Using InSAR Time Series to Monitor Surface Fractures and Fissures in the Al-Yutamah Valley, Western Arabia
Abstract
:1. Introduction
Study Area
2. Methodology
2.1. Geologic Map
2.2. Weather Model and Ancillary Weather Data
2.3. InSAR Data and Method
- Model-based removal of radar propagation effects associated with temporal variability in the quasi-stratified component of the troposphere [40].
- Estimation and removal of error associated with the inaccurate digital elevation models (DEMs), as the sensitivity to this error is proportional to the perpendicular component of the interferometric spatial baseline (so-called Bperp) and is easily estimated in the time series analysis [41].
- Empirical removal of residual long wavelength (100-km-scale) apparent deformation signals [42]. This removal is recommended for short spatial wavelength deformation signals, which estimate and then remove linear ramps from the displacement time-series at each acquisition on the reliable pixels. In contrast, for regional tectonic deformation signals, this approach is not recommended.
2.4. Ground Truth Data
3. Results
3.1. Regional Analysis of Western Arabia
3.2. Al-Yutamah Valley
3.2.1. Velocity Map
3.2.2. Fractures
- -
- (Figure 5A) Subsidence within the Al-Yutamah Valley is associated with distinct surface fractures. In the right panel, we show the displacement time series for the location indicated by the black triangle in the upper left map to better visualize these offsets. The time series shows accumulated subsidence over the last seven years, with multiple offsets, one of which occurred during November 2018 associated with the fracture that can be seen in the optical image (Figure 5A).
- -
- (Figure 5B) The associated displacement time series (at the location indicated by the black triangle) has multiple temporal offsets. In the left panel is an image which shows the fracture in green, as it accommodated large volumes of rain and became a suitable environment conducive to plant growth. In the right side of the left panel is a picture taken by one local resident of the fracture zone upon its initiation. The picture exemplifies the size of the fracture and the potential hazard posed by such features. This region subjected to subsidence, albeit at a lower rate than the region presented in Figure 5A, also developed surface fractures in response to the severe rain season in November 2018.
- -
- (Figure 5C) A region outside of the original subsidence area showing little or no subsidence activities prior to the fracture development that occurred in November 2018. In the left image is the region of subsidence, which revealed a potential pattern which appeared in the form of fractures that connected in circles, which may lead into developing future sinkholes.
- -
- (Figure 5D) A region experiencing a long period displacement variation with a unique pattern of surface displacements that may reflect subsurface processes. The observed pattern seems to reflect a long-term subsurface process within the valley.
3.2.3. Spatial Gradient of the LOS Displacement Field
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stelten, M.E.; Downs, D.T.; Champion, D.E.; Dietterich, H.R.; Calvert, A.T.; Sisson, T.W.; Mahood, G.A.; Zahran, H. The timing and compositional evolution of volcanism within northern Harrat Rahat, Kingdom of Saudi Arabia. GSA Bull. 2020, 132, 1381–1403. [Google Scholar] [CrossRef]
- Chen, F.; Lin, H.; Zhang, Y.; Lu, Z. Ground subsidence geo-hazards induced by rapid urbanization: Implications from InSAR observation and geological analysis. Nat. Hazards Earth Syst. Sci. 2012, 12, 935–942. [Google Scholar] [CrossRef] [Green Version]
- Cigna, F.; Osmanoğlu, B.; Cabral-Cano, E.; Dixon, T.H.; Ávila-Olivera, J.A.; Garduño-Monroy, V.H.; DeMets, C.; Wdowinski, S. Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico. Remote Sens. Environ. 2012, 117, 146–161. [Google Scholar] [CrossRef]
- Intrieri, E.; Gigli, G.; Nocentini, M.; Lombardi, L.; Mugnai, F.; Fidolini, F.; Casagli, N. Sinkhole monitoring and early warning: An experimental and successful GB-InSAR application. Geomorphology 2015, 241, 304–314. [Google Scholar] [CrossRef] [Green Version]
- Cigna, F.; Tapete, D. Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR. Remote Sens. Environ. 2021, 253, 112–161. [Google Scholar] [CrossRef]
- Orhan, O.; Oliver-Cabrera, T.; Wdowinski, S.; Yalvac, S.; Yakar, M. Land subsidence and its relations with sinkhole activity in Karapınar region, Turkey: A multi-sensor InSAR time series study. Sensors 2021, 21, 774. [Google Scholar] [CrossRef]
- Amin, A.; Bankher, K. Causes of land subsidence in the Kingdom of Saudi Arabia. Nat. Hazards 1997, 16, 57–63. [Google Scholar] [CrossRef]
- Bankher, K.A.; Al-Harthi, A.A. Earth fissuring and land subsidence in western Saudi Arabia. Nat. Hazards 1999, 20, 21–42. [Google Scholar] [CrossRef]
- Pallister, J.S.; McCausland, W.A.; Jónsson, S.; Lu, Z.; Zahran, H.M.; Hadidy, S.E.; Aburukbah, A.; Stewart, I.C.; Lundgren, P.R.; White, R.A.; et al. Broad accommodation of rift-related extension recorded by dyke intrusion in Saudi Arabia. Nat. Geosci. 2010, 3, 705–712. [Google Scholar] [CrossRef]
- Youssef, A.M.; Maerz, N.H. Overview of some geological hazards in the Saudi Arabia. Environ. Earth Sci. 2013, 70, 3115–3130. [Google Scholar] [CrossRef]
- Al Fouzan, F.; Dafalla, M.A. Study of cracks and fissures phenomenon in Central Saudi Arabia by applying geotechnical and geophysical techniques. Arab. J. Geosci. 2014, 7, 1157–1164. [Google Scholar] [CrossRef]
- Youssef, A.M.; Sabtan, A.A.; Maerz, N.H.; Zabramawi, Y.A. Earth fissures in wadi Najran, kingdom of Saudi Arabia. Nat. Hazards 2014, 71, 2013–2027. [Google Scholar] [CrossRef]
- Xu, W.; Jónsson, S.; Corbi, F.; Rivalta, E. Graben formation and dike arrest during the 2009 Harrat Lunayyir dike intrusion in Saudi Arabia: Insights from InSAR, stress calculations and analog experiments. J. Geophys. Res. Solid Earth 2016, 121, 2837–2851. [Google Scholar] [CrossRef] [Green Version]
- Youssef, A.M.; Al-Harbi, H.M.; Gutiérrez, F.; Zabramwi, Y.A.; Bulkhi, A.B.; Zahrani, S.A.; Bahamil, A.M.; Zahrani, A.J.; Otaibi, Z.A.; El-Haddad, B.A. Natural and human-induced sinkhole hazards in Saudi Arabia: Distribution, investigation, causes and impacts. Hydrogeol. J. 2016, 24, 625–644. [Google Scholar] [CrossRef]
- Othman, A.; Sultan, M.; Becker, R.; Alsefry, S.; Alharbi, T.; Gebremichael, E.; Alharbi, H.; Abdelmohsen, K. Use of geophysical and remote sensing data for assessment of aquifer depletion and related land deformation. Surv. Geophys. 2018, 39, 543–566. [Google Scholar] [CrossRef] [Green Version]
- Othman, A.; Abotalib, A.Z. Land subsidence triggered by groundwater withdrawal under hyper-arid conditions: Case study from Central Saudi Arabia. Environ. Earth Sci. 2019, 78, 243. [Google Scholar] [CrossRef]
- Abdelkareem, M.; Gaber, A.; Abdalla, F.; El-Din, G.K. Use of optical and radar remote sensing satellites for identifying and monitoring active/inactive landforms in the driest desert in Saudi Arabia. Geomorphology 2020, 362, 107–197. [Google Scholar] [CrossRef]
- Alshehri, F.; Sultan, M.; Karki, S.; Alwagdani, E.; Alsefry, S.; Alharbi, H.; Sahour, H.; Sturchio, N. Mapping the distribution of shallow groundwater occurrences using Remote Sensing-based statistical modeling over southwest Saudi Arabia. Remote Sens. 2020, 12, 1361. [Google Scholar] [CrossRef]
- Aljammaz, A.; Sultan, M.; Izadi, M.; Abotalib, A.Z.; Elhebiry, M.S.; Emil, M.K.; Abdelmohsen, K.; Saleh, M.; Becker, R. Land subsidence induced by rapid urbanization in arid environments: A remote sensing-based investigation. Remote Sens. 2021, 13, 1109. [Google Scholar] [CrossRef]
- Pankratz, H.G.; Sultan, M.; Abdelmohsen, K.; Sauck, W.A.; Alsefry, S.; Alharbi, H.; Emil, M.K.; Gebremichael, E.; Asaeidi, A.; Alshehri, F.; et al. Use of geophysical and radar interferometric techniques to monitor land deformation associated with the Jazan Salt Diapir, Jazan city, Saudi Arabia. Surv. Geophys. 2021, 42, 177–200. [Google Scholar] [CrossRef]
- Simons, M.; Rosen, P.A. Interferometric synthetic aperture radar geodesy. In Treatise on Geophysics-Geodesy; Elsevier: Amsterdam, The Netherlands, 2007; pp. 391–446. [Google Scholar]
- Stern, R.J.; Johnson, P. Continental lithosphere of the Arabian Plate: A geologic, petrologic, and geophysical synthesis. Earth-Sci. Rev. 2010, 101, 29–67. [Google Scholar] [CrossRef]
- Camp, V.E.; Roobol, M.J. The Arabian continental alkali basalt province: Part I. evolution of Harrat Rahat, Kingdom of Saudi Arabia. Geol. Soc. Am. Bull. 1989, 101, 71–95. [Google Scholar] [CrossRef]
- Moufti, M.R.; Moghazi, A.M.; Ali, K.A. 40Ar/39Ar geochronology of the Neogene-Quaternary Harrat Al-Madinah intercontinental volcanic field, Saudi Arabia: Implications for duration and migration of volcanic activity. J. Asian Earth Sci. 2013, 62, 253–268. [Google Scholar] [CrossRef]
- Downs, D.T.; Stelten, M.E.; Champion, D.E.; Dietterich, H.R.; Nawab, Z.; Zahran, H.; Hassan, K.; Shawali, J. Volcanic history of the northernmost part of the Harrat Rahat volcanic field, Saudi Arabia. Geosphere 2018, 14, 1253–1282. [Google Scholar] [CrossRef] [Green Version]
- Camp, V.E. Geologic Map of the Umm al Birak Quadrangle, Sheet 23D, Kingdom of Saudi Arabia; Saudi Arabian Deputy Ministry for Mineral Resources: Jeddah, Saudi Arabia, 1986; p. 40.
- Bamousa, A.O. Infracambrian superimposed tectonics in the late proterozoic units of Mount Ablah area, southern Asir Terrane, Arabian Shield, Saudi Arabia. Arab. J. Geosci. 2013, 6, 2035–2044. [Google Scholar] [CrossRef]
- Sharland, P.R.; Casey, D.M.; Davies, R.B.; Simmons, M.D.; Sutcliffe, O.E. Arabian plate sequence stratigraphy–revisions to SP2. GeoArabia 2004, 9, 199–214. [Google Scholar] [CrossRef]
- Aldaajani, T.Z.; Almalki, K.A.; Betts, P.G. Plume Versus Slab-Pull: Example from the Arabian Plate. Front. Earth Sci. 2021, 9, 494. [Google Scholar] [CrossRef]
- Johnson, P.R. Explanatory Notes to the Map of Proterozoic Geology of Western Saudi Arabia: Saudi Geological Survey Technical Report; SGS-TR-2006-4, scale 1:1,500,000; Saudi Geological Survey: Jeddah, Saudi Arabia, 2006; 28p. [Google Scholar]
- Johnson, P.R.; Kattan, F.H. Lithostratigraphic revision in the Arabian Shield: The impacts of geochronology and tectonic analysis. Arab. J. Sci. Eng. 2008, 33, 3–16. [Google Scholar]
- Pollastro, R.M.; Karshbaum, A.S.; Viger, R.J. Maps Showing Geology, Oil and Gas Fields and Geologic Provinces of the Arabian Peninsula; US Geological Survey: Reston, VA, USA, 1999. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Molteni, F.; Buizza, R.; Palmer, T.N.; Petroliagis, T. The ECMWF ensemble prediction system: Methodology and validation. Q. J. R. Meteorol. Soc. 1996, 122, 73–119. [Google Scholar] [CrossRef]
- Rosen, P.A.; Gurrola, E.; Sacco, G.F.; Zebker, H. The InSAR scientific computing environment. In Proceedings of the EUSAR 2012 9th European Conference on Synthetic Aperture Radar, Nürnberg, Germany, 23–26 April 2012; Volume 23, pp. 730–733. [Google Scholar]
- Bekaert, D.; Karim, M.; Justin, L.; Hua, H.; Agram, P.; Owen, S.; Manipon, G.; Malarout, N.; Lucas, M.; Sacco, G.; et al. Development and dissemination of standardized geodetic products by the Advanced Rapid Imaging and Analysis (ARIA) Center for Natural Hazards. In Proceedings of the International Union of Geodesy and Geophysics (IUGG), Montreal, QC, Canada, 8–18 July 2019. [Google Scholar]
- Buzzanga, B.; Bekaert, D.P.; Hamlington, B.D.; Sangha, S.S. Toward sustained monitoring of subsidence at the coast using InSAR and GPS: An application in Hampton Roads, Virginia. Geophys. Res. Lett. 2020, 47, e2020GL090013. [Google Scholar] [CrossRef]
- Milbert, D. Solid: Solid Earth Tide. 2018. Available online: http://geodesyworld.github.io/SOFTS/solid.htm (accessed on 17 January 2022).
- Yunjun, Z.; Fattahi, H.; Pi, X.; Rosen, P.; Simons, M.; Agram, P.; Aoki, Y. Range Geolocation Accuracy of C/L-band SAR and its Implications for Operational Stack Coregistration. IEEE Trans. Geosci. Remote Sens. 2022. under review. [Google Scholar]
- Jolivet, R.; Agram, P.S.; Lin, N.Y.; Simons, M.; Doin, M.P.; Peltzer, G.; Li, Z. Improving InSAR geodesy using global atmospheric models. J. Geophys. Res. Solid Earth 2014, 119, 2324–2341. [Google Scholar] [CrossRef]
- Fattahi, H.; Amelung, F. DEM error correction in InSAR time series. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4249–4259. [Google Scholar] [CrossRef]
- Yunjun, Z.; Fattahi, H.; Amelung, F. Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Comput. Geosci. 2019, 133, 104331. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.; Jones, C.E.; Bekaert, D.P. Value of InSAR for Monitoring Land Subsidence to Support Water Management in the San Joaquin Valley, California. J. Am. Water Resour. Assoc. 2021. [Google Scholar] [CrossRef]
- Sangha, S.S. Characterizing the Deformation Field in Afar from Radar Interferometry and Topography Data; University of California: Los Angeles, CA, USA, 2021. [Google Scholar]
- Fattahi, H.; Agram, P.; Simons, M. A network-based enhanced spectral diversity approach for TOPS time-series analysis. IEEE Trans. Geosci. Remote Sens. 2016, 55, 777–786. [Google Scholar] [CrossRef] [Green Version]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.W.; Zebker, H.A. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. JOSA A 2001, 18, 338–351. [Google Scholar] [CrossRef] [Green Version]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Pepe, A.; Lanari, R. On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2374–2383. [Google Scholar] [CrossRef]
- Motagh, M.; Shamshiri, R.; Haghighi, M.H.; Wetzel, H.U.; Akbari, B.; Nahavandchi, H.; Roessner, S.; Arabi, S. Quantifying groundwater exploitation induced subsidence in the Rafsanjan plain, southeastern Iran, using InSAR time-series and in situ measurements. Eng. Geol. 2017, 218, 134–151. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Satellite InSAR survey of structurally-controlled land subsidence due to groundwater exploitation in the Aguascalientes Valley, Mexico. Remote Sens. Environ. 2021, 254, 112–254. [Google Scholar] [CrossRef]
- Riel, B.; Simons, M.; Ponti, D.; Agram, P.; Jolivet, R. Quantifying ground deformation in the Los Angeles and Santa Ana Coastal Basins due to groundwater withdrawal. Water Resour. Res. 2018, 54, 3557–3582. [Google Scholar] [CrossRef] [Green Version]
- Solt, M.; Sneed, M. Subsidence (2004-09) in and Near Lakebeds of the Mojave River and Morongo Groundwater Basins, Southwest Mojave Desert, California; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2014. [Google Scholar]
- Haghighi, M.H.; Motagh, M. Ground surface response to continuous compaction of aquifer system in Tehran, Iran: Results from a long-term multi-sensor InSAR analysis. Remote Sens. Environ. 2019, 221, 534–550. [Google Scholar] [CrossRef]
- Buffardi, C.; Barbato, R.; Vigliotti, M.; Mandolini, A.; Ruberti, D. The Holocene Evolution of the Volturno Coastal Plain (Northern Campania, Southern Italy): Implications for the Understanding of Subsidence Patterns. Water 2021, 13, 2692. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldaajani, T.; Simons, M.; Yunjun, Z.; Bekaert, D.; Almalki, K.A.; Liu, Y.-K. Using InSAR Time Series to Monitor Surface Fractures and Fissures in the Al-Yutamah Valley, Western Arabia. Remote Sens. 2022, 14, 1769. https://doi.org/10.3390/rs14081769
Aldaajani T, Simons M, Yunjun Z, Bekaert D, Almalki KA, Liu Y-K. Using InSAR Time Series to Monitor Surface Fractures and Fissures in the Al-Yutamah Valley, Western Arabia. Remote Sensing. 2022; 14(8):1769. https://doi.org/10.3390/rs14081769
Chicago/Turabian StyleAldaajani, Thamer, Mark Simons, Zhang Yunjun, David Bekaert, Khalid A. Almalki, and Yuan-Kai Liu. 2022. "Using InSAR Time Series to Monitor Surface Fractures and Fissures in the Al-Yutamah Valley, Western Arabia" Remote Sensing 14, no. 8: 1769. https://doi.org/10.3390/rs14081769
APA StyleAldaajani, T., Simons, M., Yunjun, Z., Bekaert, D., Almalki, K. A., & Liu, Y. -K. (2022). Using InSAR Time Series to Monitor Surface Fractures and Fissures in the Al-Yutamah Valley, Western Arabia. Remote Sensing, 14(8), 1769. https://doi.org/10.3390/rs14081769