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Abstract: The development of Intelligent Transportation Systems (ITS) puts forward higher require-
ments for millimeter-wave radar surveillance in the traffic environment, such as lower time delay,
higher sensitivity, and better multi-target detection capability. The Constant False Alarm Rate (CFAR)
detector plays a vital role in the adaptive target detection of the radar. Still, traditional CFAR detection
algorithms use a sliding window to find the target limit radar detection speed and efficiency. In
such cases, we propose and discuss a CFAR detection method, which transforms the Monte Carlo
simulation principle into randomly sampling instantaneous Range–Doppler Matrix (RDM) data, to
improve the detection ability of radar for moving targets such as pedestrians and vehicles in the
traffic environment. Compared with conventional methods, simulation and real experiments show
that the method breaks through the reference window limitation and has higher detection sensitivity,
higher detection accuracy, and lower detection delay. We hope to promote the detection application
of millimeter-wave radar in road traffic scenes.

Keywords: millimeter-wave radar traffic surveillance; constant false alarm algorithm; moving target
detection; Monte Carlo simulation; random sampling

1. Introduction

Using millimeter-wave radar as a monitoring system has recently raised increased
in various fields attributed to its high detection accuracy and weather resistance. In road
traffic applications, accurate acquisition of moving target information such as pedestrians
and vehicles on the road is one of traffic radar’s most basic and essential tasks. However,
with the development of intelligent transportation systems, the timely reflection of road
conditions and realization of traffic accident warnings become necessary, which puts higher
requirements on the low processing delay of radar systems. Therefore, we start from the
radar target detection method to reduce the system processing delay and improve the
system’s real-time while ensuring high monitoring performance.

Generally, a number of approaches have been proposed to improve radar performance
in traffic scenes, which can be mainly classified into two categories: (1) Around the signal
processing direction, reduce or eliminate the interference signal as much as possible to
ensure the purity of the target signal. (2) Design better detectors.

In the field of suppressing interference signals, cutting the interference-contaminated samples
out of the signal is the most direct interference suppression method. Still, it also suppresses
part of the valid signal of targets, resulting in less accurate reconstruction of the cutout
samples of useful signals. To alleviate this effect, an iterative matrix-pencil (MP) method-
based extrapolation for interference mitigation is proposed [1], but the accuracy of the
reconstructed signal will decrease with the increase of the proportion of the contaminated
samples. To improve signal reconstruction accuracy, an approach based on the sparse and
low-rank decomposition of the Hankel matrix is proposed [2], however, iteration and best
quality selection increase the complexity of the algorithm. For dealing with inter-radar
interference, some new methods are proposed, such as designing a new orthogonal noise

Remote Sens. 2022, 14, 1779. https://doi.org/10.3390/rs14081779 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14081779
https://doi.org/10.3390/rs14081779
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6781-1850
https://doi.org/10.3390/rs14081779
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14081779?type=check_update&version=2


Remote Sens. 2022, 14, 1779 2 of 23

waveform [3] or presenting an interference mitigation technique in the tunable Q-factor
wavelet transform (TQWT) domain [4]. In addition, some researchers have started from
range and Doppler cell migration calibration to reduce signal distortion [5].

Designing better detectors is another direction to improve the application ability of
radar. Compared with signal interference suppression, although the improvement of radar
detection performance is weak, the design of the detector is more straightforward. In par-
ticular, in most cases, it will not add additional links and computational complexity, which
is more suitable for low-cost radar systems with low-performance processors. So this paper
studies from the perspective of detector design. In the actual application of radar, the target
always appears before the complex and changeable noise background, which is subject
to changes in time and location, so the fixed threshold detection method cannot effec-
tively distinguish the target from the background noise [6]. Radar Constant False Alarm
Rate(CFAR) detection, which adaptively sets the detection threshold by evaluating current
clutter environments [7,8], is a crucial technology for separating targets and background.
Thus, an appropriate CFAR detection algorithm can improve radar detection performance
and provide accurate target information for radar data processing. It also emerged as a key
research aspect in radar detection.

The earliest proposed CFAR detection algorithm is the Cell Average CFAR (CA-
CFAR) [9], which is based on the average local noise power level to detect targets. Design
a reference window, take the window’s center unit as the candidate target, and use the
amplitude accumulation value of other units in the window as the estimated value of
background noise power. Whether the target exists is determined by judging the power
value of the candidate target and the estimated noise power value. The CA-CFAR has
poor detection performance under non-uniform noise and multi-target environments since
interference signals or other targets within the reference window lead to background noise
estimation error. Aiming at the problem of CA-CFAR detection performance degradation
under multi-target or non-uniform noise, the maximum selection detection (GO-CFAR) [10]
and the minimum selection detection (SO-CFAR) [11] are proposed. The GO-CFAR can
maintain good false alarm control performance in a clutter edge environment, but ”target
masking” in a multi-target environment will appear. The SO-CFAR has a good multi-target
resolution ability, but its false alarm control ability is weak. Ordered Statistical CFAR
(OS-CFAR) [12] is another typical CFAR detection method derived from the median filter
concept in digital image processing. It arranges the sample units in the reference window
according to the power value and selects one of the sample power values as the decision
threshold. Compared with the detection performance of CA-CFAR, OS-CFAR has strong
robustness to multi-target detection, but it has a high resulting CFAR loss. Some new
methods combining OS and CA are proposed. Take the trimmed-mean detector (TM-
CFAR) [13] algorithm as an example. The sample points in the reference window are
sorted by amplitude value like OS-CFAR. Then remove part of the sample points with the
largest and smallest amplitudes. Finally, the remaining sample points are averaged as the
estimated value of background noise.

Now, new CFAR detection algorithms have been proposed based on traditional meth-
ods for different application requirements. Some scholars are dedicated to studying the
multi-target detection capabilities of the detector. For example, the OSCA-CFAR algorithm
is proposed, which combines the CA-CFAR algorithm and the OS-CFAR algorithm, to im-
prove the multi-target detection capability of millimeter-wave radars, and gives algorithm
performance simulation under an ideal noise environment [14]. Some researchers focus
on improving the detection performance of the detector in a complex cluster environment.
A Comp-CFAR method is proposed according to the central limit theorem and the loga-
rithmic compression principle of the signal for targets detection in the clutter with long
smearing effect characteristics [15]. A CFAR detector based on zlog(z) is used to reduce the
false alarm rate in Weibull clutter [16]. Some other scholars have proposed a new method
combined with machine learning [17]. Train a feedforward artificial neural network (ANN)
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on the data set containing the input and output of the CFAR sliding window to improve the
efficiency of CFAR detection. However, this way increases the complexity of the algorithm.

Table 1 briefly summarizes the CFAR detection algorithms mentioned above. All
current CFAR algorithms achieve target detection by designing a reference window and
processing the data in the window. The design of the reference window can effectively
reduce the level of clutter interference, but there are two drawbacks. One is that sliding
the window reduces the efficiency of detecting objects. Especially in Linear Frequency
Modulated Continuous Wave (LFMCW) radar systems, the input to the CFAR detector is
a two-dimensional Range–Doppler Matrix (RDM). Although the principle of the CFAR
algorithm has not changed, the sliding of the reference window has changed from a one-
dimensional sliding search to a two-dimensional sliding search, which dramatically reduces
the real-time performance of radar target detection. The other drawback is that the window
limits the sample points for background noise estimation. Theoretically, the more sample
points are used, the more accurate the estimated noise power value and the higher the CFAR
detection accuracy. The design and sliding of the reference window limit the efficiency of
radar target detection.

Table 1. A brief summary of the characteristics of CFAR algorithms.

CFAR Algorithms Advantages Disadvantages Reference Window

CA-CFAR High detection SNR in
uniform noise

Low multi-target detection
capability, High detection

performance in non-uniform
noise

YES

GO-CFAR Good false alarm control in
clutter edge

Low multi-target detection
capability YES

SO-CFAR High multi-target detection
capability Low false alarm control ability YES

OS-CFAR Strong robustness to
multi-target detection High resulting CFAR loss YES

OSCA-CFAR
High robust in multi-target

situations, Low resulting
CFAR loss

Performance degradation in
non-pure noise situations YES

Comp-CFAR
Suppression of clutter
interference with long

smearing effect characteristics
High algorithm complexity YES

zlog(z)-CFAR Reduce the false alarm rate in
Weibull clutter High algorithm complexity YES

Machine learning High detection accuracy Low timeliness YES

Fortunately, compared with the complex background environment such as the sea
surface, the background noise in the traffic road is relatively simple. Especially when
radar monitors moving targets, the effect of background noise data on detection can be
eliminated using the de-zeroing Doppler method. Combining the non-ideal target motion
(vehicle turning, braking and lane changing), the irregularity of the target reflection area,
and the independence of the frame data, we consider that the moving target echoes in
the traffic road obey the ideal Swerling II model. Based on the above analysis, a reference
window designed for complex noise and interference reduction may not be necessary
for road traffic monitoring applications where the background noise is relatively clean.
Instead, the sliding window increases the algorithm’s time complexity and reduces the
efficiency of radar monitoring. To meet the requirement of low processing latency for
traffic monitoring radar systems, we propose a CFAR algorithm based on the Monte
Carlo to improve radar detection efficiency and sensitivity to moving targets in the traffic
environment. Compared with the traditional algorithm, the algorithm has higher detection
sensitivity and, more importantly, does not require the design and sliding of the reference
window, which dramatically reduces the algorithm time complexity and improves the
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detection speed and efficiency. The contributions of this paper are summarized as follows:
First, in the proposed CFAR detection algorithm, the entire RDM matrix area is randomly
sampled to obtain the sample points of the background noise power estimation at the
current moment. The principle is converting the Monte Carlo simulation principle, which
gets properties of unknown quantities by independently repeating experiments, into a
random sampling of the RDM matrix domain. This way breaks through the limitation of
the reference window and can increase a large number of sample points for background
noise estimation. Second, an interference point filtering method improves the accuracy of
background noise estimation. Sort and filter the sample points according to the amplitude
value of the sample points to remove possible target points or interference points. Then,
the background noise estimated power value is obtained by the mean method. Finally,
the target points in the RDM matrix are extracted by the background noise estimate.
In addition, the parameter setting method of the algorithm is given, i.e., according to the
current physical platform and application environment, algorithm parameter values are
obtained through repeated statistics. The configuration parameter process only needs to
be executed once when the radar system environment is unchanged. Compared with the
conventional method, simulations and practical experiments show that the method has
higher detection sensitivity, higher detection accuracy, and lower detection latency, which
improve radar detection efficiency in traffic surveillance.

The structure of this paper is organized as follows: The Section 2 introduces the char-
acteristics of traffic scenes, the principle of radar detection targets, and the characteristics
of radar background noise in traffic scenes. Then, in Section 3, we give the principle and
model of the new CFAR detection algorithm and give the process of obtaining relevant
parameters. In Section 4, we analyze the performance of the new CFAR detection algorithm
through simulation and real experiments. Finally, Section 5 summarizes the conclusions of
this paper.

2. Traffic Scene Overview, Radar CFAR Detection Principle, and Background
Noise Analysis
2.1. Traffic Scene Overview

Usually, traffic sensors are installed on both sides of the road or on a fixed bracket
extending to the center of the road (as shown in Figure 1), and they are required to have
the following essential functions:

• High detection sensitivity. All targets in the field of view can be completely detected,
including partial occlusion of the target;

• Low information delay capability. It can reflect road conditions in real-time, i.e., the
delay between data acquisition and road conditions output is required to be as short
as possible (ideally, the delay should not exceed 100 ms);

• Weather resistance. The sensor shall minimize the impact caused by night, fog,
and other weather.

Millimeter-wave radar is considered to have the potential to be used in urban traffic
monitoring since not affected by the environment, has high range resolution, and has
low application cost. The CFAR detector as a vital part of radar target extraction has
been extensively studied. By studying the traditional CFAR algorithm and analyzing
the characteristics of the traffic environment, we give a new CFAR detection algorithm to
improve the sensitivity of radar to target detection, multi-target detection ability, and reduce
delay. We hope it provides a unique reference for enhancing the adaptability of the radar in
urban traffic monitoring.
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Figure 1. Traffic road scene.

2.2. Conventional Adaptive CFAR Detection Based on RDM

The FMCW millimeter-wave radar system is composed of an antenna array, a mixer,
an Analog-to-Digital Converter (ADC), and digital signal processing [18]. The radar
receives and processes target electromagnetic echo signals to acquire target information.
The radar antenna receives the target echo information. It mixes echo information with
the current transmitted signal in the mixer. The intermediate frequency signal from the
mixer is converted into a digital signal by the ADC unit for signal processing. In the data
processing system, the chirps signal group is processed by the Fast Fourier Transform (FFT)
of the distance dimension and the velocity dimension in turn. Finally, a two-dimensional
RDM containing the target position and velocity information is obtained by a single pulse
linear detection [19]. The RDM data will be sent to the detection unit to achieve target
extraction, usually for the constant false alarm detector. The radar signal processing flow is
shown in Figure 2.

Figure 2. Radar signal processing.

The radar target detector performs a test procedure on each cell inside the RDM
to distinguish between the target signal and noise based on the threshold T, where the
threshold T is composed of the threshold factor α and the average noise power µ, i.e.,
T = α · µ. The average noise power measures the current radar noise floor, but it will
change due to temperature changes or other physical effects. Therefore, the fixed noise
power estimate value will cause the detector to produce false alarms. Let H0 means there is
no target in the signal, H1 means there is a target in the signal, and Y represents a detection
cell in the RDM. According to the Neyman-Pearson criterion, the false alarm probability
Pf a is:

Pf a = P(H1|H0) = P(Y > T) =
∫ +∞

T
f (y)dy, (1)
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where f (y) represents probability density function, when target radar cross-sectional
area is the Swerling II model, f (y) is the exponential distribution (square law detection),
or Rayleigh distribution (linear detection).

The average noise power needs to be adaptively estimated to maintain a constant false
alarm rate. So a CFAR detection technology based on variables in a two-dimensional RDM
to estimate the average noise power adaptively is proposed. Here we introduce several
typical CFAR algorithms.

Assume that the size of an RDM matrix is M× L, and a reference window with a size
of n× l is designed, as shown in Figure 3. The blue cell represents the detection cell (Xm,n),
where m represents the position index of the detection cell X in the RDM matrix, and n
represents the velocity index. The red area represents the reference window, and the CFAR
detection algorithm evaluates the local average noise power based on the variables in the
reference window.

Figure 3. RDM detection matrix.

In the two-dimensional CA-CFAR algorithm [20], the unknown local noise expectation
value is estimated based on the average of all variables’ power in the two-dimensional
reference window:

µCA =
1

n× l

n

∑
i=1

l

∑
j=1

Xi,j, (2)

where µCA represents the background noise estimate value of the CA-CFAR algorithm.
Then the adaptive detection threshold TCA = µCA · α can be obtained.

The two-dimensional OS-CFAR algorithm [21] also evaluates the local noise power
through the variables in the reference window. Unlike the CA-CFAR, the OS-CFAR al-
gorithm takes out all variables in the reference window and sorts them according to
their magnitude:

X1 ≤ X2 ≤ X3 ≤ · · · ≤ XK ≤ · · · ≤ XN×M, (3)

The Kth value is selected as the average noise power. Then the adaptive detection
threshold TOS = µOS · α = XK · α can be obtained.

The OSCA-CFAR [22] is a detection algorithm combining the CA-CFAR algorithm
with the OS-CFAR algorithm. Firstly, it uses the one-dimensional OS-CFAR to sort each N
Doppler unit according to the magnitude in the distance direction, as shown in Figure 4.
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Then, the Kth row is selected in the Doppler direction. Finally, a CA-CFAR procedure is
applied to obtain the average noise power:

µOSCA =
1
l

l

∑
j=1

X j
K, (4)

where µOSCA represents the background noise estimate value of the OSCA-CFAR algorithm.
Then the adaptive detection threshold TOSCA = µOSCA · α can be obtained.

Figure 4. OSCA-CFAR detection.

The amplitude of the detection cell (Xm,n) is compared with the threshold T. If Xm,n > T,
the detection cell is considered the target. Otherwise, it is noise. Then, move the reference
window and perform the detection on the new cell. The reference window performs two-
dimensional sliding in the RDM matrix to realize the detection of all cells. In addition,
designing appropriate reference windows according to different scenarios can reduce
interference and improve detection accuracy. Some typical reference windows are shown
in Figure 5.

(a) (b)

Figure 5. Typical reference window model. (a) Cross window. (b) Rectangular window.

Theoretically, the more sample points used to estimate the background noise power,
the more accurate the background noise estimation will be. The design and application of
the reference window prevent the introduction of interference points which is beneficial
for complex environments. However, it limits the optional number of background noise
sample points and increases the retrieval process. When the target and the background
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environment are easily separated, or the background environment is relatively simple in
some scenes, applying the reference window is not necessary.

2.3. Radar Background Noise Analysis in Traffic Scenea

To analyze the background noise characteristics of traffic roads, we collect data through
a self-designed millimeter-wave radar system whose parameters are shown in Table 2.
The radar chip (CAL77S244) based Radio Frequency(RF) front-end with three transmitting
and four receiving antennas is used to transmit millimeter-wave and receive target echo
signals. Additionally, a four-channel high-speed ADC is used for data acquisition. Finally,
digital processing algorithms and extraction of target information are implemented on a
back-end baseband processing system based on FPGA and ARM architecture. The data
acquisition scene and radar system are shown in Figure 6.

(a) (b)

Figure 6. (a) Radar system. (b) Data collection scenario.

Table 2. Radar system parameters.

Item Parameters Item Parameters

Chirp number 256 Range FFT points 512
B 160 MHz Fs 20 MHz

Rmax 200 m Rresolution 0.732 m
Vmax 31.847 m/s Vresolution 0.249 m/s

Figure 7 illustrates background noise data collection and display. Figure 7a is a flow
chart of constant false alarm detection data acquisition. In this radar system, four receiving
channels receive the radar’s electromagnetic echoes in the background environment and
obtain the RDM matrix through incoherent accumulation. Figure 7b shows the distribution
of the power amplitude of the RDM under the condition with no moving targets. The power
amplitude value is abrupt and uneven in the zero-Doppler region (stationary objects region),
which is caused by a combination of factors such as the number of objects at different
distances and the size of the object’s reflection area. Preliminary observation shows that the
noise power is distributed evenly in the non-zero Doppler domain (moving targets region),
and there is no apparent abrupt change. In addition, the power of stationary objects does
not significantly extend to the area where the moving targets are located.
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(a)

(b)

Figure 7. (a) RDM data acquisition process. (b) Data collection scenario.

We use distance dimension and velocity dimension data variance, an effective method
to measure the degree of data dispersion, to evaluate the distribution of noise power
amplitudes in the moving target area in the RDM matrix. We count the variance of each
row (velocity dimension) or column (distance dimension) of the dataset in RDM as shown
in Figure 8 (average of multiple statistics). It is worth noting that before calculating the
variance, taking the average speed of pedestrians as a reference (0.5 m/s), we eliminated
the cells where the static object is located in the RDM matrix, i.e., cells with speed below
0.5 m/s. Both the variance of the velocity dimension and the variance of the distance
dimension are less than 0.018. We can think that the background noise power amplitude is
relatively uniform in the non-zero Doppler domain.
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(a) (b)

Figure 8. Background noise amplitude dispersion in RDM matrix (a) Noise amplitude variance in
range direction. (b) Noise amplitude variance in Doppler direction.

The power density distribution is given as another characteristic of background noise.
Previously, we assumed that the radar noise distribution satisfies the Rayleigh distribution:

y = f (x|σ) = x
σ2 e(

−x2

2σ2 ), (5)

where σ is the Rayleigh distribution parameter. The non-zero Doppler cells in RDM are
sampled and processed by MATLAB Distribution Fitter Toolbox, and then the distribu-
tion of data (purple) and the fitting curve of Rayleigh distribution (red) are shown in
Figure 9a. Figure 9b shows the matching degree between data probability distribution and
Rayleigh distribution, i.e., the closer the data is to a curve line, the more consistent it is with
Rayleigh distribution.

(a) (b)

Figure 9. Simulation and fitting experiment example of RDM matrix noise density function (a) Noise
distribution curve. (b) Matching degree of Rayleigh distribution.

Through the analysis, we can get the following two conclusions:

• In the static target region of the RDM matrix, the variation amplitude of noise power
fluctuates greatly. However, in the moving target area of the RDM matrix, the am-
plitude distribution of background noise power is uniform, the dispersion is small,
and there is no edge effect;

• In the moving target area in the RDM matrix, the noise amplitude of each unit is
independent of each other and meets the probability density distribution (Rayleigh
distribution) with similar parameters.
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In this scenario, we propose a Monte Carlo-based CFAR detection algorithm to im-
prove radar monitoring efficiency by processing the entire RDM area instead of local
reference window data and window sliding.

3. A CFAR Algorithm Based on Monte Carlo Sampling
3.1. Expectation Calculation Principle Based on Monte Carlo Sampling

Assuming that n samples are drawn from a population with a total number of N
elements without replacement, each sample has the same probability of being sampled each
time. This sampling method is called random sampling, and the sample drawn is called
random sample. When each sampling process is independent of the other, the process is
called Monte Carlo sampling. Monte Carlo sampling can be used to obtain the expectation
of random variables.

For example, we can use Monte Carlo sampling to find the expectation of function
f (x) [23]. Let X denote a random variable and the probability distribution p(x). To calculate
the expectation of f (x), we only need to continuously sample from p(x):

EN( f ) =
1
N

N

∑
i=1

f (Xi), (6)

where N represents the number of sample points, Xi represents the value of the ith sample
point. When the sample N is large enough, the mean A is equivalent to the expectation of
f (x), i.e., A = EN( f ). Further, we know that the Monte Carlo sampling principle obtains
the statistical characteristics of parameters through many random independent experiments
and uses the statistical value to replace the real result [24]. In addition, in probability theory
and statistics, the expectation is related to probability distribution parameters that reflect
the sample population amplitude characteristics. Therefore, obtaining unknown quantities
by Monte Carlo sampling provides a new idea for calculating the average noise power in
the RDM matrix.

Through the previous analysis, we approximately believe that the noise power of
each detection cell in the RDM dataset follows the same probability distribution (Rayleigh
distribution) with roughly the same parameters, which is also the premise of using the
Monte Carlo principle. However, unlike the Monte Carlo sampling principle, we transform
the independent random sampling in the time dimension into the random sampling on
the RDM dataset at the current moment. For each detection unit in the RDM matrix as a
random variable X, the unknown average noise power µ is considered the expected value
of the function f (x). The detection unit in the RDM matrix performs random sampling to
obtain the estimated value of the background noise power in the moving target area at the
current moment. We name this method MC-CFAR.

3.2. MC-CFAR Algorithm Model

A complete MC-CFAR processing model mainly includes background noise sample ex-
traction part, interference point removal part, average noise estimation part, and threshold
output part (as shown in Figure 10). Moreover, the processing flow of using the MC-CFAR
algorithm to detect moving targets is as follows:
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Figure 10. MC-CFAR processing model.

Step 1: Background noise sample point extraction. In the MC-CFAR algorithm, all
detection units in the RDM matrix are regarded as the total sample size. Additionally, each
detection cell is viewed as an individual sample to be sampled. Considering the RDM
matrix as a two-dimensional coordinate system, once the scale of the RDM matrix is
determined (SRDM = R× D), the coordinates of all detection units are also determined.
Any cell can be represented as Xr,d , where r represents the distance index, r = 1, 2, . . . R; d
represents the speed index, d = 1, 2, . . . D. Samples are drawn from the population without
repetition according to specific rules, and this process is systematic random sampling. Then,
M background noise sample points are obtained.

Step 2: Interference point removal. The sample points obtained in step 1 cannot be
directly used to evaluate the background noise power value because the target points or
abnormal points may be extracted, which will cause the background noise estimation error.
Similar to the data processing method in the TM-CFAR algorithm, the sample points are
first sorted according to the power amplitude:

X1 ≤ X2 ≤ · · · ≤ Xq ≤ · · · ≤ XM−k ≤ · · · ≤ XM, (7)

Then, k maximum points and q minimum points are removed, and it is considered
that the remaining M− k− q sample points only contain background noise power points.

Step 3: Noise average power estimation. Average the remaining M− q− k sample
points, and the average value will be used as the estimated value of the current background
average noise power in the RDM matrix.

µmc =
1

M− k− q

M−k−q

∑
i=k

Xi, (8)

Step 4: Threshold output. The threshold factor αmc is multiplied by the average noise
power estimate to get the decision threshold T:

T = αmc · µmc, (9)

Step 5: Target detection. Each detection cell in the RDM matrix is sequentially com-
pared with the threshold value T. If X > T, the target exists, otherwise, the target does
not exist.
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3.3. MC-CFAR Algorithm Parameter Settings
3.3.1. Random Sampling Strategy

The interference point removal link can eliminate the interference caused by abnormal
points or target points to a certain extent, but it cannot completely eliminate it. A good
sampling strategy can reduce the probability of the existence of interference points, reduce
the burden of interference point removal, and make the estimated value of background
noise more accurate.

Figure 11 shows three simple sampling strategies. When the radar monitors the slow-
moving road section (urban intersections), sampling points distribution can be consciously
expanded to the high-speed area (the left side of Figure 11). Similarly, when the radar
monitors the high-moving road section(highway) or variable-speed road section (Mixed
vehicles and pedestrians), the sampling strategy in the middle or the right side of Figure 11
can be selected, respectively.

Figure 11. Three simple sampling strategies.

3.3.2. Sampling Points Number M and Threshold Factor α

The number of sampling points M and the threshold factor αmc are two essential
parameters in the MC-CFAR algorithm, which need to be determined before the algorithm
is executed. In the MC-CFAR algorithm, the higher the number of sample points, the closer
the background noise estimate is to the actual value, and the size of the threshold factor also
affects the probability of the target being detected, both of which will affect the false alarm
probability (Pf a) of the detector. Thus we determine the values of M and αmc according to
different Pf a requirements.

Different from traditional CFAR algorithms, it isn’t easy to give a definite curve
formula between parameters and Pf a in the MC-CFAR algorithm. So, we use Monte Carlo
experiments to obtain approximate relationships, i.e., get the probability of false alarms
under different parameters through independently repeated experiments. Figure 12 shows
the relationship between the MC-CFAR algorithm parameters and Pf a. Moreover, the
following conditions have been used for the simulation: RDM size is 256 × 256 with
Rayleigh distribution noise; k = 1

32 M; Monte Carlo experiments number is 105 for each
group parameters.

In Figure 12, when the number of sample points is small, the number of sample
points is the main factor. Under the same threshold factor, the less the number of sample
points, the higher the false alarm rate of the algorithm. With the increase of sample points,
the false alarm rate decreases. When the number of sample points reaches a certain order of
magnitude, the impact of the rise of sample points on the false alarm rate becomes smaller,
and the threshold factor becomes the main factor. Then, determine MC-CFAR algorithm
parameters according to different constant false alarm probabilities.

Considering the difference between the simulation experiment and the actual appli-
cation, in actual application, before the radar detects the road vehicle, the Monte Carlo
experiment is performed on the road environment to obtain the best MC-CFAR algorithm
parameters under the radar platform. When the detection environment and platform
remain unchanged, this step only needs to be performed once.
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Figure 12. Relationship between threshold factor and false alarm rate in MC-CFAR.

4. Numerical Simulations and Real Experiments

This chapter presents the simulation test and actual experimental results of the algo-
rithm. Furthermore, a comparison with the conventional CFAR algorithm is carried out in
the same test environment.

4.1. Performance Simulation of MC-CFAR

According to the characteristics of the traffic scene and the requirements for the
monitoring system in the application of road vehicle monitoring, we choose the algorithm
detection sensitivity, algorithm multi-target detection ability, and algorithm time complexity
as the key research objects. The detection performance of the MC-CFAR algorithm is
evaluated by simulation and compared with the conventional algorithms (e.g., CA-CFAR,
OS-CFAR, OSCA-CFAR).

4.1.1. Algorithm Detection Sensitivity

The detection sensitivity of the radar constant false alarm algorithm reflects the radar’s
ability to detect weak signals. The higher the detection sensitivity, the stronger the radar’s
ability to detect weak signals. The relationship between the detection probability Pd of the
algorithm and the Signal-to-Noise Ratio (SNR) of the target echo is used to measure the
detection sensitivity of the constant false alarm detection algorithm.

We use the radar system to obtain a large amount of snapshot data of traffic scenes
(the radar system and traffic scene are shown in Figure 6), and these snapshot data do
not contain any moving targets. The background noise data of the moving target area
is obtained by summing, averaging, and de-zeroing Doppler, which will be used for
simulation. Randomly insert target points with different SNR into the background noise
data, and then evaluate the detection sensitivity of the algorithm by counting the number
of successful detections of the algorithm. For fairness, the Pf a of all algorithms is unified to
10−4. The number of repetitions for each SNR experiment is 108.

Figure 13 shows the detection probability of different algorithms for different SNR
signals. In the overall trend of change, the algorithm detection probability has the same
changing trend: as the target SNR increases, the detection target probability increases. In the
low SNR part, the detection probability of the algorithm is generally low. Still, the detection
probability of MC-CFAR is the highest, and the detection probability of MC-CFAR rises
the fastest. Moreover, as the signal SNR increases, the gap between detection probabilities
keeps increasing. With the further improvement of SNR, the detection probability gap
between the algorithms approaches gradually. When the target SNR reaches a particular
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strength, the detection probability of all algorithms reaches 100%. The MC-CFAR algorithm
has the highest detection sensitivity through simulation analysis compared with other
detection algorithms, primarily due to the more accurate background noise estimation and
the ability to obtain more sample points. Under the same false alarm rate, MC-CFAR can
detect weak SNR targets.

Figure 13. The relationship between detection probability and SNR.

4.1.2. Multi-target Detection Performance

The masking effect means that the distance between the targets is so close that the
detection algorithm cannot detect all the targets simultaneously, making the radar detection
have a high false dismissal probability in a multi-target environment.

In the simulation experiment of the multi-target detection ability of the algorithm,
the SNR of each target should be as high as possible to eliminate the missed detection of
the algorithm caused by low SNR. In the clutter background with a length of 200, four
targets are added at 46, 48, 50, and 52 with two as the distance difference between targets;
Taking 20 as the distance between the targets, add targets at 90 and 110, respectively; finally,
add independent targets at 145. Under the same false alarm rate Pf a = 10−4, the decision
threshold of each algorithm at different positions can be obtained, as shown in the blue
waveform in Figure 14.

The purpose of detecting the independent point 145 is to eliminate the interference of
the target SNR on the algorithm multi-target detection performance judgment. When the
distance between targets keeps shrinking, the target masking effect of CA-CFAR gradually
manifests, and for targets at points 46, 48, 50, and 52, only points 46 and 52 can be detected.
However, the MC-CFAR, the OS-CFAR, and the OSCA-CFAR algorithms still accurately
detect four targets. In 1D distance dimension detection, the OSCA-CFAR algorithm is
the same as the OS-CFAR algorithm due to the absence of the Doppler dimension, which
does not affect the determination of multi-target detection capability. Through simulation
analysis, the MC-CFAR has good multi-target detection capabilities.
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Figure 14. Multi-target detection simulation of MC-CFAR algorithm.

4.1.3. Algorithm Time Complexity

The quality of an algorithm is often measured by two aspects Two aspects often mea-
sure the quality of an algorithm: on the one hand, each input of the algorithm can output
the correct result and stop; on the other hand, the efficiency of the algorithm is considered,
including the time complexity [25] and space complexity of the algorithm. Suppose the size
of the RDM domain is N × N; For the convenience of calculation, the number of sampling
points in the MC-CFAR algorithm is set to M = 1

L (N × N), where L is an integer greater
than 1. For the conventional CFAR algorithm, set the size of the sliding window to n× n,
where n is an integer greater than 1. The time complexity of the algorithm is shown in
formula (9).

O(CFAR) =


O(N2n2), CA
O(N2(n2 log2 n2)), OS
O(N2 log2 n + N2

n ), OSCA
O(N2

L log2
N2

L ) + O(N2

L ), MC

, (10)

To show the low time complexity of the MC-CFRA algorithm, we set L = 2 in the
simulation, i.e., extract half of the points of the RDM matrix. The selection of sampling
points in real-time applications is much smaller than this value (refer to Figure 11). The
reference window length (n) of the conventional CFAR algorithm takes a range of 12 to
18, here we let n = 16. The time complexity of each algorithm versus the size of the RDM
matrix as shown in Figure 15. The time complexity of the OS-CFAR algorithm increases
sharply with the increase of the area of the RDM detection matrix. When the number
of detection units is small, the time complexity difference among MC-CFAR, CA-CFRA,
and OSCA-CFAR algorithms is not apparent. However, with the increase of detection
matrix area, the low time complexity of the MC-CFAR algorithm becomes more and more
prominent. Compared with other algorithms, the MC-CFAR algorithm has the lowest time
complexity, which reduces the time delay of the radar in traffic surveillance.

In this chapter, the performance of the MC-CFAR algorithm is simulated and analyzed
from three aspects of algorithm sensitivity, multi-target detection performance, and algo-
rithm complexity. Additionally, compared with CA-CFAR, OS-CFAR, and OSCA-CFAR
algorithms, it can better meet the needs of radar applications in traffic scenarios.
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Figure 15. The relationship between the time complexity of the algorithm and the size of the
detection matrix.

4.2. Real Experiments

In this chapter, we port the algorithm to the radar system platform and show the
application effect of the algorithm in real traffic scenarios.

4.2.1. Define an Evaluation Method and Add a New Scenario

To better describe the algorithm’s performance and evaluate the advantages and
disadvantages between the algorithms, we have defined an evaluation method that is
easy to statistics and operates before testing. Figure 16 shows the detection process of
the CFAR detector. An RDM matrix containing two targets is sent to the CFAR detector.
The coordinates (x, y, z) of the two targets are (−1.4928, 48.3398, 6.9442) and (−2.7369,
40.4297, 16.5703) respectively, where x is the target speed, y is the target distance, and z
is the target power, as shown in Figure 16a. After passing through the CFAR detector (If
the detection cell is the target, it is marked as 1. Otherwise, it is marked as 0), as shown
in Figure 16b, the detection results are presented in two target area blocks, and there are
errors between the coordinates of some points and the real target points. For example,
the distance and speed of the detection points are (−1.4928, 48.3398) and (−2.2393, 39.5508),
respectively. The reason for this phenomenon is that in the actual radar detection process,
the energy of the target will expand to adjacent cells since the target is not an ideal pulse,
which makes the detection result of the constant false alarm detector appear blocky instead
of dotted.

Therefore, the 8-domain connectivity method is used for point aggregation to count
the number of targets detected by the detector. Moreover, at the same time, allow the actual
target coordinate value and the detection result coordinate value to have an error within 3σ,
where σ is the range resolution or the radar speed resolution. Given the above description,
when analyzing the detection results of each frame, this paper defines the data frame with
the target number of the detection result consistent with the real number and the coordinate
error within the range as a “good frame”. Additionally, in the experiment, the probability
of a “good frame” is used as an index to evaluate algorithm detection performance.

In addition, we add a new scenario (see Figure 17) for testing only pedestrian detection
because pedestrian trajectories are random and difficult to control. The results are used to
supplement and contrast the road vehicle detection experiments.
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(a) (b)

Figure 16. CFAR detection example. (a) RDM data. (b) CFAR result.

Figure 17. Additional experiments for pedestrian detection.

4.2.2. Algorithm Testing at an “Ideal Distance”

We first conduct multi-object detection experiments for each algorithm at ideal dis-
tances. Due to the difference between simulation and actual measurement, the algorithm de-
tection performance with the same configuration parameters will fluctuate due to changes
in radar system platforms or application scenarios. In order to have a fair comparison
of all the methods, we need to modify the configuration parameters of each algorithm to
achieve the best detection performance in the current scene and radar system. We choose
the median of the maximum distances the radar platform can detect as the “ideal distance”
to adjust the algorithm parameters. This scenario can minimize external factors, especially
the target SNR. The radar platform parameters are shown in Table 2, and the maximum
detection range of the radar system to pedestrians is 90–100 m, and the maximum detection
range of the radar platform to vehicles is 180–200 m. The median detection distance is
selected as the best detection distance of the radar platform for experiments. i.e., 40–50 m
is considered the “ideal detection environment” for pedestrian detection, and 90–100 m is
regarded as the “ideal distance” for vehicle detection.

Different algorithms are tested in the “ideal detection environment”, and the detection
performance of the algorithms is evaluated by “good frame” rate. Each algorithm is tested
on the radar platform, and the “good frame” rate of the algorithm under different parameter
configurations is shown in Figure 18. For CA-CFAR, OS-CFAR, and OSCA-CFAR, the de-
tection effect is mainly affected by the reference window and threshold factor. Different
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threshold factors and reference window sizes yield different “good frame” rates, and with
this parameter configuration, the higher the good frame rate, the better the radar detection
performance, as shown in Figure 18a–c. Figure 18d shows the relationship between the
MC-CFAR good frame rate and the number of sampling points, and the threshold factor.
For MC-CFAR, when the number of sampling points reaches a certain number, the detection
performance of the algorithm is mainly affected by the threshold factor.

(a) (b)

(c) (d)

Figure 18. The relationship between algorithm performance and different parameter configurations
at “ideal distance ”. (a) CA-CFAR test results. (b) OS-CFAR test results. (c) OSCA-CFAR test results.
(d) MC-CFAR test results.

After many experiments and statistics, the optimal parameter configuration and de-
tection effect of different algorithms on this radar platform can be obtained, as shown in
Table 3. The MC-CFAR has the best detection performance at “ideal distances” through ex-
periments.

Table 3. Radar system parameters.

Algorithm
Window

Length/Samples
Number

Threshold Factor Good Frame Rate
(%)

CA-CFAR 10–14 5–6 30–33
OS-CFAR 10–16 8–10 30–33

OSCA-CFAR 10–14 7–9 28–31
MC-CFAR 384–896 6–8 40–43
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4.2.3. Algorithm Detection Probability at Different Distances

This section explores how the algorithm detects objects at different distances. For fair-
ness, we configure the optimal parameters for each detection algorithm, which are the
configuration parameters when the “good frame” rate is the highest in “ideal distance”
detection. The parameter selection is shown in Table 4.

Table 4. Parameter selection.

Algorithm Window Length/Samples
Number Threshold Factor

CA-CFAR 14 5
OS-CFAR 16 8

OSCA-CFAR 12 8
MC-CFAR 768 7

In the same environment, algorithm detection experiments are carried out at different
distances. The experimental results are shown in Figure 19.

(a) (b)

Figure 19. Algorithm testing at different distances. (a) Pedestrian detection results. (b) Vehicle
detection results.

Figure 19 shows the trend of the “good frame” rate of different algorithms at different
distances. Figure 19a shows the detection result of the algorithm on pedestrians. When
the target is close, the OS-CFAR algorithm has the best detection performance, and the
MC-CFAR detection algorithm has the worst effect. However, as the distance increases,
the detection performance of the MC-CFAR algorithm gradually exceeds other algorithms
and becomes the best. When the distance increases, the detection performance of all algo-
rithms begins to decline, but MC-CFAR still maintains the best detection effect. Figure 19b
shows the detection results of different algorithms on the vehicle at different distances.
Consistent with the former phenomenon: when the target is close to the radar, the detection
effect of MC-CFAR is poor. As the distance increases, the detection effect of MC-CFAR
gradually rises and becomes the best among the algorithms.

Through the analysis of close-range target data, we preliminarily give the reasons for
the decline in detection accuracy of the MC-CFAR algorithm. On the one hand, with the
decrease in the distance between the target and the radar, the power of the target echo
becomes stronger, which leads to a larger diffusion range of the sidelobe energy around.
On the other hand, when the target is in close range, the shape of the target can not be
ignored, that is, the target changes from point target to block target in the detector. Due to
the different reflected energy intensity in different areas, the probability of isolated clutter
points around the target will be increased. Compared with vehicles, pedestrians have
more irregular shapes and generate more clutter points. The power of these clutter points
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is higher than the background noise power and lower than the target main lobe energy,
they are easier to be detected by MC-CFAR with the highest detection sensitivity. So the
“good frame” rate of the MC-CFAR algorithm is reduced at a close distance, especially for
pedestrian detection.

The experimental results show that compared with other CFAR algorithms, the MC-
CFAR algorithm has higher detection sensitivity, especially for medium and long-range
targets. However, the accuracy of the MC-CFAR algorithm in the detection of close-range
targets is reduced, especially for the detection of irregular moving targets. Fortunately,
although the false alarm rate has increased, the target information is not lost. In addition, it
is worth noting that the MC-CFAR has the lowest algorithm complexity in the actual test
process, as shown in Table 5.

Table 5. Algorithm running clock cycles (time complexity).

Algorithm Clock Cycle

CA-CFAR 11,478,544
OS-CFAR 524,288

OSCA-CFAR 234,837
MC-CFAR 8448

In this chapter, the multi-target detection experiments of pedestrians and vehicles are
carried out on the CFAR detection algorithm through the real radar platform. Compared
with the traditional algorithm, the MC-CFAR algorithm has higher detection sensitivity
and accuracy and better adapts to the traffic environment.

5. Conclusions

In this work, a CFAR algorithm based on the Monte Carlo principle is proposed for
millimeter-wave radar moving targets detection in the road traffic environment. Numerical
simulations and real experiments are also provided and analyzed. The algorithm has the
following characteristics and advantages: (i) Random sampling of the entire RDM matrix
area instead of conventional reference window design and sliding is the most significant
feature of the MC-CFAR algorithm. (ii) In the road traffic environment, compared with the
conventional CFAR algorithm, MC-CFAR has higher detection sensitivity because it can
obtain more background noise sample points, which is attributed to the overall sampling
of RDM. (iii) In particular, the MC-CFAR algorithm greatly reduces the time complexity of
detection, which is of great help to improve the timeliness of radar traffic applications.

In future work, on the one hand, we study about algorithm performance improvement:
(1) further analyze the reasons for the degradation of the algorithm in close-range target
detection performance, reduce the false alarm rate of the algorithm close view detection,
and improve the algorithm full section detection performance. (2) optimize the sample point
extraction strategy and interference point suppression method to improve the algorithm
robustness. On the other hand, extending the application area of the algorithm: due to
the high sensitivity and low CFAR loss characteristics of the MC-CFAR algorithm, more
target details can be retained when applied to target-background separation, which makes
it possible to apply the algorithm to the field of radar imaging. We hope the work can
provide a new idea for radar CFAR research.
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Abbreviations
The following abbreviations are used in this manuscript:

ITS Intelligent Transportation Systems
CFAR Constant False Alarm Detection
RDM Range–Doppler Matrix
ADC Analog-to-Digital Converter
FFT the Fast Fourier Transform
RF Radio Frequency
SNR Signal-to-Noise Ratio
Pf a False Alarm Probability
Pf d Detection Probability
CA-CFAR Cell Average Constant False Alarm Detection
OS-CFAR Ordered Statistical Constant False Alarm Detection
OSCA-CFAR An algorithm to combine the CA-CFAR algorithm and the OS-CFAR algorithm
MC-CFAR The algorithm proposed in this paper
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