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Abstract: The quasi-linear or nonlinear interactions among different ocean motions dominate the sys-
tem internal structure and appearance feature presented in spatial and temporal evolution. However,
deficiency of the characteristics set computation model for internal wavenumber spectra proves to be
a serious barrier to derive interaction mechanisms of internal waves with large or small scale ocean
motions. In this study, a characteristics set computation model for internal wavenumber spectra is
proposed for complicated offshore environments. The refraction of current shear instability, bottom
topography and the reflection at surface and bottom are attentively considered in the complicated
characteristics inlaid scheme. Model results are validated with MODIS retrieved internal wave
parameters in the Sulu Sea and Celebes Sea. This original characteristics set computation model for
internal wavenumber spectra can be used widely and can further improve the understandings of
generation, dissipation, nonlinear wave-wave interaction and mixing process of internal waves.

Keywords: internal wave; energy spectrum; characteristics set computation model; refraction;
reflection; MODIS; Sulu Sea; Celebes Sea

1. Introduction

The quasi-linear or nonlinear interactions in the ocean dynamic system dominate
the physics of internal gravity waves [1–3]. The energy spectrum method is a practical
and efficient way to interpret the internal wave composition structure and appearance
properties. However, deficiency of the characteristics set computation model for internal
wavenumber spectra proves to be a serious barrier to analyze interaction mechanisms of
internal waves with large or small scale ocean motions. In fact, the characteristics/ray
theory has been studied and successfully applied to the spectral propagation of surface
waves [4–7]. It is probable to deeply recognize the horizontal anisotropy, high nonlinearity,
spectrum denaturation of internal waves in the offshore if we follow the quite similar
treatment of surface waves through the internal wave characteristics set modeling, which
can interpret further the propagation physics of internal waves compared to the traditional
models based on the primitive Navier–Stokes or KdV equations. Furthermore, satellite
imagery can detect packets of internal waves which are common features propagating in
the seas [1,8]. These satellite retrieved internal wave parameters (e.g., wavelength, phase
velocity, etc.) are useful particularly and expediently to validate the field distributions
obtained from the wave characteristics set modeling.

The internal waves appear in the satellite imagery as alternating bands of light and
dark strips that result from sea surface roughness variations, which are due to the creation
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of convergent (rough) and divergent (smooth) zones set up by the internal wave currents
that move across the surface in phase with wave’s subsurface crests and troughs [9,10].
MODIS (Moderate Resolution Imaging Spectroradiometer), SAR (Synthetic Aperture Radar)
and other sensors on board satellites have the capabilities for large area detection of internal
waves in their wide swath modes. The internal wave parameters can be obtained directly
by using pairs of satellite images separated in time by only a few minutes to a few hours,
or retrieved through the TMI (Tidal Period Images) method for application to the internal
wave field studies [11]. In this study, we will apply the MODIS retrieved internal wave
parameters to verify the proposed characteristics set computation model.

This paper is organized as follows. A derivation of the characteristics set computation
model is given in Section 2.1. Ocean data related to the MODIS sensors and varying
environmental modeled data from a wave-tide-circulation coupled model are described in
Section 2.2. The applied results of the characteristics set computation model are presented
in Section 3. Finally, a discussion and conclusions are presented in Sections 4 and 5.

2. Materials and Methods
2.1. Model Derivation and Set-Up
2.1.1. Derivation of Internal Wave Energy Spectrum Balance Equation

In the usual notation, let xi, i = 1, 2, 3 be rectangular co-ordinates. Let uSMi, i = 1, 2, 3 denote
the internal wave velocities; TSM, sSM, pSM, ρSM the perturbations of temperature, salinity,
pressure and density induced by internal ocean waves. More comprehensive governing
equations for wave motion were derived in Yuan et al. [3] and Yang et al. [12] and the unit
volume wave energy balance equation can be obtained in tensor expression as follows:

∂
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where Ûi, i = 1, 2, 3; T̂, ŝ, p̂, ρ̂ denote the background current components and ρ0 is the basin
mean water density; ν0, κ0, D0 the molecular viscosity, thermal and diffusion coefficients;
N̂2

i = −g ∂
∂xi

(
ρ̂
ρ0

)
, i = 1, 2, 3 the Brunt–Väisälä frequency components; k2, ε the kinetic

energy and its dissipation rate of ocean turbulence, which is mainly generated by surface

waves in the upper layers [13–15]. ρ0u2
SMi

2 , g2ρ2
SM

2ρ0 N̂2
3

denote the kinetic and potential internal

wave energy and 〈 · 〉SM denotes the Reynolds average in wave motion. Otherwise the
notation is standard. The first term on the left-hand side of Equation (1) is related to the
local mechanical energy variation and the second and third ones denote the energy flux
transferred by internal waves and background currents. The first and second terms on
the right-hand side of Equation (1) are related to the modulation by larger scale motions
through shear instability generations. The third term is related to the energy input through
thermal radiation, the fourth and fifth ones are related to the modulation by smaller scale
motions through ocean mixing and the last two terms are related to the energy loss rate
due to internal viscosity.

Let E
(
⇀
k
)

= E(k1, k2, k3) designate an internal wavenumber energy spectrum for

unit mass water, i.e.,

1
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and the corresponding wave energy balance equation can be written as:

y

⇀
K


∂E
(
⇀
k
)
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+
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]∂E
(
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)
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(
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k
)] dk1dk2dk3 = 0 , (3)

where Cgi, i = 1, 2, 3 denote the wave group velocities, which can be derived by internal
wave frequency dispersion relations which will be discussed in detail in Sections 2.1.2 and 3.1.
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are related to wave-current, wave-water strat-

ification, wave-thermal radiation and dissipation terms. Equation (3) indicates that the
integrand function performs the energy transfer behavior due to nonlinear wave-wave

interaction SNL
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, whose integral is zero in wave-number space. i.e.,
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Correspondingly,

∂ E
(
⇀
k
)

∂ t +
[
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There are also other boundary input source functions, such as the wind and surface
gravity wave energy input terms not included here. In this study, we are concerned entirely

with the propagation properties of wave-number spectrum, so we let SS
(
⇀
k
)
≡ 0 for

further numerical modeling performed below.

2.1.2. 3-Dimensional Complicated Characteristics Set Equations

In the preceding derivations, we implicitly assume the horizontal invariance of density,
topography, etc., as in Yuan et al. [2]; the complex frequency–wavenumber relation at the
sea surface can be simplified as:

ω2 = f 2 +
1

µIW(0)
· g ρ̂0

ρ0
kH tan(

∫ 0

−ĤN

µIWkHdx3), (6)

where f denotes the Coriolis parameter; ĤN represents the depth where ω = N̂3 (it is
also called a reflection level where the wave frequency matches the background buoyancy
frequency). If ω < N̂3 from surface to bottom, then ĤN = Ĥ. And:
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k2
H = k1

2 + k2
2, k2 = k2

H + k2
3, (8)

Equation (6) can also be practically expressed as:

∫ 0

−ĤN

k3dx3 = iπ + arctan(
ρ0

ρ̂0

√
(N̂2

30 −ω2)(ω2 − f 2)

gkH
), i = 1, 2, . . . , (9)

where i = 1, 2, . . . denote the vertical mode numbers of internal gravity waves.
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The vertical wavenumber k3 satisfies:

k2
3 =

N̂2
3 −ω2

ω2 − f 2 k2
H , (10)

or

ω2 =
N̂2

3 k2
H + f 2k2

3
k2 , (11)

So the group velocities can be obtained as:
Cg1 = ∂ω

∂k1
=

N̂2
3−ω2

ωk2 k1

Cg2 = ∂ω
∂k2

=
N̂2

3−ω2

ωk2 k2
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∂k3

= −ω2− f 2

ωk2 k3

, (12)

The ray method or characteristics method is valid for a study of both linear and nonlin-
ear wave packets propagating both in homogeneous and inhomogeneous media [4,5,16,17].
Here we present the practical characteristics equations for further interpreting the refraction
induced by topography and current. The characteristics equation describes the propagation
law of ocean waves in physical space and it can be written as:

dxi
dt

= Cgi + Ûi , (i = 1, 2, 3), (13)

By using the motion equations of waves,

∂ki
∂xj

=
∂kj
∂xi

(i 6= j; i, j = 1, 2, 3)
∂ki
∂t + ∂σ

∂xi
= 0 (i = 1, 2, 3)

(14)

with σ = ω + ki · Ûi, after some manipulation, the variation laws of the modulus and
azimuth angles of wavenumber can be derived as:

∂θ
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]
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where α = 1, 2; i, j = 1, 2, 3, k1 = kH cos θ, k2 = kH sin θ and kH = k cos ϕ, k3 = k sin ϕ.
Angle θ rotates anticlockwise and is 0◦ in the east direction in the following numerical
experiments. Normalized vectors in Equations (15)–(17) are defined as follows:

⇀
s = (cos θ, sin θ),

⇀
n = (− sin θ, cos θ),

⇀
s 2 = (cos ϕ cos θ, cos ϕ sin θ),

⇀
n 2 = (− sin ϕ cos θ,− sin ϕ sin θ),

⇀
s 3 = (cos ϕ cos θ, cos ϕ sin θ, sin ϕ),

⇀
n 3 = (− sin ϕ cos θ,− sin ϕ sin θ, cos ϕ).

(18)

Differentiated by Ĥ in both sides of Equation (9), we obtain:
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0, ĤN < Ĥ
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where ω2
N0

=
√
(N̂2

30 −ω2)(ω2 − f 2). Equations (13) and (15)–(17) in the unknowns
xi(i = 1, 2, 3), k, θ, ϕ are the 3-dimensional complicated characteristics set equations which
are effectively applied to the propagation experiments performed below. These equations
describe the effects of spatially varying bottom depth and current on the wave propagation,
which includes the refraction of current shear instability and bottom topography and the
modulation by current through advection transport.

2.1.3. Reflection at the Surface and Bottom

The characteristics or ray theory predicts that internal waves reflect at surface or at
the reflection level ĤN which is supposed as ĤN = Ĥ below. The boundary condition of
equations of internal wave motion at bottom is [2]:

(uSM3)x3=−Ĥ +
∂Ĥ
∂xα

(uSMα)x3=−Ĥ = 0, (20)

Further,
⇀
n up =

(
∂Ĥ
∂x1

, ∂Ĥ
∂x2

, 1
)

denotes the upward normal vector at bottom. The inci-

dent, reflected wavenumbers
⇀
k = (k1, k2, k3),

⇀
l = (l1, l2, l3) and the reflection coefficient A

satisfy the conservation laws of kinematics [18] and we obtain:

lH =
1± µIW( ∂Ĥ

∂x1
cos θ + ∂Ĥ

∂x2
sin θ)

1∓ µIW( ∂Ĥ
∂x1

cos θ + ∂Ĥ
∂x2

sin θ)
kH , (21)

l3 = −
1± µIW( ∂Ĥ

∂x1
cos θ + ∂Ĥ

∂x2
sin θ)

1∓ µIW( ∂Ĥ
∂x1

cos θ + ∂Ĥ
∂x2

sin θ)
k3, (22)

A = −
1± µIW( ∂Ĥ

∂x1
cos θ + ∂Ĥ

∂x2
sin θ)

1∓ µIW( ∂Ĥ
∂x1

cos θ + ∂Ĥ
∂x2

sin θ)
, (23)

corresponding to k3 = −µIWkH , l3 = µIW lH or k3 = µIWkH , l3 = −µIW lH , respectively.
According to rigid surface assumption, Equations (21)–(23) can be simplified as:

lH = kH , l3 = −k3 , A = −1 , (24)

The reflected wave satisfies
⇀
Cg ·

⇀
n up > 0 at bottom. By employing Equation (12),

it yields:

(N̂2
3 −ω2)l1

∂Ĥ
∂x1

+ (N̂2
3 −ω2)l2

∂Ĥ
∂x2
− (ω2 − f 2)l3 > 0, (25)

So that in numerical modeling, Formula (25) can be seemed as a criterion if the discrete
wavenumber is a reflected one or not. Moreover, at surface, Formula (25) is simplified as
l3 > 0. Consequently, the discrete reflected wavenumber spectrum roughly satisfies:

E(l1, l2, l3) = A2E(k1, k2, k3), (26)

where the incident wavenumber may be not the discrete one and its spectrum E(k1, k2, k3) is
3-dimensionally and linearly interpolated among the adjacent eight discrete wavenumbers
in the phase space.

2.1.4. Grid Distribution and Complicated Characteristics Inlaid Scheme in Physical and
Phase Spaces

In physical space, we take the horizontal grid parallel to the longitude and latitude
lines in the study domain with the resolution of 1◦/3 by 1◦/3 or 1◦/6 by 1◦/6 and the
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uniform vertical grid spacing of 20 m. The maximum water depth is set to 3000 m. Figure 1
is our model computational domain and bathymetry.
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In wavenumber space, we take polar coordinate grids according to the proposed
negative exponential form of empirical internal wavenumber spectrum E(k) ∼ k−β, i.e.,

ki = kmine(i−1)·∆k, i = 1, 2, . . . , K + 1, where ∆k =
1
K

log
(

kmax

kmin

)
(27)

The horizontal and vertical angles of wave direction are discretized uniformly below:

θi = (i− 1)·∆θ, i = 1, 2, . . . , N + 1, where ∆θ =
2π
N

(28)

ϕi = −
π

2
+

∆ϕ
2

+ (i− 1)∆·ϕ, i = 1, 2, . . . , M, where ∆ϕ =
π

M
(29)

The above model settings can be modified according to different requirements. The
complicated characteristics inlaid scheme is designed as Figure 2.

2.2. Ocean Data
2.2.1. MODIS Data

The MODIS sensors are onboard the National Aeronautics and Space Administration’s
(NASA’s) Earth Observing System satellites Terra and Aqua. The MODIS data have a
spatial resolution between 250 m and 1 km, dependent on the collection wavelength [19]
and with a geolocation accuracy of at least 60 m (1σ) [20]. Full details of the characteris-
tics of MODIS and its associated data products are given on the NASA MODIS website
(modis.gsfc.nasa.gov, accessed on 30 November 2021). Previous studies have been done on
the inversion mechanisms of internal waves from satellite data [8–10,21–23]. Here in this
study, the Aqua-MODIS images with a spatial resolution of 250 m are used to retrieve the
internal wavelengths, here defined as the distance between two successive wave packets
and the corresponding apparent phase velocities.
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2.2.2. Modeled Data

The modeled data were presented by using the Key Laboratory of Marine Science and
Numerical Modeling (MASNUM) wave-tide-circulation coupled model [24], which em-
ploys the MASNUM wavenumber spectral model [6,7] and the POM circulation model [25].
The key mixing role induced by surface waves in the formation of upper mixed layer [15,26–28]
was considered in the coupled model. The coupled model covers the computational do-
main (10◦ S–30◦N, 90–135◦E) with the horizontal resolution of 1◦/30 by 1◦/30 and the
vertical 51 sigma layers. The model was integrated for 10 years and the gridded products
of SSH anomaly, circulation pattern, subsurface temperature, etc., were validated to the
satellite altimetry and in situ observations [24]. The simulated climatological monthly-mean
temperature, salinity, etc., of year 10 are used in this study.

3. Results
3.1. Validation
3.1.1. Simplified Wave Frequency Dispersion Relations

The vertical mean wavenumber k =
(

k
2
H + k

2
3

)1/2
can be obtained through a non-

trivial iteration scheme according to Equation (9) and the following transformation
of Equation (10):

∫ 0

−ĤN

k3dx3 =
∫ 0

−ĤN

√ N̂2
3 − f 2

ω2 − f 2 − 1

kHdx3 = kH

∫ 0

−ĤN

√ N̂2
3 − f 2

ω2 − f 2 − 1

dx3, (30)
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The vertical integration of Equations (9) and (30) constitute the simplified wave
frequency dispersion relations. As the result of introducing the vertical mean group
velocity, according to Equation (12), it can be expressed as follows:

⇀
Cg = (CgH , Cg3) =

 ( 1
ĤN

∫ 0
−ĤN

√
N̂2

3 −ω2dx3)
2

ωk
2 kH ,−ω2 − f 2

ωk
2 k3

, (31)

Obviously, the phase velocity
⇀
C =

(
CH , C3

)
=
(

ω
k

kH
k

, ω
k

k3
k

)
and the above group

velocity also satisfy
⇀
C ·

⇀
Cg = 0 in accordance with the classical theories. The horizontal

apparent wavelength and phase velocity are defined as λ
ap
H = 2π

kH
, Cap

H = ω
kH

, which will be
calculated and compared with MODIS retrieved ones for semidiurnal internal tide with the
period of 12.42 h in the Sulu Sea and Celebes Sea.

3.1.2. MODIS Retrieved Parameters and Comparison with Modeled Results

The MODIS survey identified significant internal wave activity in the Sulu and Celebes
Seas. Figure 3 is the Aqua-MODIS image acquired on 10 October 2018 at 5:20–5:25 UTC
that shows internal wave signatures originated in (or near) the Sulu Archipelago, with
5 groups of wave packets propagating across the Sulu Sea to the northwest and 4 groups
propagating across the Celebes Sea to the southeast. The apparent phase velocity can
be retrieved through the TMI (Tidal Period Images) method [11] based on the distance
between two successive wave packets, which can be obtained directly from the image.
The mean velocities are 2.26, 2.88 m/s in the Sulu Sea and Celebes Sea, respectively. The
corresponding retrieved parameters to wave packets are listed in Table 1.
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Table 1. MODIS retrieved parameters compared to modeled ones in the Sulu Sea and Celebes Sea.

Area Internal Waves First Crest Line Length
(km)

Wavelength
(km)

Apparent Phase Velocity
(m/s)

MODIS Model MODIS Model

Sulu Sea

Packet 1 126.79 102.14 52.03 2.28 1.17
Packet 2 173.12 104.97 122.90 2.35 2.75
Packet 3 210.11 99.34 84.49 2.22 1.89
Packet 4 263.93 97.34 119.10 2.17 2.67
Packet 5 367.38 - -

Celebes Sea

ISW 1 57.94 121.40 139.80 2.71 3.13
ISW 2 251.83 140.81 159.50 3.15 3.57
ISW 3 316.84 124.62 137.20 2.79 3.08
ISW 4 248.71 - -

Figure 4a–c show the modeled horizontal wavelength λ
ap
H for mode 1, 2 and 3 of

semidiurnal internal tide, in which the subgraph colorbar is different for clarity. It indicates
that the wavelength of mode 2 agrees well with the MODIS retrieved ones, while the
other two are too larger or smaller. In Figure 4b, the spatial distribution of wavelength
is homogenous in the Celebes Sea with the quantity of approximately 140 km, but varies
much in the Sulu Sea from 70 km to 140 km. It is evident that this responds to the varied
terrain, especially in the shallow water area. Figure 5 shows the modeled phase velocity
Cap

H of mode 2 in the Sulu Sea and Celebes Sea. Similarly, it varies from 1.8 m/s to 3.0 m/s
in the northwestern Sulu Sea and reaches up to 3.4 m in the central and eastern region,
which is a little larger than the MODIS retrieved ones listed in Table 1. However, in most of
the Celebes Sea, it has a uniform velocity of approximately 3.0 m/s, which agrees well with
the MODIS retrieved ones. The modeled wavelength and phase velocity of mode 2 are
also listed in Table 1 near the corresponding locations of MODIS observations. Both are
relatively consistent except for Packet 1 in the Sulu Sea, which is mainly due to the varied
terrain in the offshore area with coarse resolution of our model.
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The modeled group velocity CgH of mode 2 in the Sulu Sea and Celebes Sea is also
calculated and distributed in Figure 6, which has similar properties as the phase velocity
interpreted above. Its characteristic scale is about 2.0–3.5 m/s for semidiurnal internal tide
in deep water area. Three-dimensional group velocity plays a key role in the propagation
of internal wavenumber spectrum, which will be discussed below.
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3.2. Analysis of Spectral Propagation

We wish to explore the internal wave spatial propagation behavior; the integral of
internal wavenumber spectrum at any depth layer is presented for further conveniently

interpreting, i.e., E =
t

⇀
K

E
(
⇀
k
)

dk1dk2dk3 and the three-dimensional unit vector of spectral

mean wave direction is defined as:
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 (32)

In order to examine the applicability of the characteristics set computation model
stated above, the initial GM75 spectrum [29] is set radially in the Sulu Archipelago with two
major directions, northwest to the Sulu Sea and southeast to the Celebes Sea. The spectral
propagation can be considered and reduced to the following two successive stages: P1
and P2: During the first stage P1, the wavenumber spectrum mainly propagates vertically
with the low horizontal group velocity near the Sulu Archipelago, but reflects at surface
and bottom frequently, so the mean wave direction appears as much scattering (Figure 7).
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During the second stage P2, the wavenumber spectrum propagates thoroughly across the
deep water area in the Sulu Sea and Celebes Sea; besides reflecting at surface and bottom,
the mean wave direction concentrates in an orderly manner (Figure 8). Furthermore,
the refraction of bottom topography considered in Equations (15)–(17) and (19) plays a
perceptible role in the western and eastern offshore areas of the Sulu Sea and the western
offshore area of the Celebes Sea. Figure 8b indicates that internal waves also propagate
affluently to the northeast in the Sulu Sea, as has previously been found from satellite
observations [30,31]. However, the western propagating waves detected by [8] are not
simulated here in the Celebes Sea, which needs to be further studied in the future.

Figure 7. Spatial distribution of the integral of wavenumber spectrum (shade) and the spectral mean
wave direction (arrows) at the depth of 20 m layer and 100 m layer during the first stage P1: (a) 20 m
layer; (b) 100 m layer.
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4. Discussion

Fine resolution, large swath MODIS or SAR imagery has the ability to survey the
properties of internal wave field evolution and applicability to interpret and verify the
inherent dynamic mechanisms of wavenumber spectral propagation. The complicated
characteristics inlaid scheme is an efficient way to simulate the internal wave propagation.
In this study, a characteristics set computation model for internal wavenumber spectra is
proposed for complicated offshore environments. The refraction of current shear instability,
bottom topography and the reflection at surface and bottom were tentatively considered in
the computational scheme. A rather cautious derivation was employed for the interaction
dynamics which dominates the wave internal and external properties. However, there are
still other processes, such as the enhancement near the turning depth or latitude [32–34]
which are not considered here, which will be studied later.
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Model grid discretization and computational configuration were designed for numeri-
cal experiments in the Sulu Sea and Celebes Sea. The modeled horizontal wavelength λ

ap
H

and phase velocity Cap
H for mode 2 of semidiurnal internal tide agree well with the MODIS

retrieved ones. Spatial distributions indicate that these parameters vary much in the Sulu
Sea but homogenously in the Celebes Sea, which is largely due to the former varied terrain
in the northern offshore. In situ survey data are needed for further comparison with the
modeled results.

Numerical spectral propagation experiments indicate that after the first distracting
stage near the Sulu Archipelago, the waves propagate concentrately in an orderly manner in
the deep water area, in which the reflection at surface and bottom plays an important role in
long-range propagating and the refraction of bottom topography plays a perceptible role in
the offshore areas. The internal waves also propagate affluently to the northeast in the Sulu
Sea. These numerical results agree with the previous MODIS/SAR imagery identifications.

5. Conclusions

Packets of internal waves propagating in the seas are common features detected by
large amounts of satellite imagery. A characteristics set computation model for internal
wavenumber spectra is proposed for complicated offshore environments to interpret fur-
ther the propagation physics of internal waves. The refraction of current shear instability,
bottom topography and the reflection at surface and bottom are attentively considered in
the complicated characteristics inlaid scheme. Theoretical analysis and numerical model-
ing were implemented in the Sulu Sea and Celebes Sea and evaluated with the MODIS
retrieved internal wave parameters. The results suggest that the original characteristics set
computation model for internal wave spectra can be used widely and will be helpful in
improving the understandings of generation, dissipation, nonlinear wave-wave interaction
and mixing process of internal waves.
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