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Abstract: Globally consistent long-term radar measurements are imperative for understanding the
global climatology and potential trends of convection. This study investigates the consistency of
vertical profiles of reflectivity (VPR) and 20-dBZ echo-top height (Topht20) between the two precip-
itation radars onboard the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation
Measurement (GPM) satellites. Results show that VPR coincidently observed by the TRMM’s and
GPM’s Ku-band radar agree well for both convective and stratiform precipitation, although certain
discrepancies exist in the VPR of weak convection. Topht20s of the TRMM and GPM are consistent
either for coincident events, or latitudinal mean during the 7-month common period, all with biases
within the radar range resolution (0.1–0.2 km). The largest difference in the Topht20 between the
TRMM’s and GPM’s Ku-band radar occurs in shallow precipitation. Possible reasons for this dis-
crepancy are discussed, including sidelobe clutter, beam-mismatch, non-uniform beam filling, and
insufficient sampling. Finally, a 23-year (1998–2020) climatology of Topht20 has been constructed
from the two spaceborne radars, and the global mean Topht20 time series shows no significant trend
in convective depth during the last two decades.

Keywords: TRMM; GPM; precipitation radar; vertical profiles of reflectivity; radar echo-top height;
convection

1. Introduction

Convection is not only the major trigger of severe weather including extreme precipi-
tation, large hail, intense lightning, damaging winds, etc. [1–5], but also plays an important
role in the global circulations of water mass and energy [6,7]. Furthermore, intense con-
vection with overshooting top is a major contributor to the exchange of water vapor and
chemical species from the troposphere to the stratosphere [8–10]. Under global warming,
the frequency and intensity of intense convective storms have increased over many re-
gions around the world during the last few decades [11,12], and their increasing trends
are projected to continue [13]. So far, the observed trends of intense convection are only
based on observations of indirect convective proxies such as lightning and extreme surface
precipitation [14–18]. Though passive satellite remote sensing measurements including
Infrared and passive microwave provide useful information about the vertical development
of convection, they display great uncertainty regarding storm heights because brightness
temperature also depends on the surface emissivity, atmospheric temperature, and humid-
ity [19–21]. Therefore, a globally consistent long-term dataset on the vertical structure of
convective storms is crucial in better understanding the nature of intense convective storms
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and quantifying their long-term trends in the future. The precipitation radars onboard the
Tropical Rainfall Measuring Mission satellite (TRMM, operated from December 1997 to
April 2015; [22]) and its successor, Global Precipitation Measurement (GPM, launched in
February 2014 and in operation since then; [23]) mission, together provide nearly 25 years
of three-dimensional (3D) radar measurements and are expected to collect convective ob-
servations for years to come. Obviously, the combined TRMM-GPM precipitation radar
data will be a precious legacy for climate research regarding convective storms.

The TRMM-GPM precipitation radar data have been widely used to investigate the char-
acteristics of various convective storms on both regional and global scales, including intense
convection [6,24,25], extreme precipitation [26,27], mesoscale convective systems [28–31], and
shallow or warm-rain precipitation systems [32]. Among many precipitation radar variables,
the echo-top height of a certain reflectivity threshold is the most straightforward in representing
how tall the convection develops [33,34]. For example, the 20-dBZ echo-top height represents
the maximum height that the precipitation-size particles are lofted by the updraft [21,35]. This
proxy has often been considered an indicator of either deep convective cells or shallow convec-
tion [36–39], including tropical cyclone hot towers [40,41]. It has also been applied in identifying
convection overshooting the tropopause, which not only promotes the troposphere-stratosphere
transportation of water vapor and chemical species [8,9], but also generates strong local tur-
bulence above the precipitation cloud top that threatens aviation safety [42]. Meanwhile, the
20-dBZ echo-top height over the tropical ocean shows significant seasonal and intraseasonal
variations associated with summer monsoon [25] and Madden–Julian Oscillation [43], as well
as diurnal variations [44]. However, almost all the related analyses were carried out using
observations from the TRMM or GPM solely, and the benefits of combining the TRMM and
GPM data for an extended convective climatology have rarely been explored. Nevertheless,
the consistency of the vertical precipitation structures, including echo-top heights between the
TRMM/GPM Ku-band radars, is still unknown.

Surface precipitation estimates from the TRMM/GPM Ku-band radars agreed well
with each other [45,46], although certain discrepancies between vertical precipitation pro-
files were also reported [47]. Takahashi and Fujinami [48] disclosed an increasing frequency
of heavy precipitation along the Meiyu-Baiu front over the last 22 years with the combined
surface precipitation from the TRMM and GPM. The above comparison and application
of Ku-band radar observations from the TRMM and GPM mainly focus on surface pre-
cipitation. Yet, as an important proxy of the intensity of precipitating clouds [6,21], the
coherence of precipitating cloud top heights between both radars have not been evaluated.
Although the tallest storms do not always correspond to the heaviest rainfall rates [26], the
contribution of total precipitation and natural disasters are mainly connected to precipi-
tation clouds with high tops [29]. In consideration of the updated radar sensitivity and
algorithms as well as their more than two decades of observations of global precipitating
clouds in total [49], the goals of this study are: (1) examine the consistency of vertical radar
profiles and 20-dBZ echo-top heights from the TRMM/GPM Ku-band radars; (2) construct
and examine the extended climatology of 20-dBZ echo-top heights through combining
measurements from the two spaceborne radars.

The structure of this study is organized as follows: Section 2 introduces the data
preparations of Ku-band radars from both satellite platforms and the details of the three-step
methodology for the investigation. Section 3 depicts the results from each step according to
the investigation methodology on different spatiotemporal scales. Section 4 includes a short
discussion about the reasons for the long-term climatological difference of echo-top height
between the two Ku-band precipitation radars. The last section concludes the findings of
this study.

2. Data and Methods
2.1. Datasets

The datasets from the TRMM 2A.PR (TRMM_PR, hereafter) version 8 (V8) and the
Normal scan Swath (NS) of GPM 2ADPR (GPM_KuPR, hereafter) version 06A (V06A) are
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employed in this study. The attenuation of Ku-band radar reflectivity caused by heavy
precipitation and cloud water has been well corrected [50,51]. The TRMM_PR V8 and
GPM_KuPR V06A have been calibrated with the same calibrator and share a similar data-
processing algorithm [52]. Therefore, it is fair to use them for comparison. Note that the
newest version of the GPM (V07) dataset released on 6 December 2021, is not used here,
because its corresponding version of the TRMM dataset (possibly TRMM V9) has not
been released (https://www.eorc.jaxa.jp/GPM/en/archives.html, accessed on 10 April
2022). The TRMM_PR V8 and GPM_KuPR V06A share nearly the same data specifications,
especially after the orbit boost of the TRMM in August 2001 (Table 1). Note that the
TRMM PR has a slightly finer horizontal resolution before the boost (4.3 km) than after
(5 km). Additionally, GPM_KuPR is expected to have higher sensitivity and thus lower
minimum detectable reflectivity than the TRMM_PR [51,53]. Both the TRMM_PR and
GPM_KuPR have the same vertical resolution, as the range resolution in the TRMM_PR V8
has been updated to 0.125 km with 176 vertical levels after using the same data processes
as the GPM_KuPR V06A [54]. It should be noted that the original range resolution of the
TRMM_PR is 0.25 km [23].

Table 1. Main nominal specifications of the TRMM_PR V8 and GPM_KuPR V06A.

Instrument TRMM PR V8 GPM KuPR V06A

Frequency (GHz) 13.8 13.6
Altitude (km) 403 (350) † 407

footprint 49 49
Incidence angle (◦) 17 17

Inclination angle (◦) 35 65
Horizontal resolution (km) 5 (4.3) † 5

Swath width (km) 247 (215) † 245
Vertical resolution (m) 125 125

Number of vertical levels 176 176
Minimum detectable reflectivity (dBZ)

[and rain rate (mm h−1)] 18 [0.5] 18 [0.5]

† Specifications before the TRMM’s orbit boost in August 2001 are noted in parentheses.

The near-surface radar reflectivity (i.e., nearSurfdBZ) is used to select pixels with
detectable surface precipitation. Considering the higher sensitivity of the GPM_KuPR than
that of the TRMM_PR [51,53], the minimum reflectivity threshold of 13 (18) dBZ for the
GPM_KuPR (TRMM_PR) is adopted for the data quality-control to eliminate unreliable
data, which only account for less than 0.005% of the total samples. The vertical reflectivity
profiles are attenuation-corrected (i.e., zFactorCorrected), and the 20-dBZ echo-top height
(i.e., Topht20) is defined as the maximum height of 20-dBZ reflectivity within each profile.

Samples are further classified by land surface types and rain types. Only land and
ocean surface types are considered since samples belonging to other surface types (e.g.,
coast) are rare. Precipitation samples are separated into convective and stratiform types
using the rain type classification products from the TRMM_PR and GPM_KuPR. The GPM
DPR provides two kinds of rain type products; one is based on single frequency (Ku_only
or Ka_only), and the other uses dual frequency (Ku and Ka). To be consistent with the
TRMM_PR, the single frequency (Ku) product is used here. The single frequency rain
type algorithm consists of both the vertical profiling method (considering vertical precip-
itation structures) and the horizontal pattern method (based on horizontal precipitation
gradients) [55,56]. A side-lobe peak misrecognition and a heavy ice precipitation problem
have been fixed in the TRMM_PR V8 and GPM_KuPR V06A [51,57]. Although there are
uncertainties in rain type classification, the misclassification rate is quite low and hence has
negligible impact on the following analyses [51].

https://www.eorc.jaxa.jp/GPM/en/archives.html
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2.2. Methodology

The study region is constrained to the TRMM-GPM overlapped latitudes from 36.5◦S to
36.5◦N. The investigation consists of three steps, called coincident comparison, overlapping
period comparison, and extended climatology.

Coincident comparison: only pixels from the TRMM_PR and GPM_KuPR that matched
temporally and spatially (so-called coincident) are included, aiming to evaluate their con-
sistency in detecting the same precipitation events. Coincident event (pixel) pairs between
the TRMM_PR and GPM_KuPR are sought out during their common in-service period
from 8 March to 7 October 2014. Since the TRMM satellite began to descend on 8 October
2014, the measurements of the TRMM_PR after this time are excluded in this study. The
vertical profiles of reflectivity (VPR), as well as the Topht20s, are further screened out
from coincident precipitation events with nearSurfdBZ above 18 dBZ, so that comparisons
between the TRMM_PR and GPM_KuPR are conducted on the exact same samples. Here,
a coincident event pair is defined as two-radar pixels that are within a 2.5 km distance and
a 15 min observational time interval [45,46,58]. These time and distance interval thresholds
are defined based on sensitivity experiments. Specifically, the Pearson correlation coeffi-
cient (PCC) and the sample numbers of coincident event pairs are calculated as a function
of time and distance interval (Figure 1). Obviously, the increase of the PCC is included in
the compensation for the decrease of the sample numbers. The selection criteria (2.5 km
and 15 min spatiotemporal intervals) have the premium balance between the PCC (0.83)
and sample number (70% of the total samples of sensitivity experiments).
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Figure 1. The matrix of Pearson correlation coefficients (PCCs, shaded) and the percentage of
coincident Topht20s (contours, begins at 50%), as a function of distance and time interval between
the TRMM_PR and GPM_KuPR. The resolutions of distance and time interval are 0.1 km and 1 min,
respectively. The purple star represents the criteria in this study.

Overlapping period comparison: all Topht20 pixels (either coincident or not) from
each radar during their overlapping in-service period (March to October 2014) are included.
This comparison aims to examine the consistency between the TRMM_PR and GPM_KuPR
of the Topht20 of convection occurring within the same overlapping period. The p_value
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estimated by the Student’s T-test approach is adopted to evaluate the significant difference
(when p_value < 0.05) in Topht20 between the two radars.

Extended climatology: all Topht20 pixels from the TRMM_PR between 1 January 1998,
and 7 October 2014, and from the GPM_KuPR between 8 March 2014, and 31 December
2020, are combined for an extended time series. This is one of the important outcomes
derived from this study, which will be very useful for future climate research, such as
research into interdecadal (e.g., long-term trend) or interannual (e.g., El Niño-Southern
Oscillation (ENSO)) variation of convection over a region or the globe.

3. Results
3.1. Coincident Precipitation Events Comparison

There are 3,929,231 coincident pixel pairs (either raining or not) from the TRMM_PR
and GPM_KuPR, including 98,832 precipitation VPR and 97,619 Topht20 events. Samples
over the ocean are more frequent than those over land (Figure 2). Coincident events are
more concentrated over the deep tropics (10◦N–20◦N or 10◦S–20◦S), where convection is
the most frequent. Fewer coincidences are found near the equator, where orbital satellites
have the largest revisiting time intervals. More coincident events are found in the Northern
Hemisphere than in the Southern Hemisphere, mainly because it is a wet (dry) season
in the Northern (Southern) Hemisphere during the analyzing period (March to October).
Coincident Topht20s are somewhat evenly distributed over rainy regions in the tropics,
such as the Intertropical convergence zone (ITCZ), the Pacific-Indian Ocean warm pool, the
Asian Monsoon, and the South American Monsoon.
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Figure 2. Global distribution of coincident events resampled to a spatial resolution of 2◦ × 2◦.
(a) All coincident events (with and without surface precipitation); (b) coincident Topht20s (with
surface precipitation).

Figure 3 shows a precipitation system over the Northwest Pacific Ocean (to the east of
the Philippines) coincidently observed by the TRMM_PR and GPM_KuPR on 22 March
2014. The time interval between the TRMM_PR and GPM_KuPR is about 4 min. The near-
surface precipitation distributions between the two radars are nearly identical within the
overlapping region, and the heavy precipitation centers (nearSurfdBZ above 40 dBZ) also
match perfectly (Figure 3a,b). A vertical cross-section through the most intense convective
cores is further drawn (Figure 3c,d). Again, the two radars share very similar vertical
structures from many perspectives, such as a bright-band (near 5 km), a convective tower
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(>12 km), uneven echo-top heights near 7–8 km, etc. Of course, there are some notable
differences that may come from observing the time interval between the two radars (the
GPM_KuPR is 4 min earlier). Taking the deepest convective core (300–350 km from point A)
as an example, the GPM_KuPR shows both a higher radar reflectivity tower (e.g., 20 dBZ
echo-top height) and heavier precipitation below the freezing level than the TRMM_PR.
This is possibly because the GPM_KuPR observed the peak intensity of the convective core,
and the TRMM_PR detected the slightly weakening precipitation core several mins later.
Besides, a 1–2 km vertical layer of weak reflectivity (grey regions with reflectivity <20 dBZ)
on the top of precipitation is shown in the GPM_KuPR but not the TRMM_PR, which is
due to the higher sensitivity of the GPM_KuPR [51,53].
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Figure 3. A precipitation system observed by the TRMM_PR (left column, orbit #93121, at about
14:00 UTC) and GPM_KuPR (right column, orbit #356, at about 13:56 UTC) on 22 March 2014.
(a,b) The nearSurfdBZ and (c,d) the VPR (corresponding to the dashed line highlighted by points
A and B). The solid lines represent the orbit edges of the TRMM_PR/GPM_KuPR in (a,b) and vice
versa for the dotted lines. The coincident regions are highlighted within both solid and dotted lines.

Figure 4 shows the composited vertical profiles of coincident precipitation VPR as a
function of percentile and precipitation type over land and ocean. When all precipitation
types are included, VPR from the TRMM_PR and GPM_KuPR are close to each other,
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with a difference of <0.5 dBZ at all altitudes (Figure 4a,d). The GPM_KuPR VPR still
show reflectivity values smaller than 18 dBZ, due to the higher radar sensitivity of the
GPM_KuPR. VPR between the TRMM_PR and GPM_KuPR also agree well after being
further separated into convective and stratiform precipitation types (the second and third
columns in Figure 4). The convective VPR show larger differences between the two radars
(the second column), while the stratiform VPR match perfectly (the third column). Except
in Figure 4b, the median convective VPR between two radars are the closest. GPM_KuPR
shows larger reflectivity values for the moderate-to-deep precipitation VPR (75% and
95%). For the convection over land (Figure 4b), the GPM_KuPR is almost higher than the
TRMM_PR at each altitude through all precipitation levels. The largest discrepancy is up to
2 dBZ near 3 km for median VPR. Overall, the differences in VPR between the two radars
are acceptable (mostly <0.5 dBZ), as they are not perfectly matched in time and space.
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Figure 4. The coincident precipitation vertical profiles of reflectivity from the TRMM_PR (solid) and
GPM_KuPR (dashed) in percentiles of 25% (yellow), median (green), 75% (blue), and 95% (red) over
(a–c) land and (d–f) ocean. VPR are subdivided by ALL (first column), convective (second column),
and stratiform (third column) rain types with a time interval of up to 15 min.

Since this study focuses on the Topht20, analyses hereafter will be on Topht20. Figure 5
shows the distribution (density) of coincident Topht20 from the GPM_KuPR (x-axis) versus
the TRMM_PR (y-axis), as a function of land/ocean surface types and convective/stratiform
rain types. Generally, Topht20 agrees well between the two radars, i.e., high sample density
concentrates mainly along the diagonal line. When all kinds of Topht20 are considered, their
Pearson correlation coefficients (PCCs) are quite high (around 0.8), and their biases are only
0.1–0.2 km, which is within the range resolution of both radars (Figure 5a). Topht20 over
the ocean shows smaller difference (bias = 0.14 km) between GPM_KuPR and TRMM_PR
(Figure 5c) than over land (bias = 0.25 km, Figure 5b). Convective precipitation over land
shows the largest bias (0.34 km) on Topht20 between the two radars (Figure 5e), while its
counterpart over the ocean displays the best PCC and the lowest bias (Figure 5f). This is



Remote Sens. 2022, 14, 1987 8 of 17

possibly because convective cells over land develop/move more rapidly than stratiform
precipitation or convection over the ocean. However, the biases of all subgroups are lower
than the original vertical resolution of TRMM_PR (except for the convective rain type
over land). In short, TRMM_PR and GPM_KuPR show great consistency in detecting the
Topht20 of various types of precipitation over both land and ocean.
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The probability distribution functions (PDFs) of coincident Topht20 from the TRMM_PR
and GPM_KuPR are further constructed as a function of altitude (Figure 6). Again, the PDFs
of coincident Topht20s are fairly well matched between the two radars, in terms of both
magnitude and vertical structure. The stratiform precipitation shows a dominant peak (at
5.5 km altitude) near or slightly above the freezing level over both land and ocean (blue lines).
The convective precipitating clouds exhibit double peaks at 3.5 km and 7 km over land (2.6 km
and 5.8 km over the ocean), associated with the shallow and moderate-to-deep convective
modes widely recognized in the tropics [39,43]. Subtle differences are found when Topht20
PDFs are separated into convective and stratiform precipitation types. The TRMM_PR shows
a higher frequency of shallow convective precipitation (<4 km) but a lower frequency of
moderate-to-deep convection (>7 km) over both land and ocean.
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Figure 6. The probability distribution functions (PDFs) of coincident Topht20s from the TRMM_PR
(solid lines) and GPM_KuPR (dashed lines) over (a) land and (b) ocean. Black, blue, and red lines
represent all, stratiform, and convective rain types, respectively.

3.2. Overlapping Period Comparison

All Topht20 samples from the TRMM_PR and GPM_KuPR during their common oper-
ation period are analyzed in this section. There are 7.0 (34.2) and 4.6 (17.5) million Topht20
samples within the research region over land (ocean) from the TRMM_PR and GPM_KuPR,
respectively. The sample ratio of convective precipitation to stratiform precipitation is
about 1:2.9 (1:1.8) over land (ocean) for both radars.

The PDFs of the Topht20 during the overlapping period as a function of altitude are
shown in Figure 7. They show very similar vertical structures as coincident Topht20 PDFs.
However, shallow convection (red curves under 4 km in Figure 7) accounts for a larger
fraction during the overlapping period than the coincident events (red curves under 4 km
in Figure 6) over both land and ocean. This is possibly because a large amount of the short
lifecycle of shallow convection [59] has a low chance of being detected by two spaceborne
radar platforms coincidently. The Topht20 PDFs of the TRMM_PR and GPM_KuPR during
the overlapping period agree even better than those of coincident events, likely due to a
much larger sample. The Topht20 PDFs of “ALL” and stratiform rain types are perfectly
overlapping over both land and ocean. The exception exists around 4 km over ocean (black
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curves in Figure 7b) where the Topht20 PDF of the TRMM_PR is higher than that of the
GPM_KuPR. Besides, the Topht20 of convective precipitation over land shows some small
differences between the TRMM_PR and GPM_KuPR.
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Figure 7. Same as Figure 6, but for the PDF of Topht20 during the overlapping period over (a) land
and (b) ocean.

Figure 8 shows the latitudinal distributions of Topht20 during the overlapping period
of different rain types over land and ocean. In general, the latitude-mean Topht20s over
most latitudes agree well between the two radars. The difference of the mean Topht20s
in the Northern Hemisphere (0.1 km) is smaller than that in the Southern Hemisphere
(0.2 km). However, a minimum p_value of 0.138 for the mean value of all subsets in Figure 8
via the Student’s t-test method suggests that there is no significant difference of Topht20s
between the two radars.

Topht20 samples are further categorized into shallow (Topht20 < 4 km), moderate
(4 km ≤ Topht20 < 8 km), and deep (Topht20 ≥ 8 km) groups (Figure 9). It is worth noting
that only tiny differences of mean value are found from moderate and deep convection
events (smaller than 0.03 km) with corresponding standard deviation almost overlapping,
but the means from shallow precipitation are notably lower from the GPM_KuPR than from
the TRMM_PR (around 0.2 (0.15) km over land (ocean)) throughout the latitudinal ranges.
This may be related to the effects of the sidelobe clutter from the GPM_KuPR [47,60] and
the beam-mismatch from the TRMM_PR [61,62]. Although the up-to-date method has been
applied to remove sidelobe clutter from the GPM_KuPR [60], the high sensitivity of the
GPM_KuPR still causes this effect at specific angle bins and altitudes [47] which could
result in the misidentification of precipitation. Meanwhile, the beam-mismatch from the
TRMM_PR after the orbit boost could lead to the missing of shallow precipitation because
of the degradation of the signal-to-noise ratio [61,62]. This also explains why the South-
ern Hemisphere shows greater uncertainty on Topht20s than the Northern Hemisphere
(Figure 8), as shallow precipitation dominates most areas in the Southern Hemisphere such
as the cold tongue and the southern Atlantic Ocean [6,29].
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Figure 8. The mean (lines) and standard deviation (shades) of Topht20 during the overlapping period
as a function of latitudes (2◦ resolution) from the TRMM_PR (blue) and GPM_KuPR (red) over (a–c)
land and (d–f) ocean. Samples are subdivided by ALL (first column), convective (second column),
and stratiform (third column) rain types.
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3.3. Extended Long-Term Climatological Comparison

Figure 10 shows the monthly mean Topht20 time series from the TRMM_PR and
GPM_KuPR during 1998–2020. Generally, there is no evident trend on Topht20 over
various latitude bands from the TRMM era (1998–2014) and the GPM era (2014–2020)
with an annual mean difference of less than 0.15 km between these two periods. Of
course, it warrants further study in investigating the long-term Topht20 variations on the
regional scale or from the perspective of certain climate regimes. During the common
in-service period (March–October, 2014), the monthly-mean Topht20s (M_Topht20s) from
both radars are very consistent over ocean, but there are certain discrepancies over land
(mostly 0.2–0.3 km). The p_values (via the Student’s T-test) of Topht20s from the TRMM_PR
and GPM_KuPR are higher than 0.175, indicating that the variations of M_Topht20s are not
statistically significant between the TRMM_PR and GPM_KuPR. The maximum difference
appears over the subtropics in the Southern Hemisphere (about 0.7 km), where Topht20
samples are smaller and dominated by shallow convection.
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other words, it only represents how high the convection will reach when it occurs but not 
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Figure 10. Time series (1998–2020) of monthly averaged Topht20 from the TRMM_PR (blue lines)
and GPM_KuPR (red lines) within the latitudinal belt (a,b) greater than 20◦N, (c,d) between 0◦–20◦N,
(e,f) between 0◦–20◦S, and (g,h) greater than 20◦S over land (dashed lines) and ocean (solid lines).
Panels in the right column highlight the details in 2014. The annual mean Topht20s are denoted by
triangles and dots over land and ocean, respectively. The mean values of Topht20s over land (ocean)
from the TRMM_PR (1998–2014) and GPM_KuPR (2014–2020) are marked by text.
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Figure 11 displays the global distribution of the mean Topht20 by combining Topht20s
from the TRMM_PR (1998–2014) and GPM_KuPR (2014–2020), and the difference between
the two radars. The mean Topht20s over land are mostly above the freezing level (>6 km);
much higher than those over the ocean (Figure 11a). The highest mean Topht20s (>8 km)
occur over high terrain such as the Tibet Plateau and the Andes Mountains, where the
actual precipitation top from the ground in these regions may be only 5–6 km. Elevated
Topht20s also occur in arid regions including the Sahara Desert in Africa and the West
Jaz Mountains in the Arabian Peninsula, likely due to strong surface heating over these
regions. Topht20s over the Pacific-Indian warm pool or the ITCZ oceans are around 4–5 km,
while they are extremely shallow (2–3 km) over the cold tongue in the southeast Pacific
Ocean and southern Atlantic Ocean. Note that this climatological mean is conditional on
precipitation with detectable echo tops (20 dBZ). In other words, it only represents how high
the convection will reach when it occurs but not how frequently the convection happens.
This is possibly why the well-known hotspots of extreme convection are not shown in this
distribution map, as shallow convection may also be frequent over those regions.
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Figure 11. Global distribution (1◦ × 1◦) of (a) mean Topht20 from the combination of the TRMM_PR
and GPM_KuPR during 1998–2020, (b) Topht20 difference of the GPM_KuPR (2014–2020) minus
TRMM_PR (1998–2014), and (c) large-difference grids (black points) with absolute difference value
greater than its standard deviation and 0.5 km threshold.

To further quantify the climatological consistency of Topht20 between the TRMM_PR
and GPM_KuPR, the standard deviation of the TRMM_PR (SD_PR) is calculated in each grid
box. Grid boxes with Topht20 difference greater than the SD_PR and 0.5 km threshold are
thought to be significant and are labeled with black points in Figure 11c; these account for
only 6% of the total grids (1519). The majority of these large-difference grids are located in
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shallow convective regions (averaged Topht20 < 4 km). As pointed out earlier (Section 3.2),
the largest discrepancy in Topht20 between the two radars appears in detecting shallow
convection, likely due to the issues of sidelobe clutter in the GPM_KuPR and beam-mismatch
in the TRMM_PR. Moreover, shallow convection is usually isolated in nature [59], which
may easily cause non-uniform beaming issues and increase the uncertainty of estimating the
radar echo-top height (Topht20). Last but not least, significant difference occurs in grids with
relatively limited samples (Figure 12); therefore, the insufficient sampling also contributes to
the discrepancy in Topht20 between the GPM_KuPR and TRMM_PR.
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Figure 12. Sample number of Topht20 (shaded) with a spatial grid resolution of 1◦ × 1◦ from (a) the
TRMM_PR (1998–2014) and (b) the GPM_KuPR (2014–2020). Grids with a sample >20,000 are not
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4. Discussion

A long-term climatology/time series of precipitation echo-top height has been con-
structed by combining 23 years (1 January 1998–31 December 2020) of spaceborne radar
measurements from the TRMM_PR and the GPM_KuPR. The Topht20s from the TRMM_PR
and GPM_KuPR are also consistent from a longer-term climatological perspective, e.g.,
most of the grids show insignificant differences in the climatological mean Topht20s be-
tween the two radars. Only 6% of the grids in the globe exhibit significant discrepancies in
Topht20s observed by the two radars. Most of these biased grids are located over regions
dominated by shallow convection (Topht20 < 3–4 km). The effects of beam-mismatch from
the TRMM_PR and sidelobe clutter from the GPM_KuPR, and non-uniform radar beam
filling issue for shallow isolated convection, as well as the insufficient sampling in the arid
and convection-suppressed areas, could be responsible for this relatively large discrepancy
in the shallow precipitation. Caution should be used when combining observations from
the TRMM_PR and GPM_KuPR for the study of shallow precipitation.

5. Conclusions

The consistency of the VPR and echo-top heights between the TRMM_PR and GPM_KuPR
satellites has been evaluated. First, VPR and 20-dBZ echo-top heights (Topht20s) have been
compared for coincidently observed precipitation events by both radars. The coincident VPR
over both convective and stratiform rain types agree well between the two platforms, especially
for the VPR of moderate and deep convective events. The coincident Topht20s between
the TRMM_PR and GPM_KuPR are highly correlated, with biases within the radar range
resolution (0.1–0.2 km). PDFs of Topht20s as a function of height also matched well, e.g., the
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statistical characteristics of the bimodal (unimodal) PDF for convective (stratiform) rain were
well captured. Second, the latitudinal distributions of Topht20s during the overlapping period
are almost a superimposition, especially for the moderate and deep convection in both the
tropics and subtropics. The maximum discrepancy in the Topht20 between the two radars
occurs in shallow convection.

In conclusion, the analyses have demonstrated the climatological consistency of verti-
cal precipitation structure and convective echo-top heights between the TRMM_PR and
GPM_KuPR and provided guidelines in combining the TRMM_PR and GPM_KuPR vertical
profiles for long-term climate research on convection.
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