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Abstract: Hydrological and climatic modeling of near-surface water and energy fluxes is critically
dependent on the availability of soil hydraulic parameters. Key among these parameters is the soil
water characteristic curve (SWCC), a function relating soil water content (θ) to matric potential (ψ).
The direct measurement of SWCC is laborious, hence, reported values of SWCC are spatially sparse
and usually have only a small number of data pairs (θ, ψ) per sample. Pedotransfer function (PTF)
models have been used to correlate SWCC with basic soil properties, but evidence suggests that
SWCC is also shaped by vegetation-promoted soil structure and climate-modified clay minerals. To
capture these effects in their spatial context, a machine learning framework (denoted as Covariate-
based GeoTransfer Functions, CoGTFs) was trained using (a) a novel and comprehensive global
dataset of SWCC parameters and (b) global maps of environmental covariates and soil properties
at 1 km spatial resolution. Two CoGTF models were developed: one model (CoGTF-1) was based
on predicted soil covariates because measured soil data are not generally available, and the other
(CoGTF-2) used measured soil properties to model SWCC parameters. The spatial cross-validation of
CoGTF-1 resulted, for the predicted van Genuchten SWCC parameters, in concordance correlation
coefficients (CCC) of 0.321–0.565. To validate the resulting global maps of SWCC parameters and
to compare the CoGTF framework to two pedotransfer functions from the literature, the predicted
water contents at 0.1 m, 3.3 m, and 150 m matric potential were evaluated. The accuracy metrics for
CoGTF were considerably better than PTF-based maps.

Keywords: soil hydraulic properties; remote sensing; CoGTF; van Genuchten parameters

1. Introduction

The quantification of hydrological processes in the soil unsaturated zone (infiltration,
runoff, drainage, evaporation, and water storage) is critically dependent on the quality of
parameters of the soil water characteristics curve (SWCC) describing the relationship be-
tween soil water content (θ) and matric potential (ψ) [1–3]. Computing climatic predictions
by contemporary land surface models (LSMs) requires highly resolved maps of SWCC
parameters for the terrestrial surface of the Earth.

This rapidly expanding need for spatially exhaustive and highly resolved maps of
SWCC parameters has prompted the use of readily available soil information such as soil
texture to estimate parameters of SWCCs by pedotransfer functions (PTFs) [4,5]. PTFs
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typically use soil texture, bulk density, and organic content to correlate with SWCC pa-
rameter values. A major shortcoming of these PTFs is the omission of the role that soil
structure (aggregation of soil particles, biopores formed by plant roots and earthworms)
exerts on surface fluxes [6,7]. PTFs are often trained using data on agricultural soils and are
tailored for a specific region or country, and cannot be transferred to regions with different
land-cover and soil-forming processes [8,9].

To overcome some of these inherent limitations in the estimation of soil hydraulic
properties, new approaches that harness local information on soil-forming processes have
been recently proposed to map the saturated hydraulic conductivity (Ksat) by linking Ksat
measurements to environmental covariates on vegetation, climate, and topography using a
machine learning algorithm [10]. Likewise, Chaney et al. [11] developed the maps of soil
hydraulic properties (POLARIS dataset) at 30 m resolution using remote sensing covariates
for the United States using the SSUGRO (Soil Survey Geographic) database. This study
uses a similar approach and improves the spatial maps of SWCC parameters by injecting
information on vegetation, topography, and climate along with spatial information on soil
properties into SWCC mapping using a machine learning algorithm. To differentiate this
approach from previous PTFs, we use the term Covariate-based GeoTransfer Functions
(CoGTFs) [10].

The objectives of this study are:

1. To link an extensive dataset of SWCC parameters to environmental covariates using
the CoGTF framework to develop global maps of van Genuchten (vG) parameters.

2. To compare the CoGTF derived parameter maps with earlier published maps based
on PTFs (Rosetta 3 and HiHydroSoil v2.0).

3. To highlight the limitations related to the application of a model based on measured
soil properties for global mapping when only predicted soil information is available.

2. Materials and Methods
2.1. Covariate-Based GeoTransfer Functions (CoGTFs) Framework

We used here the CoGTF framework proposed by Gupta et al. [10] where soil response
variables were combined with environmental covariates using machine learning (specif-
ically, we used here a random forest approach). As described in Gupta et al. [12], we
prepared a geo-referenced dataset of the van Genuchten (vG) parameters that included also
values of basic soil properties. Then, we overlaid the observation sites with maps of the
environmental covariates to produce a regression matrix and fitted a random forest (RF)
model to the data. After evaluating the performance of the RF model, we produced spatial
predictions of the vG parameters for a global 1 km mesh of locations. The R environment
was used for the whole analysis [13].

2.2. Training Data—Expanding the Global SWCC Dataset

We compiled and curated a dataset of 15,259 SWCCs (Figure 1) called the Global
Soil Hydraulic Properties (GSHP) database [12]. This dataset is much larger than the
training datasets used for two frequently applied PTFs, i.e., Rosetta 3 [14] and HiHydroSoil
v2.0 [15] that is based on the PTF of Tóth et al. [16]. Rosetta 3 used 2134 SWCCs (mainly
from North America and Europe) whereas HiHydroSoil v2.0 used 3773 SWCCs from
Europe to develop the respective PTFs. Hence, maps of vG parameters deduced from
Rosetta 3 or related to HiHydoSoil v2.0 have been calibrated by a rather limited dataset
of SWCCs, and this motivated us to collect a more comprehensive dataset. We collected
SWCC data from 2702 locations that represent all continents and climatic regions. The
geographic and climatic distribution of locations with SWCC data was uneven, with most
SWCCs measured in North America, followed by Africa, Europe, Asia, South America, and
Australia/Oceania. Additionally, the majority of SWCCs (10,048 out of 15,259 curves) were
obtained in temperate regions, and 2344, 1422, 1411, and 34 SWCCs were obtained from
boreal, tropical, arid, and polar regions, respectively.
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Figure 1. Collection of SWCC samples to produce global maps of van Genuchten parameters. The
spatial distribution of SWCC data was shown with different categories. The colors are assigned to
different quality criteria as explained in Figure A1.

We estimated the parameters of the simplified van Genuchten model with the restric-
tion m = 1− 1/n (Equation (1)) for all 15,259 SWCCs using the ‘soihypfit’ R package [17]:

θ(ψ) = θr + (θs − θr)[1 + (α|ψ|)n]−(1−1/n) (1)

where θ(ψ) is the volumetric water content (m3/m3) measured at matric potential ψ (m), θs
and θr are the saturated and residual water contents, respectively (m3/m3), and α (m−1)
and n (dimensionless) are the inverse air entry pressure and shape parameters. To estimate
the SWCC parameters, we restricted the parameter range for α to 0–100 m−1 and for n to
1–7. SWCCs, where the estimated values were equal to the upper limits of the parameter
ranges were discarded. We further computed profile likelihood-based confidence intervals
for the α and n parameters (see Chapter 4 in Uusipaikka [18]). The limits of the confidence
intervals guided us to remove SWCCs that had a flat upper loglikelihood profile for α and
n (i.e., SWCCs that had a high or indeterminate estimated standard error). The details of
this analysis are explained in Gupta et al. [12].

2.3. Soil and Environmental Covariates

We combined spatial information on four soil properties (sand and clay content, soil
depth, and bulk density) with 21 environmental covariates for modeling vG parameters,
all globally available from https://www.openlandmap.org/ (accessed on 22 December
2021) [19]. The environmental covariates were selected to represent ecological conditions
important for soil formation [20], including topography, precipitation patterns, and vegeta-
tion cover. The 25 spatial covariates are classified into five groups: (a) climate, (b) terrain,
(c) surface reflectance, (d) vegetation, and (e) soil properties. The covariates were selected
as described in Table A1 with respect to their hypothesized relevance for modeling vG
parameter values.

2.4. CoGTF Models Based on Measured and Predicted Soil Covariates

As mentioned above, we trained the CoGTF model using environmental covariates
and soil properties. However, related to soil covariates, we faced the problem that we knew
measured soil properties for most SWCC locations but not for the locations of the prediction
mesh. For global mapping, we completely relied on predicted soil covariates. On the one
hand, models based on measured soil properties likely better reveal the ‘true’ relations
between soil properties, environmental covariates, and SWCCs. On the other hand, the
model should be trained with the same type of information that is available on a global scale
otherwise different types of information will be incoherently mixed. To explore the effect of
using different types of soil information on the predictions of the VG parameters, we built
two models within the CoGTF framework. The first model CoGTF-1 was developed using

https://www.openlandmap.org/
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predicted soil properties as covariates, extracted from https://www.openlandmap.org/
(accessed on 22 December 2021) and environmental covariates with 11,705 SWCCs pa-
rameter sets. The second model, CoGTF-2, was created using the same environmental
covariates along with measured soil property data available only for 9958 SWCC parame-
ters. A total of 1747 SWCCs were discarded due to a lack of measured soil properties data
(Figures 1 and A1).

2.5. Computational Aspects of the Random Forest Model

Following the estimation of the vG parameters and the formation of regression matrix
for both CoGTF-1, and CoGTF-2, the R package ‘ranger’ [21] was used to fit the RF model.
Partial dependence plots (see Section 10.13.2 in Hastie et al. [22]) were generated by the
R packages ‘hexbin’ [23], ‘lattice’ [24], and ‘viridis’ [25]. The optimal value of the most
sensitive hyper-parameter mtry of RF was determined by spatial five-fold cross-validation
(see Section 11.4 in Lovelace et al. [26]), and default values of ranger were used for the
remaining hyper-parameters, e.g., number of trees, minimal node size, maximum tree
depth, and splitting rule. For spatial cross-validation (SCV) the Earth’s surface was divided
into 1-degree by 1-degree blocks. We then formed the SCV partitions by randomly assigning
the blocks to 5 subsets such that each contained about 20% of the data. The RF model was
then fitted 5 times, leaving a subset out at a time and using it as a validation set. This SCV
procedure was repeated 3 times, and predictions of the 3 SCV repetitions were averaged.
The outcome of SCV analysis will be shown in the results section for the optimal mtry in a
hexbin plot with a LOWESS (Locally Weighted Scatterplot Smoothing) line [27] to reveal
the eventual conditional bias of the vG parameters’ predictions.

The relative importance of the various covariates for modeling vG parameters was
assessed by the node impurity, which is computed for RF regression problems as the
decrease of residual sum of squares (RSS) when a particular covariate splits the data at
the nodes of a tree (see Sections 10.13.1 and 15.3.2 in Hastie et al. [22]). The variable
that provided maximum decline in RSS (and consequently increase in node purity) was
considered the most important variable, the variable with the second-largest RSS decrease
was considered the second most important, and so on.

The SCV and the list of important covariates were estimated for both CoGTF-1 and
CoGTF-2. For the SCV of CoGTF-1, the predicted soil covariates were used in calibration
and validation whereas, for CoGTF-2, the measured soil covariates were used to calibrate
and validate the model. To show the effect of ‘mixing’ soil information in model formula-
tion and application, we conducted another SCV using measured soil properties for the
calibration but predicted soil properties for the validation. The results are presented in
Figure A6.

2.6. Criteria to Assess Predictive Accuracy of SWCC Parameters

The accuracy of the SCV predictions was evaluated using BIAS, root mean square error
(RMSE), coefficient of determination (R2), and concordance correlation coefficient (CCC).

BIAS and RMSE are defined as

BIAS =
N

∑
i=1

(ŷi − yi)

N
(2)

RMSE =

√
SSE
N

(3)

where

SSE =
N

∑
i=1

(ŷi − yi)
2

is the sum of squared errors between the predictions ŷi (predicted vG parameters and water
content θ at matric potential ψ) and the measurements yi (vG parameter and water content
θ measured at matric potential ψ), and N is the total number of observations.

https://www.openlandmap.org/
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R2 is defined as

R2 =

[
1− SSE

SST

]
(4)

where

SST =
N

∑
i=1

(yi − ȳ)2

is the total sum of squares and ȳ the arithmetic mean of the measurements.
The concordance correlation coefficient (CCC) [28], a further measure of the agreement

between observed and predicted vG parameter values and for validating predictions of
water contents θ at prescribed matrix potentials ψ in CoGTF framework, is given by

CCC =
2 · ρ · sŷ · sy

s2
ŷ + s2

y + BIAS2 (5)

where ρ is the Pearson correlation coefficient between ŷi and yi, and sŷ and sy are the
respective standard deviations. CCC is equal to 1 for a perfect model with ŷi = yi in which
case we have BIAS = 0, ρ = 1 and sŷ = sy.

2.7. Validation of Van Genuchten Parameter Maps

The Earth’s surface was again divided into 1-degree × 1-degree blocks. For a fair
comparison of the CoGTF vG parameter maps with Rosetta 3 and HiHydroSoil v2.0, we
used a validation dataset from all continents except North America and Europe because
Rosetta 3 and HiHydroSoil v2.0 PTFs were calibrated with the data from North America
and Europe. To compute the validation predictions by the CoGTF model, we split the
validation data into five parts and predicted the parameters of each part in turn by an RF
model that was calibrated with the data of the remaining four parts complemented by the
data from North America and Europe. The predictions by Rosetta 3 and HiHydoSoil v2.0
were obtained by overlaying the locations of the validation data with the respective maps.
To compute CCC, R2, RMSE, and BIAS, we compared the predicted water content with
measured water content for three matric potentials (0.1 m, 3.3 m, and 150 m). Predicted
water content at these matric potentials was calculated by inserting the predicted vG
parameters into Equation (1).

As in the case of SCV, we quantified the model performance of both CoGTF models
(CoGTF-1, and CoGTF2). The totals of 2621 SWCCs for COGTF-1 and 1817 SWCCs for
CoGTF-2 were used as the validation datasets. Only for a subset of these SWCCs, the water
content had been measured at 0.1, 3.3, and 150 m matric potential: 1572 (0.1 m), 719 (3.3 m),
and 1184 (150 m) SWCCs for CoGTF-1 and 856 (0.1 m), 611 (3.3 m), and 732 (150 m) SWCCs
for CoGTF-2, respectively. We evaluated the accuracy criteria for all of these subsets for
either CoGTF-1 or CoGTF-2, Rosetta 2, and the HiHydoSoil v2.0 maps.

3. Results
3.1. Covariate Importance and Model Performance for the CoGTF Approach

Figure 2 lists the most important covariates for vG parameter modeling. The figure
shows that the covariate importance differed between the various vG parameters (some
parameters were dominated by climate covariates, others by soil properties) but was rather
similar for CoGTF-1, and CoGTF-2. Climate covariates were the most important factors for
the inverse air entry pressure parameter α (Figure 2a,e) whereas sand and clay were the key
covariates for the shape parameter n (Figure 2b,f). In addition, for residual (Figure 2c,g)
and saturated water content (Figure 2d,h), soil covariates were the dominant factors (soil
depth and clay content for residual and sand and bulk density for saturated water content).
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Figure 2. Importance of the covariates for modeling vG parameters by a random forest model. The
x-axis displays the average increase in node purity (the larger the value, the more important is a
covariate). The 7 most important covariates are shown for both models (CoGTF-1 with predicted soil
covariates and CoGTF-2 with measured soil covariates). The plots (a,e) show the importance for the
common logarithm log10 α of inverse air entry pressure parameter (unit of α m−1), (b,f) for the shape
parameter n, (c,g) for the residual water content θr, and (d,h) for the saturated water content θs. Sand
content, bulk density (BD), soil depth (SD), and clay content belong to soil covariates. Elevation is
one of the terrain covariates. Temperature seasonality (TS), minimum temperature of warmest month
(MTCM), annual average land surface temperature (LST), minimum temperature of coldest month
(MTWM), precipitation of driest month (PDM), mean annual temperature (AMT), diffuse irradiation
(DI), and mean annual precipitation (AMP) belong to the climate category.

The results of SCV for both models CoGTF-1 and CoGTF-2 are presented by hexbin
density plots in Figure 3. For parameters α, the line of LOWESS fell close to the 1:1 line,
hence predictions were approximately conditionally unbiased for both models. However,
for θs and θr the LOWESS lines were unbiased up to approximately 0.15 and 0.60 m3/m3,
respectively, but slightly biased for higher water content. SCV of CoGTF-1 showed concor-
dance correlation coefficients (CCC) for log10 α (unit of α m−1), n, θr, and θs of 0.432, 0.525,
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0.321, and 0.565, respectively, and coefficients of determination (R2) of 0.273, 0.325, 0.172,
and 0.412 , respectively. The root mean square errors (RMSE) for the four parameters were
equal to 0.442, 0.888, 0.076, and 0.082, respectively, and the BIASes equal to 0.008, 0.050,
−0.001, and 0.001, respectively.

Figure 3. Correlation between observations and SCV predictions of van Genuchten parameters for
the CoGTF-1 model using predicted soil covariates on the left and for the CoGTF-2 model using
measured soil properties on the right. The plots (a,e) show inverse air entry pressure parameter log10

α (unit of α m−1), (b,f) shape parameter n, (c,g) the residual water content θr, and (d,h) the saturated
water content θs. The term ‘measured’ on the axes of the figures relates to parameter estimates
obtained by fitting the vG model to measured SWCCs. The color code represented the number of
observations in each hexagonal bin. The solid black line is the 1:1 line, and the blue dashed line the
LOWESS (locally weighted scatter plot smoothing) curve.

Likewise, SCV for CoGTF-2 showed concordance correlation coefficients (CCC) for
log10 α (unit of α m−1), n, θr, and θs of 0.481, 0.753, 0.573, and 0.835, and coefficients of
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determination (R2) of 0.323, 0.605, 0.421, and 0.735, respectively. The root mean square
errors (RMSE) for the four parameters were equal to 0.400, 0.723, 0.060, and 0.050, and the
BIASes equal to −0.009, 0.004, 0.005, and 0.002, respectively. The model performance of
CoGTF-2 was seemingly better than for CoGTF-1, however, the SCV criteria of CoGTF-2 do
not characterize the predictive quality honestly for locations where measured soil property
data are lacking, i.e., for the locations of the global prediction mesh.

3.2. Global Maps of vG Parameters Based on CoGTF-1

Figure 4 shows the global maps of the vG parameters at the soil surface (0.00 m
depth) as calculated by the CoGTF-1 model. Note that the global maps with CoGTF-2
could be created as well, but are not shown here because they were built with ‘mixed’ soil
information using measured soil covariates to calibrate the model but substituted predicted
soil covariates for the missing soil property measurements when computing the predictions.
CoGTF-1 predictions of the inverse air entry pressure parameter α (Figure 4a) ranged from
0.11 to 48 (m−1). High α values (corresponding to soils with dominantly large pores and
small air entry pressure) were predicted for the Sahara, the Middle East (regions with high
sand content), and tropical regions of northern South America and Central Africa. Low α
values were found in the higher northern latitudes with a colder climate. We can conclude
that predicted α values are large for coarse textures and for warm regions with high rainfall
rates (more intense structure formation). High values of the shape parameter n (Figure 4b)
were predicted for Sahara, the Middle East, Central Asia, and the Gobi Desert (regions with
high sand content) but also in the higher northern latitudes where soils with high organic
matter content and high porosity (low bulk density) are common. In tropical regions both
saturated (Figure 4c) and residual water contents (Figure 4d) were high. As expected,
the saturated water content was strongly related to bulk density with high values in the
northern regions with low bulk density soils. Figure A2 shows the cumulative distribution
function (CDF) for global maps of vG parameters at different depths (0, 30, 60, and 100 cm)
for CoGTF-1. There is no clear change in vG parameters values with depth except for θs
with much higher values at the surface compared to the deeper soil layer. This is very likely
due to low bulk density in topsoil horizons with high organic content.

3.3. Comparison with Alternate Global vG Parameters Maps

We compared the new parameter maps from CoGTF-1 with the maps generated with
the PTFs Rosetta 3 [14] and HiHydroSoil v2.0 [15]. In Figure 5 we show the comparison
for the shape parameter n and provide the other maps in Appendix A. Note that in the
comparison, only CoGTF-1 maps are shown. In contrast to the CoGTF maps, Rosetta 3
predicted large values of n only for desert regions with high sand content. CoGTF predicted
large values as well for arid regions in general and northern latitudes with low bulk
densities in particular. The HiHydroSoil v2.0 map predicted low n values for the entire
globe. The differences between the three maps are clearly visible in the probability density
functions (PDFs) shown in Figure 6b. The medians of globally predicted n values were
equal to 1.67 (CoGTF-1), 1.50 (Rosetta 3), and 1.34 (HiHydroSoil v2.0), respectively. CoGTF-
based α and n maps showed a wider distribution compared to maps based on PTFs (see
PDFs in Figure 6a,b). Both Rosetta 3 and HiHydroSoil v2.0 predicted lower α and θr values
in most regions of the world compared to CoGTF (see PDFs in Figure 6a,c and maps in
Figures A3 and A4). The CoGTF-based θs map appeared similar to the other two maps (see
PDF in Figure 6d and global maps in Figure A5).
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Figure 4. Global maps of van Genuchten parameter at the soil surface (marked as ‘0 cm’) calculated
with CoGTF-1 model based on predicted soil covariates. The maps (a) show inverse air entry pressure
parameter log10 α (unit of α m−1), (b) shape parameter n, (c) the residual water content θr, and (d) the
saturated water content θs. The parameter n is high for sandy soils. Predictably, θs is affected by
soil bulk density map (high θs values in high latitudes dominated by organic soils with low bulk
density). In contrast, the parameter α shows low values in these northern latitudes (large pores and
low capillarity).
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Figure 5. Visual comparison of global maps of shape parameter n between (a) CoGTF-1 (based on
predicted soil covariates), (b) HiHydroSoil v2.0, and (c) Rosetta 3. Large values are shown for regions
with high sand content for CoGTF-1 and Rosetta 3. In contrast to Rosetta 3, large n values were
predicted as well by CoGTF-1 for cold regions with high bulk densities. The values from HiHydroSoil
v2.0 map were consistently small in all regions.

3.4. Validation of CoGTF and Other PTF Based Maps

Table 1 shows the results of the validation performed for CoGTF-1 (with predicted
soil covariates), Rosetta 3, and HiHydroSoil v2.0 maps, where measured water content was
compared with the predicted water content at 0.1 m, 3.3 m, and 150 m matric potentials.
All the maps suffered from some negative bias. The bias was small and its contribution
to RMSE was negligible for water content at 0.1 m and 150 m matric potentials, however
for water content at 3.3 m matrix potential BIAS contributed substantially to the overall
error (HiHydroSoil v2.0: BIAS2/RMSE2 = 0.57). On the whole, the CoGTF predictions
had the smallest RMSE and largest CCC and R2 for water contents measured at the three
matric potential values. Note that the R2 was negative for the Rosetta and HiHydroSoil v2.0
predictions of the water content at 3.3 m matric potential, which means that the arithmetic
mean of the validation data yielded more precise predictions than the respective maps.
Likewise, the comparison of CoGTF-2 with other PTF-based maps is shown in Table A2. For
the water content at higher absolute potential (3.3 and 150 m), the model performance was
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similar; however, for the water content close to saturation the model based on predicted
soil covariates had higher CCC and R2 values.

Figure 6. Probability density functions (PDF) of vG parameters for the CoGTF-1 map (black), Rosetta
3 map (red), HiHydroSoil v2.0 map (orange), and of the ‘measured’ values of 11,705 SWCC from
GSHP dataset. The plots (a) show inverse air entry pressure parameter log10 α (unit of α m−1),
(b) shape parameter n, (c) the residual water content θr, and (d) the saturated water content θs. Note
that the HiHydroSoil v02.0 map reported only 2 distinct values for θr with 0.04 m3/m3 if sand content
was larger than 2% and 0.17 m3/m3 if sand content was below 2% (only very few locations).

Table 1. Concordance correlation coefficient (CCC), coefficient of determination (R2), root mean square
error (RMSE), and BIAS of predicted water content (WC) at 0.1 m, 3.3 m, and 150 m matric potential
using CoGTF-1 (based on predicted soil covariates), Rosetta 3, and HiHydroSoil v2.0. The criteria were
computed for the validation data (SWCC curves outside from Europe and North America).

Models Water Content CCC R2 RMSE BIAS

WC_0.1 m 0.172 0.079 0.122 −0.026
Rosetta 3 WC_3.3 m 0.086 −1.066 0.129 −0.097

WC_150 m 0.318 0.191 0.064 −0.019

WC_0.1 m 0.184 0.099 0.121 −0.004
HiHydroSoil v2.0 WC_3.3 m −0.044 −2.266 0.162 −0.114

WC_150 m 0.175 −0.133 0.076 −0.036

WC_0.1 m 0.710 0.568 0.084 −0.003
CoGTF-1 WC_3.3 m 0.489 0.018 0.088 −0.060

WC_150 m 0.495 0.336 0.058 −0.017
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4. Discussion
4.1. Characteristics of the CoGTF Global vG Parameters Maps

The study presents new global maps of vG parameters at a 1 km resolution based on
the most comprehensive available dataset of SWCC measurements and harnessing local
terrain, climate, and vegetation information. The effect of environmental covariates on
SWCC parameters was most prominent for the inverse air entry pressure α. As shown in
Figure 2a, climatic variables were more important for α than soil texture and bulk density.
The size and continuity of the larger pores are controlled by soil structure formation and
cannot be captured from basic soil properties alone. We can therefore conclude that for this
parameter soil structure was more relevant than soil texture. A similar finding was reported
for the saturated hydraulic conductivity Ksat in Gupta et al. [10], showing that large Ksat
values were found not only in sandy textures but in tropical regions as well. In tropical
regions, the wet and warm conditions result in different mineralogy of the clay-sized soil
particle fraction [29,30]. We noticed evidence for the role of the soil-forming processes in
the other vG parameters as well with higher saturated and residual water content values
and lower n values for tropical regions (see maps in Figure 4). For the other three vG
parameters, soil properties were the most important covariates. For example, the model of
the shape parameter n was dominated by sand content, and this confirmed the findings
of Haverkamp et al. [31] who showed that the shape parameter was closely correlated to
soil texture. Similarly, bulk density and clay were the most important covariates for θs and
θr, respectively. The same results were presented by Oleszczuk and Truba [32] and Feng
and Zhang [33]. Remarkable were the high values of θr in tropical regions. The high values
of θr are likely due to a large proportion of very fine pores in the Ferralsol (oxisols) soils.
These pores remain water-filled at potentials as low as −4 MPa [34].

4.2. Prediction Accuracy Improves with Covariates and Larger and Well-Curated SWCC Dataset

The CoGTF-based vG parameter maps differed from PTF-based maps in the visual
comparisons. As shown in Figure 6, vG parameter values for the CoGTF framework had
a wider distribution than calculated with PTFs because only the CoGTF could take into
account the variations of environmental covariates and their effect on soil properties. The
high variations in vG parameter values were also related to the large dataset (11,705 for
CoGTF-1 compared to 3773 for HiHydroSoil v2.0 and 2134 for Rosetta 3) used for training
the model. The training data included samples from all soil textural classes and climatic
regions. Moreover, the validation results clearly demonstrated that CoGTF performs better
than the PTF based maps (Tables 1 and A2). Therefore, CoGTF overcomes the limitations
of the Rosetta 3 PTF where the training data was dominated by loamy and sandy soil
texture classes (see Figure 1 in [35]) from temperate climatic regions. Furthermore, Table A3
shows SCV results for a model CoGTF-A that was trained using all 15,259 SWCCs. Results
showed that the CoGTF-1 model using only curated data predicts α more accurately than
CoGTF-A. For the other vG parameters, the model performances of both models were
similar. Likewise, Table A4 shows that the CCC and R2 of CoGTF-A were slightly better
than for CoGTF-1 except for water content at 0.1 m. This might be due to the fact that
during testing most of the curves that had no wet-end (water content measured for matric
potential≤ 0.2 m) information and could lead to fallacious parameter values were removed.

4.3. Comparison of CoGTF Models Based on Measured and Predicted Soil Covariates

In this study, we compared two CoGTF based models (CoGTF-1 where predicted soil
properties were used as covariates for model calibration and computing predictions, and
CoGTF-2 where measured properties were used to calibrate the model but predicted soil
covariates were used to compute the predictions). The reason for using CoGTF-1 was the
lack of measured soil properties at the locations of the global prediction mesh. As stated
in Section 2.4, the application of the CoGTF-2 model for global mapping was problematic
because different information was used for model calibration and for computing the
predictions. As expected, the CoGTF-2 models with measured soil properties (Figure 3e–h)
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predicted the vG parameter in the SCV exercise more precisely than the CoGTF-1 models
(Figure 3a–d) because measured soil texture and bulk density are more directly related to
SWCCs than the predicted soil covariates. However, these SCV results of CoGTF-2 did not
allow us to assess how well CoGTF-2 predicted the vG parameters for the global prediction
mesh, where measured soil property data was unavailable. Therefore, to test the loss of
accuracy when applying a model based on measured soil covariates on sites with predicted
soil information, we changed the SCV scheme as follows: we calibrated the CoGTF-2 model
still using measured soil properties as covariates but predicted the vG parameter of the
SCV subsets using predicted soil properties as covariates. Figure A6 showed reduced
model performance compared to the SCV results shown in Figure 3e–h. The performance
was also slightly reduced compared to the model calibrated with predicted soil covariates
(Figure 3a–d). Due to the reduced model performance and the inherent inconsistency of
mixing measured and predicted soil covariate data we only showed global maps created
with CoGTF-1.

4.4. Use of the Global CoGTF vG Parameters Maps and Future Developments

The new maps of vG parameters presented in this study can be used in Earth system
and land surface models that need information on spatially distributed soil hydraulic
parameters. These maps can also be used more directly to compute other important soil
physical properties like ponding time, characteristic length of evaporation, sorptivity, and
soil strength. In addition, the plant’s available water is typically deduced from water
contents at specific matric potential values (3.3 m for field capacity and 150 m for wilting
point) and can be computed globally with the new maps. The CoGTF maps presented
here have a spatial resolution of 1 km. This resolution can likely be improved in the
near future, considering various initiatives to estimate soil and environmental covariate
information with higher spatial resolution. In addition, the maps can be improved if
more comprehensive SWCCs data from Canada and Western and Northern Australia
become available.

5. Conclusions

Machine learning algorithms have been used to produce global maps of soil hydraulic
properties based on well-curated spatially distributed measurements and environmental
covariates. In this study, we have demonstrated the benefit of (i) improving coverage of
SWCC and the quality of the estimated parameters, (ii) better coverage of information from
all climatic regions for ML training, and (iii) including local covariates such as climate,
terrain, and vegetation metrics in the prediction. We have shown quantitatively (based
on CCC, R2, RMSE, and BIAS values) that our new parameter maps perform better in
predicting soil water retention compared to previous maps based on PTFs. We highlight
that despite the possibility of calibrating a model with measured covariate values (e.g., soil
texture), predicted values should be the default for the calibration step if measurements are
not available at a global scale (i.e., for each pixel). One of the primary contributors to the
improved predictions is the step increase in the number of SWCC data sets and the rigor by
which the parameters have been derived. We conclude that including information based
on local covariates implicitly injects the effects of soil formation processes on soil hydraulic
properties (an easy to implement alternative to the explicit soil structure modeling reported
in Fatichi et al. [6] or Bonetti et al. [7]).
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Appendix A

Figure A1. Conceptual workflow used to generate the different CoGTF models using the SWCCs
shown in Figure 1. The CoGTF-A model was generated using all 15,259 SWCCs whereas to generate
the CoGTF-1 model only 11,705 SWCCs were used with predicted soil properties. Furthermore, the
CoGTF-2 model was produced using 9958 SWCCs that had measured soil properties.

https://zenodo.org/record/6348799
https://zenodo.org/record/6348799
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Figure A2. Cumulative distribution function (CDF) for global maps of vG parameters at different
depths (0, 30, 60, and 100 cm) predicted by CoGTF-1. (a) shows the inverse air entry pressure
parameter log10 α (unit of α m−1), (b) shape parameter n, (c) the residual water content θr, and (d) the
saturated water content θs.
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Figure A3. Visual comparison between (a) CoGTF-1 (model based on predicted soil covariates),
(b) HiHydroSoil v2.0, and (c) Rosetta 3 map of shape parameter log10 α (unit of α m−1).
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Figure A4. Visual comparison between (a) CoGTF-1 (model based on predicted soil covariates),
(b) HiHydroSoil v2.0, and (c) Rosetta 3 map of residual water content θr.
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Figure A5. Visual comparison between (a) CoGTF-1 (model based on predicted soil covariates),
(b) HiHydroSoil v2.0, and (c) Rosetta 3 θs map of saturated water content θs.
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Figure A6. Results of SCV of SWCC parameter predictions to show the effect of mixing soil information
for model calibration (using measured soil properties) and computing predictions (using predicted soil
properties). (a) inverse air entry pressure parameter log10 α (unit of α m−1), (b) shape parameter n,
(c) the residual water content θr, and (d) the saturated water content θs. The term ‘measured’ on the axes
of the figures relates to parameter estimates obtained by fitting the vG model to measured SWCCs.

Table A1. List of covariates used for creating the vG maps.

S.No List of Covariates Source

Climate (clm)

1 clm_annual mean temperaturebio1_m_1 http://chelsa-climate.org/bioclim/, (accessed on 20 October 2021)
km_s0..0cm_1979-2013_v1.0

2 clm_temperature seasonalitybio4_ m_1 Karger et al. [36]
km_s0..0cm_1979-2013_v1.0

3 clm_max temperature of warmest monthbio5_m_1
km_s0..0cm_1979-2013_v1.0

4 clm_min temperature of coldest monthbio6_m_1
km_ s0..0cm_1979-2013_v1.0

5 clm_annual precipitationbio12_m_1
km_1979_2013_v1.0

6 clm_precipitation of wettest monthbio13_m_1
km_1979_2013

7 clm_precipitation of driest monthbio14_m_1
km_1979_2013

8 clm_diffuse.irradiation_solar.atlas.kwhm2.100_m_1
km_s0..0cm_2016_v1 https://globalsolaratlas.info/download/world, (accessed on 20 October 2021)

9 clm_direct.irradiation_solar.atlas.kwhm2.10_m_1
km_s0..0cm_2016_v1

10 clm_land surface temperature_mod11a2.annual.day_m_1 https://lpdaac.usgs.gov/products/mod11a2v006/, (accessed on 20
October 2021)

km_s0..0cm_2000..2017_v1.0
11 clm_land surface temperature_mod11a2.annual.day_sd_1

km_s0..0cm_2000..2017_v1.0

http://chelsa-climate.org/bioclim/
https://globalsolaratlas.info/download/world
https://lpdaac.usgs.gov/products/mod11a2v006/


Remote Sens. 2022, 14, 1947 20 of 22

Table A1. Cont.

S.No List of Covariates Source

Digital terrain model (dtm)

12 dtm_topographic wetness index_merit.dem_m_1
km_s0..0cm_2017_v1.0

13 dtm_slope_merit.dem_m_1
km_s0..0cm_2017_v1.0

14 dtm_aspect.cosine_merit.dem_m_1

km_s0..0cm_2018_v1.0 https://zenodo.org/record/1447210#.XllTejFKhaQ, (accessed on
25 October 2021)

15 dtm_elevation_merit.dem_m_1 Yamazaki et al. [37]
km_s0..0cm_2017_v1.0

16 dtm_lithology_usgs.ecotapestry.acid.plutonics_p_1
km_s0..0cm_2014_v1.0

Surface reflectance (lcv)

17 lcv_landsat.near infrared_wri.forestwatch_m_1 km_s0..0cm_2018_v1.2
18 lcv_landsat.red_wri.forestwatch_m_1 km_s0..0cm_2018_v1.2 Hansen et al. [38]
19 lcv_landsat.short wave infrared_wri.forestwatch_m_1 km_s0..0 cm_2018_v1.2

20 lcv_wetlands.regularly.flooded_upmc.wtd_p_1 https://doi.pangaea.de/10.1594/PANGAEA.892657
km_b0..200cm_2010..2015_v1.0 Tootchi et al. [39]

Vegetation covariates (veg)

21 veg_fraction of bbsorbed photosynthetically active radiation https://land.copernicus.eu/global/products/fapar, (accessed on 25
October 2021)

_proba.v.annnual_d_1km_s0..0cm_2014..2019_v1.0

Soil properties (sol)

22 sol_clay.wfraction_usda.3a1a1a_m_1
km_b0_10_30_60_100_200cm_ 1950..2017_v0.2

23 sol_sand.wfraction_usda.3a1a1a_m_1
km_b0_10_30_60_100_200cm _1950..2017_v0.2 https://www.openlandmap.org/, (accessed on 22 December 2021)

24 sol_bulk_density.wfraction_usda.3a1a1a_m_1
km_b0_10_30_60_100_200cm_1950..2017_v0.2

25 DEPTH

Table A2. Concordance correlation coefficient (CCC), coefficient of determination (R2), root mean
square error (RMSE), and BIAS of predicted water content (WC) at 0.1 m, 3.3 m, and 150 m matric
potential using CoGTF-2 based on measured soil covariates, Rosetta 3, and HiHydroSoil v2.0. These
values are computed for the validation data.

Models Water Content CCC R2 RMSE BIAS

WC_0.1 m 0.112 −0.122 0.122 −0.047
Rosetta 3 WC_3.3 m 0.093 −1.112 0.112 −0.085

WC_150 m 0.373 0.275 0.052 −0.008

WC_0.1 m 0.218 0.058 0.112 −0.020
HiHydroSoil v2.0 WC_3.3 m −0.027 −2.143 0.137 −0.088

WC_150 m 0.233 −0.168 0.066 −0.006

WC_0.1 m 0.622 0.454 0.085 −0.019
CoGTF-2 WC_3.3 m 0.586 0.180 0.070 −0.048

WC_150 m 0.505 0.335 0.050 −0.022

Table A3. Comparison of the SCV predictions of the models trained with all 15,259 SWCCs (CoGTF-A
with predicted soil covariates) or with the curated dataset consisting of 11,705 SWCCs (CoGTF-1
with predicted soil covariates). The curated dataset predictions are the same SCV predictions as in
Figure 3a–d.

All and Curated Data CCC R2 RMSE BIAS

α_all 0.393 0.263 0.588 −0.042
α_cur 0.432 0.273 0.442 0.009

n_all 0.522 0.325 0.951 0.088
n_cur 0.525 0.328 0.888 0.050

https://zenodo.org/record/1447210#.XllTejFKhaQ
https://doi.pangaea.de/10.1594/PANGAEA.892657
https://land.copernicus.eu/global/products/fapar
https://www.openlandmap.org/
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Table A3. Cont.

All and Curated Data CCC R2 RMSE BIAS

θr_all 0.315 0.152 0.069 0.0003
θr_cur 0.325 0.172 0.076 −0.001

θs_all 0.552 0.393 0.085 −0.001
θs_cur 0.565 0.412 0.082 0.001

Table A4. Number of SWCCs, concordance correlation coefficient (CCC), coefficient of determination
(R2), root mean square error (RMSE), and BIAS of predicted water content (WC) at 0.1 m, 3.3 m,
and 150 m matric potential using CoGTF curated (CoGTF-1) and all SWCCs (CoGTF-A). Note that
a similar method (see Section 2.6) is used to estimate the accuracy parameters when all SWCCs
are used.

Models SWCCs Water Content CCC R2 RMSE BIAS

1572 WC_0.1 m 0.710 0.568 0.084 −0.003
CoGTF-1 719 WC_3.3 m 0.489 0.018 0.088 −0.060

1184 WC_150 m 0.495 0.336 0.058 0.017

1671 WC_0.1 m 0.699 0.551 0.088 0.0003
CoGTF-A 836 WC_3.3 m 0.521 0.064 0.099 −0.066

1371 WC_150 m 0.529 0.359 0.062 −0.020
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