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Abstract: Algal blooms frequently occur in numerous lakes in China, risking human health and the
environment. In contrast, aquatic vegetation contributes to water purification. Due to the similar
spectral characteristics shared by algal and aquatic vegetation, both are hardly distinguishable in
remote sensing imaging, especially in turbid water bodies. To address this challenge, this study
constructed a method to effectively extract algal blooms and aquatic vegetation from the turbid water
bodies using Sentinel 2 images with high spatial resolution. Our results showed that the accuracy
of the extraction of vegetation information could reach 96.1%. Since this method combined the
vegetation extraction results from multiple indices, it effectively tackled the mis-extraction when only
the Floating Algae Index (FAI) or the Normalized Difference Vegetation Index (NDVI) is used in water
with high turbidity. By combining the image time series information with the natural phenological
characteristics of the aquatic vegetation and algal blooms, an improved Vegetation Presence Frequency
(VPF) was developed. It effectively distinguished algal blooms and aquatic vegetation without actual
measurement data. Based on the above method and process, the information of algal blooms and
aquatic vegetation was sufficiently distinguished in five typical lakes in China (Lake Hulun, Lake
Hongze, Lake Chaohu, Lake Taihu, and Lake Dianchi), and the spatial distribution was reasonably
mapped. The overall identification accuracy of aquatic vegetation and algal blooms using the
improved VPF ranged 71.8-84.3%. The spatial transferability test of the method in the independent
lakes with the various optical properties indicated the prospects of its application in other turbid
water bodies. This study should provide strong methodological and theoretical support for future
monitoring of algal blooms in turbid water bodies with vigorous aquatic vegetation, especially in the
absence of actual measurement data. This should have practical relevance for water environment
management and governance departments.
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1. Introduction

Two stable states exist in the lake, one in which phytoplankton dominate (turbid
water conditions) and the other in which macrophytes dominate (clear water conditions)
the system [1,2]. Whilst lakes in the natural state can experience transition from a clear,
nutrient-poor state to a eutrophic state with algal blooms, this natural process is generally
slow. Nevertheless, growing human activities in recent years have caused increasing lakes
to undergo a rapid increase in eutrophication [3]. The outbreak of algal blooms is an
obvious phenomenon when the eutrophication of water bodies reaches its highest stage.

Algal bloom is an outbreak of algae in the water ecosystem. Those that are harmful
to humans are known as harmful algal blooms (HAB), which include members of the
cyanobacteria, dinoflagellates, raphidophytes, haptophytes, and diatoms [4]. Freshwater
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blooms of harmful algae have been affecting public health and ecosystem services world-
wide [5,6]. It can disrupt the balance of the aquatic ecosystem, produce a foul smell, and
pose a serious threat to human health when the toxins produced by some species enter the
human body [4,7,8]. Remote sensing has the characteristics of being macroscopic, fast, real-
time, high-efficiency, low-cost, long-duration, and highly accurate. Therefore, it is widely
used in global algal bloom monitoring [6,9,10]. Nonetheless, the spectral characteristics of
algal bloom and aquatic vegetation remote sensing images are very similar and difficult
to distinguish. This makes it challenging for remote sensing monitoring to separate algal
blooms from aquatic vegetation. Many related studies have been conducted. For example,
hyperspectral data have been used to construct normalized spectral indices to distinguish
algal blooms, phytoplankton, submerged plants, and water bodies [11]. In another study,
the distinction between algal blooms and aquatic vegetation was achieved using an im-
proved Normalized Difference Water Index (NDWI) based on Landsat series images, due
to the fact that aquatic vegetation has a reflectance higher than algal blooms at shortwave
infrared [12]. Furthermore, the Vegetation Presence Frequency Index (VPF) used FAI to
extract vegetation and algal blooms and auxiliary data (e.g., frequency and water depth) to
distinguish between algal and aquatic vegetation in Lake Taihu [13]. Moreover, decision
trees were used to separate waters covered by cyanobacterial scums from those dominated
by aquatic macrophytes [14]. A medium resolution imaging spectrometer (MERIS) was
used to capture the unique reflectance spectrum characteristics of algae and cyanobacteria
to separate areas covered by algal and aquatic vegetation in Lake Taihu [15]. Although
these methods and models can distinguish between algae blooms and aquatic vegetation to
a certain extent, they are only applicable to individual lakes. In addition, these approaches
also require a huge amount of field-measured hyperspectral remote sensing reflectance
data to participate in the modeling.

Remote sensing images are increasingly used for identifying features due to the high
cost and time-consuming nature of field surveys. Despite numerous studies on vegetation
classification methods (e.g., decision trees [16]; maximum likelihood methods [17]; artificial
neural networks [18]; and unsupervised clustering [19]), they cannot be directly applied
to distinguish algal from aquatic vegetation because of the similar spectral characteristics
of algal blooms and aquatic vegetation. Moreover, it is difficult to separate them using
multispectral images. In practice, scholars usually artificially divide the algal bloom and
aquatic vegetation area according to the measured data or experience [20-22]. However,
in the absence of in situ data, it is hard to take away the influence of aquatic vegetation
growth on algae extraction directly. In addition to the influence of aquatic vegetation, the
highly turbid water bodies with large amounts of sediment can also interfere with algal
identification using remote sensing [23].

This paper describes a study to develop a model that can effectively identify and
differentiate algal blooms and aquatic vegetation in turbid lakes using remote sensing
images (without field measured data). Specific objectives are to: (1) realize the effective
extraction of algal blooms and aquatic vegetation from the highly turbid water bodies;
(2) establish a method to effectively distinguish algal blooms and aquatic vegetation with
the absence of actual measurement data; (3) test the spatial transferability of the method
in independent lakes with various optical properties and examine the spatial variations
of algal blooms in these lakes. The method of remote sensing monitoring of algal blooms
in turbid inland waters is extended, which does not rely on traditional measured data.
The model is spatially portable, which can provide strong methodological and theoretical
support for the future monitoring of algal blooms in turbid water bodies with vigorous
aquatic vegetation.

2. Materials and Methods
2.1. Study Areas

In this study, five large and representative lakes with frequent algal blooms were
selected. Figure 1 displays their locations and morphology. They are Lake Hulun, Lake
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Hongze, Lake Chaohu, Lake Taihu, and Lake Dianchi. They are located in different climatic
zones, and the detailed features of these lakes are described in Table S1.
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Figure 1. Locations and morphology of lakes and corresponding climatic zones. The blue lakes are the
five lakes used for modeling and the green ones represent the two lakes used for method validation.

To verify the spatial transferability of the method, two lakes in different climatic
regions were selected: (1) Taipingchi Reservoir in the Northeast Lake Region, and (2)
Lake Chenghai in the Lake Region of the Yunnan-Guizhou Plateau. Both lakes have a
rich distribution of aquatic vegetation and algal blooms. Taipingchi Reservoir is located
in the middle temperate climate zone, while Lake Chenghai is located in the subtropical
climate zone.

2.2. Remote Sensing Data

Sentinel 2 is a wide-width, high-resolution, multispectral satellite system that carries
the Multispectral Mapping Instrument (MSI) with 13 bands and ground resolutions of 10 m
(visible and NIR), 20 m (red-edge and SWIR), and 60 m in the atmospheric band. Sentinel
2 includes two satellites, A and B, with a revisit period of 5 days. The Sentinel 2 images
used in this paper are the surface reflectance products provided by the Google Earth engine
platform (https:/ /code.earthengine.google.com/, accessed on 25 November 2021). These
images had been atmospherically and radiometrically corrected and ready for use. In this
paper, 122 high-quality images (detailed in the supporting materials Table S2) with low
cloudiness were downloaded for Lake Hulun, Lake Hongze, Lake Chaohu, Lake Taihu,
and Lake Dianchi for the years 2020 or 2019. Since there were no significant algal blooms in
the images of Lake Hulun and Lake Hongze in 2020, we selected 2019 images; 2020 images
were selected for the other lakes.

2.3. Methods
2.3.1. Data Preprocessing

We used the frequency index to distinguish between algal blooms and aquatic vege-
tation. To address the issue of extracting vegetation information using only the Floating
Algae Index (FAI), which is not useful for water bodies with high concentrations of sus-
pended matter [24], we combined multiple indices to extract vegetation information. The
indices considered were the Normalized Difference Vegetation Index (NDVI), FAIL and
Normalized Difference Water Index (NDWI). The selection of indices and thresholds was
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assisted by an SPSS decision tree, which first determined the stern values for individual
indices and then constructed a decision tree to merge the extraction results of multiple
indices. Finally, the algal blooms and aquatic vegetation extracted by the decision tree were
entered into the calculation layer Lv of the VPF and assigned a value of 1 for the next step
of data processing. Based on the climatic zoning and the growth of the aquatic vegetation,
the period with the largest stable area of aquatic vegetation growth was selected as the
VPF time range for the calculation. Then, we delineated the VPF threshold based on the
distribution of algal blooms and aquatic vegetation, removed low-frequency algal bloom
distribution areas, and obtained the aquatic vegetation boundaries. Finally, we clipped the
algal blooms and aquatic vegetation areas extracted in the previous step with the extracted
aquatic vegetation boundaries. The area falling within the aquatic vegetation boundary is
aquatic vegetation; otherwise, it is algal blooms. The specific steps are descripted in detail
in Figure S1.

2.3.2. Accuracy Assessment

(1) The precision of the extracted algal bloom and aquatic vegetation areas was verified
by selecting validation points through visual interpretation and using a confusion matrix
to assess accuracy, with the overall accuracy expressed as P.

(2) The accuracy of the extracted aquatic vegetation areas was verified by creating
validation points evenly within the aquatic vegetation area and buffering a certain area
outward through the GIS fishing net tool, with about 100-200 points per lake. The points
were imported into Google Earth, and the accuracy verification was performed point
by point.

The accuracies of aquatic vegetation extraction can be expressed as:

PV/PW =T/(T + F) 1)

Pn =PV x PW @)

where PV and PW are accuracies within and outside the aquatic vegetation range, re-
spectively. T is the extraction of points within the aquatic vegetation range, where it was
verified that aquatic vegetation was growing, or within the buffer zone outside the aquatic
vegetation range, where it was verified that no aquatic vegetation was growing. F is the
point within the aquatic vegetation range without significant vegetation growth in the area
or within the buffer zone outside the aquatic vegetation range, where the occurrence of
aquatic vegetation was verified. Pn is the accuracy of aquatic vegetation extraction for
lake n.

(3) The overall accuracy was evaluated by multiplying the accuracy of the user of the
extracted vegetation information (both aquatic vegetation and algae) with the accuracy of
the aquatic vegetation boundaries.

PTn=P x Pn 3)

where PTn is the overall accuracy for lake n, P is the overall accuracy for vegetation
(both aquatic vegetation and algae) extraction, and Pn is the aquatic vegetation extraction
accuracy for lake n.

3. Results
3.1. Classification Index, Time Scale and Threshold Selection
3.1.1. Indices and Thresholds for Extracting Algal Blooms and Aquatic Vegetation

In total, the reflectance of 2000 points was obtained and calculated for the five studied
lakes, i.e., 1000 points for water bodies free of vegetation cover, and 1000 for algal blooms
and aquatic vegetation. A total of 80% of the points were used for modeling and 20% for
validation. The three indices with the highest classification accuracy selected by SPSS deci-
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NDVI

sion tree classification are NDVI, FAI, and NDWIRr_swir. Figure 2 presents the separations
between vegetation and water bodies according to three indices.
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Figure 2. (a) NDVI, (b) FAI and (c) NDWIg.swr values for water bodies compared to vegetation
(algal blooms and aquatic vegetation).

This section is divided into several subsections. It should provide a concise and precise
description of the experimental results, their interpretation, as well as key experimental findings.

A threshold was selected in the interval in which the classification accuracy was
greater than 95%. Next, the extraction results of multiple indices were merged. When
NDVI > —0.1 or FAI > 0.003 or NDWIRr_swir > 0, the point was classified as an algal bloom
or aquatic vegetation. The extracted algal blooms and aquatic vegetation points entering
the VPF calculation layer Lv and were assigned a value of 1. The decision tree for extracting
the vegetation signal is illustrated in Figure 3.

NDWIr-swr>0
|

YES | |NO
Vegetation NDVI>0

YES I NO
Vegetation FAI>0.003
YES | NO
Vegetation Water

Figure 3. Decision trees used to extract vegetation signals; variables used include NDVI, FAI, and
NDWIR swir-

3.1.2. Time Range for Calculating VPF

Based on climatic zone characteristics and lake aquatic vegetation phenology changes,
the time range for calculating VPF was chosen for each lake. In the temperate climate zone,
the growing season of vegetation generally lasts for 3-5 months, and in subtropical climate
zones, it lasts for 5-7 months. Lake Hulun, in the northernmost part, belongs to the middle
temperate climate zone characterized by cold winters and an ice-free lake surface from
May to November. The rest of the year, the lake surface is frozen. The aquatic vegetation
starts to grow in mid-May, the vegetated area continues to expand until late June, and
it peaks and stabilizes from July to September. The temperature drops in early October,
the vegetation withers, and the area shrinks. Lake Hongze, in a warm temperate climate
and with the lake surface frozen in winter—the vegetated area increases significantly from
May to June, stabilizes from July to September, and decreases rapidly after October. Lake
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Chaohu and Lake Taihu are close to each other and in the subtropical zone. The vegetated
area begins to expand in March, considerably large from May to October, peaks from July
to September, and decreases rapidly in November. The southernmost Lake Dianchi has a
warm, southern subtropical climate. The vegetated area does not change significantly. The
vegetated area increases in March, is relatively stable from April to October, and diminishes
from November to February. The vegetated area increases in March, is quite stable from
April to October, but small from November to February.

In this paper, the period when the vegetated lake area peaked and stabilized was used
to calculate the VPE. Accordingly, the period for calculating VPF was July—September for
Lake Hulun and Lake Hongze, May-October for Lake Chaohu and Lake Taihu, due to
frequent algal blooms in summer and fewer images in July-September, and April-October
for Lake Dianchi. Figure 4 shows the results of the VPF calculations for these periods.
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Figure 4. VPF values during periods with large areas of stable aquatic vegetation for (a) Lake Hulun,
(b) Lake Hongze, (c) Lake Chaohu, (d) Lake Taihu, and (e) Lake Dianchi in Sentinel 2 images. The
redder the area in the figure, the more frequently the vegetation signal has been present, the more
probable the area is to be aquatic vegetation.

Through visual interpretation, the VPF distribution in Figure 4 indicates that most
areas with VPF values greater than 0.8 are areas where aquatic vegetation occurred. How-
ever, in some areas where algal blooms frequently occurred, VPF values can reach 0.7.
Therefore, for lakes in which algal blooms frequently occurred, threshold values to distin-
guish vegetation from algal blooms range between 0.7 and 0.8. The appropriate threshold
can be selected by repetitive adjustment. If the threshold is too large, the extraction of
aquatic vegetation is incomplete. If the threshold is too small, the areas where algal blooms
occurred are frequently misrepresented as aquatic vegetation. Depending on the lake, the
VPF thresholds are chosen differently. The VPF thresholds of Lake Chaohu, Lake Taihu,
Lake Hongze, Lake Hulun, and Lake Dianchi are 0.75, 0.8, 0.5, 0.5, and 0.85, respectively.

3.2. Results of VPF Differentiation between Algal Blooms and Aquatic Vegetation

The extracted aquatic vegetation range is cropped with the extracted algae and aquatic
vegetation boundaries. Those within the aquatic vegetation range are aquatic vegetation,
while those falling outside the range are algal blooms. In this way, the algae and aquatic
vegetation ranges can be obtained. Some of the extracted results for the lakes are shown in
Figure 5. The aquatic vegetation of Lake Hulun is mainly concentrated in the southeastern
corner of the lake, with little variation in summer. The aquatic vegetation of Lake Hongze
primarily occurred in the northern, western, and southern coastal areas, and mainly grew
along the lakeshore, with significant changes in vegetation area in summer. Lake Chaohu
had only a small area of aquatic vegetation, mainly in the northwestern corner and along
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the southern shore, with a few patches along the north-eastern shore, and little seasonal
variation. Nonetheless, the vegetated area expanded from July to September. The aquatic
vegetation of Lake Taihu mainly concentrated in the eastern area, with significant seasonal
variation. The aquatic vegetation of Lake Dianchi mainly concentrated within the Caohai
in the north, with a marked expansion of the aquatic vegetation area in summer.
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Figure 5. This figure shows the results of the identification of algal blooms and aquatic vegetation in
the studied lakes on selected dates of algal outbreaks, using the modified VPF method. The red areas
represent algal blooms, and the green areas represent aquatic vegetation; (a—e) are the identification
results of Lake Hulun, Hongze, Chaohu, Taihu, and Dianchi, respectively. In the image, HLH means
Lake Hulun, HZH means Lake Hongze, CH means Lake Chaohu, TH means Lake Taihu, and DC
means Lake Dianchi. HLH-17 July 2019 means the image identification result of Lake Hulun on
17 July 2019. The numbers and letters following the abbreviations of the other lakes are the dates of
the images.
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3.3. Precision Validation Results
3.3.1. Precision of the Extraction of Algal Blooms and Aquatic Vegetation

We verified the accuracy of the extracted vegetation (algal blooms and aquatic vegeta-
tion) information by extracting the reflectance of some of the vegetation and water sample
points for each lake. Those sample points were classified using the decision tree to verify
its accuracy. The resulting confusion matrix is shown in Table 1.

Table 1. Confusion matrix for the accuracy validation of decision trees for extracting algal blooms
and aquatic vegetation. The overall accuracy P and kappa coefficients were calculated separately in
the table.

User Overall

Vegetation Water Precision Precision (P) Kappa
Vegetation 369 30 92.5% o o
Water 0 375 100% 96.1% 92.3%

3.3.2. Precision in Extracting the Extent of Aquatic Vegetation

The verification points were imported into Google Earth, and images with close dates
were selected for verification. No recent image of Lake Hulun was available for summer.
Therefore, Lake Hulun was excluded from accuracy calculation. The extraction results for
Lake Hulun were evaluated by visual interpretation and compared to the original image.
The accuracy validation results for the remaining four lakes are shown in Table 2.

Table 2. Validation points number and the calculated accuracy results for the extent of aquatic
vegetation and the extent of nonaquatic vegetation buffered outwards for lakes.

Lakes
Results

Lake Chaohu Lake Dianchi Lake Hongze Lake Taihu

T

F T F T F T F

Aquatic
vegetation
Pv
Nonaquatic
vegetation
Pw
Pn

106

120

91.4%

96%
87.7%

10 85 10 120 15 156 3
89.5% 88. 9% 98.1%
5 139 7 109 5 111 23

95.2% 95.6% 82.8%
85.2% 85.0% 81.3%

PV represents the accuracy within the range of aquatic vegetation. PW represents precision within the buffer
zone outside the aquatic vegetation range. T represents the point verified as correct, i.e., the extraction of points
within the aquatic vegetation range, where it was verified that aquatic vegetation was growing, or within the
buffer zone outside the aquatic vegetation range, where it was verified that no aquatic vegetation was growing.
F represents points verified as incorrect, i.e., the points within the aquatic vegetation range without significant
vegetation growth in the area or within the buffer zone outside the aquatic vegetation range, where the occurrence
of aquatic vegetation was verified. Pn represents the accuracy of aquatic vegetation extraction for lake n.

The highest Pv value was 98.1% for Lake Taihu, and the lowest was 88.9% for Lake
Hongze. The highest Pw value was 96% for Lake Chaohu, and the lowest was 82.8% for
Lake Taihu. The Pv and Pw values represented the levels of overextraction and underex-
traction of the aquatic vegetation range, respectively. Thus, a lower Pv value indicates more
overextraction of aquatic vegetation, while a lower Pw value reflects more underextraction
of aquatic vegetation. The overall accuracy is the product of Pv and Pw. The precision Pn
of the range of aquatic vegetation for Lake Chaohu, Lake Dianchi, Lake Hongze, and Lake
Taihu were 87.7%, 85.2%, 85.0%, and 81.3%, respectively. The distribution of the validation
points and validation results are shown in Figure 6.
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Figure 6. Distribution of validation points and validation results for Lake (1) Hongze, (2) Chaohu,
(3) Taihu, and (4) Dianchi. Five points have been selected in different areas of each lake and their
positions in the lake are marked by the letters (a—e). The corresponding Google Maps images used
for the verification and the results of the verification are shown in the five subimages (a—e). The date
of the image used for verification can be seen in the bottom right corner of each subimage. Aquatic
vegetation-T/F are points within the range of aquatic vegetation. Water-T/F are points within the
buffer zone outside the range of aquatic vegetation. T is the point verified as correct. F is points
verified as incorrect.

3.3.3. Overall Accuracy of Identification

The extracted accuracy of the vegetation signal (including algal blooms and aquatic
vegetation) multiplied by the extracted accuracy of the aquatic vegetation extent is pre-
sented as the overall accuracy of identifying algal blooms and aquatic vegetation. The
results of the overall accuracy for identifying algal blooms and aquatic vegetation PT in
each of the four lakes were:

PTcy =P x Pncyg = 84.3%

PTpc =P X Pnpc = 81.9%

PTHZH =P x PnHZH =81.7%

PTTH =P x PI‘ITH =78.1%

4. Discussion
4.1. The Advantages of Model for Extracting Vegetation Information in Turbid Water

Despite the wide application of the FAI index to extract algal blooms and aquatic
vegetation [13,24-26], it can only effectively extract vegetation information in lakes with
low turbidity, e.g., Taihu Lake [27]. However, wind and wave conditions can significantly
increase water turbidity near the shore, where the FAI is less applicable [24,28]. Although
the mean annual turbidity of Lake Hulun was slightly lower than that of Lake Taihu, the
turbidity in Lake Hulun was more variable [29,30]. In this study, we compared the FAI and
decision trees in two lakes for the vegetation information extraction with different turbidity
(Figure 7). In the standard false-color Sentinel 2 image in the single view image, the water
in Lake Hulun was lighter and more yellowish compared to that in Lake Taihu. In the
image of Lake Taihu on 1 August 2020, the results of the two extraction methods were
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very similar. Nevertheless, in Hulun (15 September 2019), there was no algal blooms in the
highly turbid water, and a large amount of turbid water was mistaken for algal blooms
when only the FAI method was used to extraction algal. Interestingly, this error did not
occur with the decision tree, suggesting that a decision tree constructed using multiple
indices could identify vegetation signal more accurately than a single index.
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Figure 7. Results of vegetation signal extraction with FAI and decision trees (DT) in standard false-
color (NIR, red, and green) images of Lake Taihu and Lake Hulun. “TH-1 Aug 2020” represents an
image of Lake Taihu on 1 August 2020. “HLH-15 Sept 2019” represents an image of Lake Hulun on
15 September 2019.

To further clarify the difference between decision trees and individual indices for
extracting vegetation information, five different areas were selected to analyze their re-
flectance curves (Figure S2). The reflectance of turbid water bodies contains a large amount
of spectral information of sediment, resulting in an elevated reflectance in both the red and
infrared bands [23]. The strong elevation in the infrared caused the FAI values of some
turbid waters to exceed 0 (Figure S2a). Therefore, when using the FAI to extract vegetation
signals, the FAI threshold needs to be set higher to avoid interference from turbid waters.
However, a strict FAI value could result in the missing of some vegetation signals with low
NIR reflectance. This is particularly true for submerged vegetation where the reflectance
spectrum is largely influenced by the absorption spectrum of the water. The high reflectance
of vegetation in the NIR is absorbed by the water column, resulting in significantly lower
reflectance in the NIR and lower FAI values (Figure 52b) [31,32]. However, its absorption
in the red band was obvious, so the vegetation signal was effectively extracted by NDVL
In this study, the decision tree method (which combined NDVI with FAI) was used to
analyze the vegetation signal in Lake Taihu (1 August 2020). The result showed that the
missing of submerged vegetation extraction in Xukou Bay in Lake Taihu, in the process of
applying the strict FAI threshold method, was complemented in the extraction results of
the decision tree (Figure 8). NDVI was less interfered by turbid water signal when it was
used to extract vegetation information. Furthermore, NDVI also has some advantages for
extracting the information of submerged vegetation. However, when the algal blooms and
aquatic vegetation all occurred in the water, especially the density of algal blooms was low
with a very weak vegetation signal and a negative NDVI value, this part of the vegetation
signal could be missed during extraction using NDVLI. In this study, the decision tree that
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integrated NDWIg_swir, NDVI, and FAI was used to analyze the vegetation information in
Lake Taihu (18 February 2020). Many marginal areas of the algal bloom, which were missed
by both NDWIg.swir and NDVI, have been complementally extracted by FAI (Figure 9).
The two most difficult parts of the vegetation signal extraction are submerged vegetation
and marginal areas of algal blooms [28,33]. A broad threshold setting can help us to extract
them in a single image. However, when adopted on a larger scale, such broad thresholds
could lead to severe recognition errors. One important aspect of this is the misidentification
of turbid water. The decision tree in this study kept each threshold setting strict to ensure
the purity of the extracted vegetation information and combined the extracted results of
the multiple indices. Thus, it can offer a complete distribution information of vegetation in
turbid water.
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Figure 8. Comparison of the effect of vegetation extraction with strict FAI fetching and with the
decision tree in Lake Tai on 1 August 2020.
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Figure 9. Extraction results of different indices by the decision tree for Lake Taihu on 18 February 2020.
The order of decision tree extraction here is to extract first with NDWIg_gwir, then with NDVI for the
remaining part, and finally with FAL
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4.2. Validation with the Absence of Actual Measurement Data

There was no actual measurement data involved in the validation. To reconfirm
the accuracy of the decision tree, we verified the identification results through literature
search and image comparison. Studies related to each lake were searched separately for
Hulun Lake [34,35]; Hongze Lake [36,37]; Chaohu Lake [11,38,39]; Taihu Lake [11,22,40];
and Dianchi Lake [41]. In general, the distribution ranges of algal blooms and aquatic
vegetation in this study are in agreement with the results of earlier studies. However, we
also noted some differences at three sites (marked by red circles in Figure 5). Firstly, Lake
Hongze is the fourth largest freshwater lake in China and an important water hub in Jiangsu
province. Its water level fluctuates significantly due to human activities (e.g., irrigation and
flood control), with significant water level gaps occurring within a month [42]. Therefore,
inundation and surfacing of aquatic plants, as well as growth in water and death from lack
of water, can happen. Human activities also directly or indirectly contribute to changes
in the area of aquatic vegetation in Lake Hongze [36]. This explains the highly unstable
extent of aquatic vegetation in Lake Hongze in the satellite images. It was also difficult
to obtain the maximum extension of aquatic vegetation in Lake Hongze using the VPF
method. For the area in the red circle in Figure 5, the bottom of the lake was exposed
due to a significantly lower water level. This area was identified as an algal bloom area
because it was not within the range of aquatic vegetation. The second is in Lake Taihu,
with some error points located in Xukou Bay within the red circle. This area is dominated
by submerged vegetation [20]. The vegetation characteristics of the reflectance spectrum
of submerged vegetation are not obvious, and the decision tree could extract only them
at the peak growth stage in a short period, hence the low VPF values in the region. The
submerged vegetation of Lake Taihu on 1 August and 5 October 2020 (within the red circle
areas in Figure 5) was classified as algal blooms due to very low VPF values. Finally, in
Lake Dianchi, the Caohai in the northern part of the lake is an important distribution area
for aquatic vegetation [41,43]. However, the area of Caohai within the range of aquatic
vegetation extracted in this study is very small. The key reason for this is that Dianchi
is located in a climatic zone with frequent rainfall in summer and very few images are
available. This resulted in the main available images being from the autumn and winter,
which led to an underextraction of the summer vegetation extent.

In summary, the VPF method could accurately and stably identify algal blooms and
aquatic vegetation for lakes characterized by area with stable aquatic vegetation and less
frequent algal blooms (e.g., Lake Hulun). Despite the relatively poor image quality in some
cases, the VPF method could still accurately identify algal blooms and aquatic vegetation.
However, the VPF method needs to be further optimized for lakes with complex aquatic
vegetation types, large changes in the vegetated area in summer, or long periods of algal
cover, such as Lake Taihu and Lake Hongze, and lakes with little summer image, such as
Lake Dianchi.

4.3. Spatial Transferability of the Model

To verify the wide applicability of the method, we applied the method to the Taipingchi
Reservoir and Lake Chenghai. The VPF calculation time range for Taipingchi Reservoir
is July—-September and the VPF threshold is 0.8. The VPF calculation time range for Lake
Chenghai is June—October and the VPF threshold is 0.6. The identification results are shown
in Figure 10.

The accuracy of the aquatic vegetation extraction results was verified in Google Maps.
The verification results are shown in Table 3. The accuracies of the aquatic vegetation
extent extraction for Taipingchi Reservoir were 92.23% and 86.65% for Lake Chenghai,
respectively. Figure 11 illustrates the specific distribution of the results. Apparently, the
method in this paper can work effectively in both Taipingchi Reservoir (with frequent algal
blooms) and Lake Chenghai (with less frequent algal blooms).
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Figure 10. Identification results of algal blooms and aquatic vegetation in nonmodeled lakes. TPC is
Taipingchi Reservoir and CHH is Lake Chenghai. TPC-7 August 2019 means the image identification
result of Taipingchi Reservoir on 7 August 2019, and so on for the letter and number meanings
following other lake abbreviations.

Table 3. The number of validation points and the calculated accuracy results for the extent of aquatic
vegetation and the extent of nonaquatic vegetation buffered outwards for Taipingchi Reservoir and
Lake Chenghai are shown.

Lakes Taipingchi Chenghai
Results T F T F

Aquatic 98 6 66 9
vegetation
Pv 94.23% 88%

Nonaquatic 128 0 112 2
vegetation

Pw 100% 98.25%

Pn 94.23% 86.65%

PV represents the accuracy within the range of aquatic vegetation. PW represents precision within the buffer
zone outside the aquatic vegetation range. T represents the point verified as correct, i.e., he extraction of points
within the aquatic vegetation range, where it was verified that aquatic vegetation was growing, or within the
buffer zone outside the aquatic vegetation range, where it was verified that no aquatic vegetation was growing.
F represents points verified as incorrect, i.e., the points within the aquatic vegetation range without significant
vegetation growth in the area or within the buffer zone outside the aquatic vegetation range, where the occurrence
of aquatic vegetation was verified. Pn represents the accuracy of aquatic vegetation extraction for lake n.

20 July 2021

-
H
- 20 July 2021

Legend
®  Water-F
= WaterT
* Aquatic vegetation-F

él,czcnd

| = water-F
= Water-T
* Aquatic vegetation-F { 2

17°SEftember 2019,

©  Aquatic vegetation-T 005 tkm __Aquatic vegetation-T —_

8 20 July 2021

Figure 11. Distribution of validation points and validation results in nonmodeled Lakes, (1) TCP—
Taipingchi Reservoir, (2) CHH—Lake Chenghai. Five points have been selected in different areas
of each lake and their positions in the lake are marked by the letters (a—e). The corresponding
Google Maps images used for the verification and the results of the verification are shown in the
five subimages (a—e). The date of the image used for verification can be seen in the bottom right
corner of each subimages. Aquatic vegetation-T/F are points within the range of aquatic vegetation.
Water-T/F are points within the buffer zone outside the range of aquatic vegetation. T is the point
verified as correct. F is points verified as incorrect.
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The two lakes are located in different lake areas, spanning a large north—south area and
with different vegetation types. Both lakes can be effectively identified using the improved
VPF method. The good validation results clearly demonstrate the wide applicability of the
method. This method could be further validated in other lakes in China in the future.

4.4. Analysis of Advantages and Disadvantages

Liu proposed the VPF index in 2015 and used MODIS images to differentiate between
aquatic vegetation and algal bloom areas in Lake Taihu. In Liu’s method, the year was
divided into three growth stages based on seasonal changes of algal blooms and aquatic
vegetation (i.e., Wintering Aquatic Vegetation period, prolonged coexisting Algal Bloom
and Wintering Aquatic Vegetation period, and the peak of coexisting Algal Bloom and
Aquatic Vegetation period). Water depth data were added to obtain the growth range of
aquatic vegetation based on FAI and VPF [13]. First, it is difficult to make such a detailed
division of growth stages in the absence of measured data. Second, depth data for the
whole lake are not readily available. Moreover, due to the varieties of climate types and
lakes in China, this method could not be widely applied to other lakes.

The original method was therefore adapted for this paper. First, we merely identified
a growth period (i.e., when the vegetation is actively growing and stable), allowing the
adapted method to be applied by fully relying on remotely sensed image (without any
field and water depth of the lake). Secondly, we used Sentinel 2 images with high spatial
resolution as the data source, which can greatly enhance identification accuracy. Finally,
we utilized a decision tree method instead of extracting vegetation signals using only the
FAI, resulting in more accurate vegetation information.

However, the modeling data used in this paper were extracted by visual interpreta-
tion. The thresholds were selected based on SPSS automatic classification with artificial
segmentation within a certain interval. Thus, the extracted vegetation signals might be
somewhat subjective. More scientific classification thresholds could be obtained with more
validation against field data in the future.

The advantages and disadvantages of the improved VPF method are as follows:

Advantages: Wide range of applications, simple implementation methods, and no
field data required. The distinction between algal blooms and aquatic vegetation is made
by the frequency index of the vegetation signal. The results are derived from multiple
images. They are stable, exclude environmental factors (e.g., thin clouds), and require
lower image quality. The method can effectively distinguish between algal blooms and
aquatic vegetation even in the absence of measured data.

Disadvantages: Many images are required from the summer months when the aquatic
vegetation is in full growth. With more images, a more stable range of aquatic vegetation
can be extracted. However, for subtropical lakes (e.g., Lake Dianchi) with plenty of rain
in summer and few high-quality images, it is difficult to extract the maximum extent of
aquatic vegetation in summer using the VPF method. Therefore, it is difficult to fully
distinguish between algal blooms and aquatic vegetation without adequate satellite image.

5. Conclusions

Based on multiple indices and the modified vegetation presence frequency (VPF),
this study accurately extracted and distinguished algal bloom and submerged vegetation
using Sentinel 2 images (without considering field measured data). This method effectively
addressed the interference of turbid water bodies. The spatial transferability of the method
was also verified in the other independent lakes with satisfactory accuracy. This indicates
the prospects of its general application to distinguish algal blooms from aquatic vegetation
in turbid water bodies under stable water levels and adequate satellite images.

Overall, the method developed here can effectively differentiate algal blooms from
aquatic vegetation with good stability and it can avoid interference from thin clouds and
other factors. Therefore, it might be feasible for large-scale classification and identification
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of aquatic vegetation and algal blooms. It might also provide a reference for distinguishing
other features with similar spectral characteristics.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390 /1514091988 /51, Figure S1: Flow chart for identifying algal blooms
and aquatic vegetation in Sentinel 2 images; Figure S2: Reflectance spectral curves for the five
features, figure (a) water group, black curve for normal water, red curve for highly turbid water;
figure (b) vegetation group, black curve for normal algal blooms, blue curve for inconspicuous algal
blooms (marginal areas of algal blooms) and red curve for submerged vegetation; Table S1: Basic
information on seven lakes covered in the article; Table S2: Temporal distribution of downloaded
Sentinel 2 images of the five lakes used for modelling. References [13,27,44-49] are cited in the
supplementary materials.
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