see
Table 7 for the details of accuracy measures.

In general, tree volume determination of forest stands is rarely conducted only at
one specific age of the stand. For any plantation forests, there will have been a series of
pre-commercial thinning and commercial thinning before harvesting. In other words, forest
managers must evaluate tree parameters of the stands at different ages to generate thinning
scenarios during forest development. Integrating all sample trees from the plots in the
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middle-aged and matured stands as a whole dataset, a validation of volume estimation
with a wide range of tree sizes can provide insight into characterizing tree volume and even
the volume stock of forests. As mentioned previously, the average and standard deviation
of the volume of every single tree was 0.4287 ± 0.0836 m3 for the Kameyama forest and
0.8446 ± 0.2464 m3 for the Owase forest. Therefore, the integrated dataset has an average
volume of 0.6806 ± 0.2843 m3 and a minimum/maximum value of 20.50/40.80 cm and
16.90/30.60 m for diameter and height. As a result, the bar charts in Figure 11 show the his-
togram of estimation errors for the M3VALS-GM, M4VALS-GM, M3VUAV-SfM, and M4VUAV-SfM.
Correspondingly, the RMSE was 0.28 m, 0.24 m, 0.22 m, and 0.23 m3 and the PRMSE
was 40%, 35%, 33%, and 34%. The integrated dataset evaluation received an RMSE sim-
ilar to the site-specific evaluation but this is not the case with the PRMSE, as shown in
Table 7. As the PRMSE measures the ratio of the RMSE against the average, the increase
in the PRMSE is mainly contributed by the change in average tree volume of the dataset.
In other words, the middle-aged forest and mature forest average volume had signifi-
cantly increased/decreased in contrast to its original value, respectively. This suggests the
estimation and evaluation of tree parameters should be stand oriented.
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with the ALS-GM (a,b) and UAV-SfM (c,d) point cloud datasets. The histogram displays the error
of integrated sample trees from both the Kameyama and Owase forest stands. The x-axis is the
difference between the predicted and measured values and the y-axis is the count of the errors. The
average and standard deviation of estimation error embedded in each subfigure are given at the base
of absolute error.

4. Discussion
4.1. Performance of UAV-SfM Point Cloud Data in Characterizing Stand-Level Attributes

Based on the automatic segmentation of the UAV-SfM-CHM and ALS-CHM datasets,
Table 8 summarizes the stand parameters of the Kameyama and Owase forests. In forestry,
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the average value of the height and that of the diameter of every tree is used to account for
the attributes of height and diameter at the stand level. The stand-level volume stock is
presented as the aggregated value of volume or basal area of every single tree. In addition,
the relative spacing (Sr) is generally used as a guide for managing the stand density. In
Table 8, the E% is defined as the percentage of an estimate that deviates from the observed
value. A positive/negative value stands for an over/under-estimation. As noted, the UAV
approach was estimated with an E% less than 3% for each of the stand parameters for the
Kameyama site, while from 0% to 20% for the Owase site. The ALS approach achieved a
more significant estimation bias for the Kameyama than the Owase site.

Table 8. Summary of stand-level parameters derived from UAV-SfM-CHM and ALS-CHM datasets.

Kameyama Site Owase Site
Stand Parameter/Index Ground UAV E% ¶ ALS E% Ground UAV E% ALS E%

Stand density (N, tree/ha) 1042 1042 0.00 903 −13.34 943 943 0.00 943 0.00
Average stem diameter (cm) 24.49 24.67 0.73 25.91 5.80 32.09 29.00 −9.63 32.19 0.31

Average stem height (m) 18.06 18.07 0.06 18.71 3.60 21.04 20.20 −3.99 21.82 3.71
Average stem volume (m3) 0.43 0.43 1.05 0.49 14.98 0.84 0.82 −3.07 0.90 6.75

Volume per plot (m3) 6.43 6.50 1.03 7.39 14.97 19.43 18.83 −3.07 20.74 6.74
Stand volume stock (m3/ha) 446.59 451.21 1.03 513.43 14.97 796.17 771.72 −3.07 849.82 6.74

Stand basal area (m2/ha) 49.61 49.87 0.52 55.02 0.91 77.47 62.49 −19.34 78.09 0.80
Sr (%) 17.20 16.70 −2.91 16.60 −3.49 15.40 16.00 3.90 15.20 −1.30

¶ E% = (Estimate − Observation)/Observation ∗ 100 is a measure of bias for the estimation made by the CHM
segmentation. In which the negative sign indicates an underestimation.

By checking the segmentation evaluation in Table 4 and the UAV-RGB images of the
forests in Figure 1, some space remains in the canopy for trees to develop in the Kameyama
forest but appears almost absent in the Owase forest. This indicates that the tree crown of
the 65-year-old Hinoki stand seems to grow freely on the top, resulting in multiple convex
features, leading to different image segments. Therefore, a significant false-negative error
rate occurred in the number of trees estimated at the Owase site for both the UAV-SfM-
CHM and ALS-CHM datasets. In contrast, the 46-year-old Hinoki stand has a unimodal
shape which is a standard crown feature. Therefore, automatic image segmentation on
the UAV and ALS datasets works very well in the Kameyama site. This further suggests
that the combination of the UAV-SfM-DSM and ALS-DEM has good potential in deriving
multi-temporal UAV-SfM-CHM for applications, particularly for intensive management
of timber plantations. Accordingly, the stand parameters of the younger Hinoki stands
could be derived appropriately. Suppose a management plan can define a suitable cycle
of pre-commercial thinning and commercial thinning practices. In that case, the canopy
feature of a mature forest remains optimistic for deriving tree parameters at high accuracy.

4.2. The Potential of Deriving Height Growth Information for Forest Monitoring via Integration of
ALS and UAV-SfM Data

In addition to those mentioned in the previous section, further samples of 480 trees,
aged between 37 and 82, were collected from 11 plots located in the Kameyama area.
As shown in Table 9, the ALS-CHM approach determined HAGR was 0.30 ± 0.08 m,
accounting for an increment rate of 2.59 ± 1.09% in respect to the height baseline in 2013
at the tree-level perspective. Alternatively, the HAGR determined by the UAV-SfM-CHM
approach was 0.31 ± 0.06 m, equivalent to 2.66 ± 0.84% of the height in 2013. The average
HAGR difference between the UAV and ALS approaches was 0.01 m/yr or 0.07 %/yr. The
similarity of the UAV-SfM-CHM and ALS-CHM tree-height estimates is shown in Figure 12.
As can be seen, the estimates of height and HAGR of individual trees made by the two
systems have a linear relationship with an R-squared of 0.9825 and 0.7760, respectively, and
each is significant at the probability level α = 0.01. Though the HAGR estimates of the UAV
approach appeared slightly smaller/larger than the ALS approach for those trees with a
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larger/smaller annual growth rate, the difference in estimates is small enough that a high
agreement can be concluded.

Table 9. Height annual growth rate of the Hinoki trees over a wide range of stand ages.

Descriptive
Statistics

Age
Years)

ALS_HAGR
(m/yr)

ALS_HAGR
(%/yr)

UAV_HAGR
(m/yr)

UAV_HAGR
(%/yr)

Minimum 37 0.06 0.36 0.09 0.81
Maximum 82 0.47 6.07 0.52 4.96
Average 57.38 0.30 2.59 0.31 2.66

STD 17.71 0.08 1.09 0.06 0.84
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In forestry, the increment rate of tree height is generally assumed as linear for a
relatively short growth period, for example, 5 or 10 years. However, as noted in Figure 13,
the HAGR (%) of the Hinoki trees behave as an exponential decay function of the tree height,
indicating the height increment percentage of the trees is gradually decreased exponentially
as stand age increases. Taking the height of trees measured from the 2013 ALS dataset
as the baseline, the exponential decay model (Equation (11)) derived via the ALS-based
approach has a slope larger than the UAV-based approach (Equation (12)). The R-squared
of the ALS-based and UAS-based HAGR% model was 0.6203 (n = 480, p < 0.0001) and
0.5915 (n = 480, p < 0.0001), respectively. This finding provides new evidence for the need
to model tree growth and forest growth. It enables continuous forest inventory through
remote sensing data to gather reliable spatiotemporal data to realize sustainable timber
production planning and practice.

To collect multi-temporal data over small forestland via a UAV is implementable as a
routine task at a low cost. However, the system is subject to the strength and endurance
ability of the UAV system to meet the needs of data collection for a large area of forestland.
To this end, a spaceborne lidar system designed to collect complex waveform data or
photon lidar data over a larger footprint might be an alternative. As an existing forest
monitoring system integrating multi-source remote sensing data [46], the harmonized full-
waveform metrics-based stand height modeling technique [47] could be helpful to retrieve
stand-level attributes for forest planning via an area-based approach [15,48]. Recalling the
bi-temporal point cloud referencing transformation mentioned in Section 3.1, the proposed
algorithm can be applied to collect multi-temporal canopy height information of a forest
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stand to support in situ data for validating satellite and airborne lidar systems in the view
of conducting a plot-based inventory.

HAGR(%) = 0.4397 + 10.7709(exp(−0.1358H)), for the ALS− based approach (11)

HAGR(%) = 0.4842 + 6.9310(exp(−0.0961H)), for the UAV− based approach (12)
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4.3. An Additional View on the Use of Enterprise-Grade UAV-Based Sensors for Forest Inventory

The development of remote sensing technology has significantly increased the op-
portunity for foresters to utilize various UAV-based sensors for forest inventory. For the
UAV-SfM technique, a consumer-grade UAV can be applied to generate accurate DEM data
with the support of predefined GCPs when forest canopy closure is significantly low or the
forest has just been harvested. However, the UAV-SfM technique still needs to integrate
with accurate high-resolution DEM data to support tree height derivation and related
tree-level parameters; this is particularly significant for dense forests. It can contribute to
canopy height normalization and further satisfy the need for retrieving tree parameters to
achieve precise management of plantation forests. Although forest canopy surfaces can
be generated accurately when an enterprise-grade UAV is equipped with an RTK-based
RGB, multispectral, and lidar system, the integration of UAV-SfM and ALS point cloud
data remain essential for dense forests. This is because rare ground point clouds can be
received under forests with high canopy closure. This can contribute to meeting the need
for precise management of plantation forests.

5. Conclusions

Continuous forest inventory is essential and requires forest managers to constantly
collect forest attributes for designing and implementing regular management practices.
Airborne lidar sensors and unmanned-aerial systems are important tools as they can collect
data with accurately depicted canopy features for forest inventory from the air. The perfor-
mance of retrieving tree parameters from the remotely sensed data is critical to realizing the
continuous forest inventory for timber production management. Producing high-quality
timber depends on proper management and intensive forest practices, including regenera-
tion, pre-commercial thinning, timber harvesting, etc. Forest management planning highly
relies on detailed and precise forest information. As noted, automatic tree detection and
crown delineation are implemented through segmentation techniques using point-based or
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image-based data. However, for practical reasons, the segmentation in economic forests
with highly dense canopy remains challenging if merely using ALS-based point cloud
data or canopy height model data. For example, (1) multi-temporal high-resolution data is
required for monitoring forest status and retrieving tree attributes over a long period of
management. However, the cost of gathering high-density ALS data deters the managers
from regularly utilizing this approach. (2) With data collection using a lower pulse rate lidar
scheme, the treetops are most likely miss-hit; consequently, their features are not shown in
the point cloud data. When drawing individual trees from such lower density point cloud
data or its derivative canopy height model data, the false-negative and false-positive errors
tend to occur in dense forests.

The UAV dataset may improve tree detection because the UAV-SfM method provides
dense point cloud data, which catches the details of treetops and crown edges more
precisely as no shadow effect occurs in the dataset. It is also obtained at significantly lower
costs. A lower density of ALS point cloud, for example, one point per square meter, is
sufficient to provide terrain morphology of the forest land and is thus able to support
high-resolution DEM data for the managers to integrate multi-temporal UAV-SfM point
cloud data to generate a series of canopy height model data for applications. This protocol
of applying ICP registration transformation with a reference-height adjustment method
can efficiently register the point cloud of a UAV equipping without an RTK instrument
data to ALS point cloud. In addition, the ALS point cloud can provide ground surface
data as material for normalizing UAV-SfM generated point cloud data and generating
canopy height model data for extracting tree attributes. This study has demonstrated
optimistic results in estimating individual trees’ height and increment rate in plantation
forests. The stand-level parameters such as the number of trees, basal areas, and standing
volume stocks per hectare are also retrievable from the tree-level parameters derived by
the UAV-SfM-based approach at an acceptable accuracy with an error rate ranging from
7% to 15%. The proposed protocol can gather detailed information of a forest at tree-level
parameters and stand-level attributes; the changes of a forest can be retrieved at a higher
temporal frequency and low cost. Therefore, this approach is beneficial for monitoring
forest development and creating scenarios to synchronize forest zoning [49] and timber
harvest [50] for appropriate management and profitability.

To summarize, applying ALS and UAV-SfM point cloud data to collect tree-level
parameters has an excellent performance in height measurement but remains challenged
with regards to measurement accuracy in situ. In general, trees compete for nutrients and
space for growth. A competition index that integrates the metrics of tree height and the
distance between object–tree and neighboring trees is useful in describing the variation of
tree diameter for the ALS approach. Canopy features such as crown area, crown length, or
crown depth, and even the height below the canopy, can be directly or indirectly measured
from the lidar data and are of benefit in diameter estimation [12,15,21]. However, the
importance of such tree-level parameters in estimating diameter appeared not significant
in intensively managed plantation forests. There is a need to investigate a model that can
integrate the high-performance of tree height measurement and stand-level attributes for
tree-level diameter and volume estimation.
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