
Citation: Yang, J.; Shuai, Y.; Duan, J.;

Xie, D.; Zhang, Q.; Zhao, R. Impact of

BRDF Spatiotemporal Smoothing on

Land Surface Albedo Estimation.

Remote Sens. 2022, 14, 2001. https://

doi.org/10.3390/rs14092001

Academic Editors: Gaofei Yin, Jean-

Philippe Gastellu-Etchegorry,

Baodong Xu and Shengbiao Wu

Received: 28 March 2022

Accepted: 19 April 2022

Published: 21 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Impact of BRDF Spatiotemporal Smoothing on Land Surface
Albedo Estimation
Jian Yang 1,2,†, Yanmin Shuai 2,3,4,*,†, Junbo Duan 1, Donghui Xie 5 , Qingling Zhang 6 and Ruishan Zhao 1

1 College of Surveying and Mapping and Geographic Science, Liaoning Technical University,
Fuxin 123000, China; 471910043@stu.lntu.edu.cn (J.Y.); 472020679@stu.lntu.edu.cn (J.D.);
zhaoruishan@lntu.edu.cn (R.Z.)

2 Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences,

Urumqi 830011, China
5 State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University,

Beijing 100875, China; xiedonghui@bnu.edu.cn
6 School of Aeronautics and Astronautics, Sun Yat-sen University, Guangzhou 510006, China;

zhangqling@mail.sysu.edu.cn
* Correspondence: shuaiym@ms.xjb.ac.cn
† These authors contributed equally to this work.

Abstract: Surface albedo, as a key parameter determining the partition of solar radiation at the Earth’s
surface, has been developed into a satellite-based product from various Earth observation systems to
serve numerous global or regional applications. Studies point out that apparent uncertainty can be
introduced into albedo retrieval without consideration of surface anisotropy, which is a challenge
to albedo estimation especially from observations with fewer angular samplings. Researchers have
begun to introduce smoothed anisotropy prior knowledge into albedo estimation to improve the
inversion efficiency, or for the scenario of observations with signal or poor angular sampling. Thus, it
is necessary to further understand the potential influence of smoothed anisotropy features adopted
in albedo estimation. We investigated the albedo variation induced by BRDF smoothing at both
temporal and spatial scales over six typical landscapes in North America using MODIS standard
anisotropy products with high quality BRDF inversed from multi-angle observations in 500 m
and 5.6 km spatial resolutions. Components of selected typical landscapes were assessed with the
confidence of the MCD12 land cover product and 30 m CDL (cropland data layer) classification maps
followed by an evaluation of spatial heterogeneity in 30 m scale through the semi-variogram model.
High quality BRDF of MODIS standard anisotropy products were smoothed in multi-temporal scales
of 8 days, 16 days, and 32 days, and in multi-spatial scales from 500 m to 5.6 km. The induced relative
and absolute albedo differences were estimated using the RossThick-LiSparseR model and BRDFs
smoothed before and after spatiotemporal smoothing. Our results show that albedo estimated using
BRDFs smoothed temporally from daily to monthly over each scenario exhibits relative differences of
11.3%, 12.5%, and 27.2% and detectable absolute differences of 0.025, 0.012, and 0.013, respectively, in
MODIS near-infrared (0.7–5.0 µm), short-wave (0.3–5.0 µm), and visible (0.3–0.7 µm) broad bands.
When BRDFs of investigated landscapes are smoothed from 500 m to 5.6 km, variations of estimated
albedo can achieve up to 36.5%, 37.1%, and 94.7% on relative difference and absolute difference
of 0.037, 0.024, and 0.018, respectively, in near-infrared (0.7–5.0 µm), short wave (0.3–5.0 µm), and
visible (0.3–0.7 µm) broad bands. In addition, albedo differences caused by temporal smoothing
show apparent seasonal characteristic that the differences are significantly higher in spring and
summer than those in autumn and winter, while albedo differences induced by spatial smoothing
exhibit a noticeable relationship with sill values of a fitted semi-variogram marked by a correlation
coefficient of 0.8876. Both relative and absolute albedo differences induced by BRDF smoothing are
demonstrated to be captured, thus, it is necessary to avoid the smoothing process in quantitative
remote sensing communities, especially when immediate anisotropy retrievals are available at the
required spatiotemporal scale.
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1. Introduction

Land surface albedo, defined as the ratio of upwelling to downwelling solar radiation
at the land surface over the whole solar spectrum, is an important parameter determining
the partition of solar energy between Earth’s surface and atmosphere [1,2]. Surface albedo
quantifies the solar energy intercepted by components within various ecosystems to trigger
more energy cycles, such as the phase transition of water via latent heat and heat transfer
through conduction, convection, or radiation within components of biogeophysical and
biogeochemical processes [2–5]. Land surface albedo is a major parameter of land surface
models and directly affects the heat and water-vapor exchange between ground and
atmosphere [6]. The budget of energy between ground and atmosphere is influenced
by surface albedo, thus it affects the atmospheric movement and medium/long-term
weather forecast [7]. Albedo changes due to land use/cover change (LUCC) such as
deforestation have a profound impact on surface net radiation flux, which should not be
ignored in the study of land surface temperature and monsoon [8–10]. Therefore, land
surface albedo is valuable for studies of land surface models, circulation models, LUCC
and the global climate.

The accuracy requirements of albedo keep increasing with the need from various user
communities or with increasing understanding of processes of earth systems. An albedo
accuracy of 0.02–0.05 is required by the community of global climate change [11,12] but
increases to 0.02 for regional investigations [13]. Further, a revised land surface model
based on albedo with higher accuracy could modify the predicted net radiation and sen-
sible heat exchange by 5–30% [14]. A 10% error in albedo for agricultural landscape may
induce a relative uncertainty in net radiation of 5% [15]. In evapotranspiration investiga-
tion, an uncertainty of 10% in albedo can introduce a potential error of 20 W/m2 in net
radiation [16]. Therefore, accurate surface albedo is important to achieve relevant energy
estimation for numerous molders or applications in ecosystems, the carbon cycle, and
climate communities [14,17].

Satellite remote sensing is the only way to routinely produce regional or global albedo.
In the early stage, observations with a single angle were the dominant scheme provided
by satellite-based sensors. Later, multi-angle sensors represented by POLDER and MISR
were launched with the ability to simultaneously provide multi-angle observations [18–20].
In addition, multi-angle observations can be achieved in wide-swath satellite images
with a trade-off between angles and time [21–23]. Compared with previous signal-angle
estimation, modern albedo algorithms rely on multiple-angle observations to first build a
BRDF (bi-directional reflectance distribution function), then integrate over incident and
view hemispheres to calculate albedo. Studies have pointed out that the relative errors
can reach up to 45% in inferring hemispherical reflectance from nadir reflectance without
consideration of angle effects [24,25]. Thus, multi-angle observations are essential to inverse
the BRDF model and guarantee the estimation of albedo accuracy.

BRDF was defined by Nicodemus in 1977 [26] and has been accepted widely as
an intrinsic feature of land cover. Numerous studies have demonstrated that ground,
airborne, or spaceborne observations exhibit obvious angle-effect phenomena [27–29].
BRDF theoretically describes the variation of directional reflectance in terms of incident-
view geometry within both hemispheres [22,30–32]. Multi-angle observations have been
collected from ground measurements and several satellite sensors, such as POLDER [33],
MISR, and MSG, and MODIS and AVHRR have achieved angle sampling from overlapped
swaths within a given period. The standard BRDF products retrieved from multi-angle
satellite observations include the MODIS nominal daily anisotropy dataset at spatial scales
from 500 m to 5.6 km [34], POLDER at 6 km by 7 km spatial scale, and some other sporadic
anisotropic products.
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Anisotropy information at fine resolution is needed in the retrieval of surface albedo in
the tens of meters spatial resolution. Compared with observations at kilometers, satellites
providing observations at fine resolution are required to collect surface details in global
or regional areas, such as the Sentinel series of Europe, the Landsat series of the United
States, and the HuanJing and GF series of China. However, these observation systems can’t
provide instantaneous multi-angle observations, nor trade-off angle with time through
swath overlapping. Thus, researchers have begun to introduce BRDF priori knowledge into
surface albedo retrieval, especially at high spatial resolution due to the lack of multi-angle
observations. Shuai et al., 2011 and 2014, proposed the MODIS-Concurrent algorithm,
which combined MODIS 500 m BRDF with corresponding Landsat surface reflectance
to estimate surface albedo at 30 m resolution [35], followed by an extension to the pre-
MODIS era, back to the 1980s, through an anisotropic LUT (look-up table) established
from high-quality 500 m MCD43A-BRDF data [36]. Franch used smoothed 5.6 km MODIS
BRDF with a further adjustment by NDVI in their VJB method, then decomposed it to
estimate 30 m Landsat surface albedo [37,38]; Jiao established a BRDF archetype database
by using a clustering algorithm and parameter smoothing of BRDF based on anisotropic flat
index (AFX) [39,40]. Zhang Hu estimated surface albedo based on the archetype database
classified by AFX [41]. However, there is a lack of understanding of the difference within
estimated albedo induced by the anisotropy information smoothed at spatiotemporal scales.
This work will focus on this issue to investigate the effects of smoothed BRDF on albedo
magnitude through case studies using MODIS operational BRDF products.

2. Study Sites and Data
2.1. Study Sites

Six study sites in the MODIS golden tile H09V05 in the Southwestern United States
were selected to cover rich types of land surface as the study region (92.38◦W to 117.49◦W,
30◦N to 40◦N). Details of the six selected sites are shown in Table 1, which includes the
IGBP classification type, location, and climate zone.

Table 1. Statistics of Study Sites.

Site Confidence (%) Altitude (m) Slope (◦) Longitude (◦) Latitude (◦) Climate Zone

ENF 92 3124 16.42 −105.58 39.68 Mountain climate
CropLand 97 1074 1.39 −101.98 37.73 Temperate continental climate
Grassland 96 1276 2.02 −102.63 36.43 Temperate continental climate
Savannas 89 83 2.58 −95.78 31.38 Subtropical climate

DBF 93 60 2.84 −94.88 31.23 Subtropical climate
EBF 98 43 2.47 −93.58 30.58 Subtropical climate

Note: EBF denotes evergreen broadleaf forests, DBF for deciduous broadleaf forests, and ENF for evergreen
needleleaf forests.

2.2. MODIS Products

We selected MODIS BRDF/Albedo products in three broad bands which are near-
infrared (NIR, 0.7–5.0 µm), short wave (SW, 0.3–5.0 µm), and visible (VIS, 0.3–0.7 µm) at
500 m and 5.6 km resolutions, and land cover products (Table 2), which we downloaded
from the NASA official open data pool (https://ladsweb.modaps.eosdis.nasa.gov/search/
(accessed on 30 January 2021)). The operational MODIS BRDF/Albedo algorithm assumes
that the land surface does not change significantly during the period of data accumulation
(16 days), but with a further enhancement on the observations close to the retrieval day
in the nominal daily inversion. The kernel-driven linear model expressed as RossThick-
LiSparseR is adopted to determine the kernel parameters fiso fgeo fvol respectively for
isotropic kernel, Kiso; volumetric scattering kernel, Kvol ; and geometric kernel, Kgeo, to
estimate the gridded 500 m and 5600 m BRDF/Albedo at that shown in Equation (1), where
λ is the spectral band [22,34].

Re f lectance = fiso(λ)kiso + fgeo(λ)kgeo + fvol(λ)kvol (1)

https://ladsweb.modaps.eosdis.nasa.gov/search/
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Table 2. Statistics of MODIS data sets.

Number Name Resolution Projection Function

1 MCD12C1 5600 m Longitude and latitude Classification information in 5600 m
2 MCD12Q1 500 m Sinusoidal Classification information in 500 m
3 MCD43C1 5600 m Longitude and latitude Parameters of BRDF in 5600 m
4 MCD43C3 5600 m Longitude and latitude Albedo in 5600 m
5 MCD43A1 500 m Sinusoidal Parameters of BRDF in 500 m
6 MCD43A3 500 m Sinusoidal Albedo in 500 m
7 MCD43A4 500 m Sinusoidal Observations of zenith directions

MODIS land cover products MCD12C1 and MCD12Q1 provide global land cover
maps at 5600 m and 500 m, at annual time steps. The MCD12Q1 product is produced using
supervised classification of MODIS Nadir BRDF-adjusted reflectance and MCD12C1 is
aggregated and reprojected from 500 m MCD12Q1 products [42,43]. MODIS land cover
type products had an overall accuracy of 75% by cross-validation accuracy assessment [43]
and the majority class confidence can assist to assess majority land cover type in MCD12C1
pixels. IGBP contains 17 types of land cover, and its original data source (AVHRR) and goal
of modeling biophysical parameters of land surface is similar to MODIS [42–45]. Thus, we
selected IGBP in MCD12C1 and MCD12Q1 to provide the classification of land cover.

2.3. CDL Database

CDL (cropland data layer) annually produced by USDA-NASS (United States Depart-
ment of Agriculture-National Agricultural Statistics Service) is a geospatial crop-specific
open 30 m land cover thematic dataset and serving numerous user communities. The
2019 CDL is generated from Landsat-8 OLI/TIRS, DEIMOS-1, UK2, LISS-3 of ResourceSat-
2, SENTINEL-2A/B and downloaded from https://nassgeodata.gmu.edu/CropScape/
(accessed on 16 February 2021). The crop-specific classification map with a spatial reso-
lution of 30 m, covering the continental United States, is produced by satellite imagery.
The quality of CDL is high, with the total crop mapping accuracies ranging from 85% to
95% for the major crop categories [46]. The accuracy of CDL in non-agricultural land cover
classes ranges from 82–89% depending upon the USGS, National Land Cover Database
(NLCD) [47]. We selected CDL to assess the land cover types in MODIS pixels in detail.

2.4. Landsat-8 Dataset

To evaluate the spatial heterogeneity of land surface in pixels at coarse spatial scale,
the corresponding land surface albedo at higher resolution is needed as the basic data.
The Landsat-8 satellite is in a sun-synchronous, near-polar, 705 km circular orbit and can
produce scenes within 185 km × 180 km. Compared with MODIS, Landsat-8 OLI (opera-
tional land imager) can provide reflectance product of land cover at a spatial resolution
of 30 m and can be used to reconstruct the surface albedo at 30 m. Landsat-8 has a repeat
cycle of 16 days, which can provide sequential repeated images 22 or 23 times for a fixed
location per year [48]. Landsat-8 OLI provides spectral reflectance information of land
cover in 9 bands from visible to shortwave infrared. We selected landsat-8 OLI surface
reflectance products after radiometric and geometric correction under cloud-free condi-
tion in 2019 as the basic data and the datasets for six study sites were downloaded from
https://earthexplorer.usgs.gov/ (accessed on 15 August 2021).

2.5. Data Preprocessing

A series of preprocessing steps were performed, including the selection and assessment
of study areas, re-projection between different products, and screening of high quality
BRDF/Albedo. MODIS land cover type products (MCD12C1 and MCD12Q1) were used to
determine specific study pixels (500 m). MCD12C1 IGBP layer in 5600 m scale was used to
choose study sites with high confidence, followed by reprojection to the 500 m IGBP layer

https://nassgeodata.gmu.edu/CropScape/
https://earthexplorer.usgs.gov/
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of MCD12Q1 (Figure 1). From Figure 1, we can see that a representative site (500 m) is
selected from homogeneous underlayer with the pixels of the same land cover type around.
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Figure 1. The distributions of land cover types at 500 m for each study site within MODIS pixels
(5600 m).

To further analyze the internal land cover types in MODIS pixels (5600 m and 500 m),
CDL pixels were counted to show the proportions of land cover categories within MODIS
pixels (5600 m and 500 m) (Figure 2). It can be seen from Figure 2a–l that, compared with
pixels at 5600 m, the proportions of the main categories at 500 m are significantly higher,
which indicates that pixels at 500 m are more homogeneous, which is consistent with
conventional cognition (the larger the range, the more complex the land cover). We selected
the representative MODIS pixels (500 m) with homogeneous underlayer for the study of
temporal smoothing, together with their corresponding MODIS pixels at 5600 m for the
study of spatial smoothing.
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To focus on the investigation of targets located on the land surface, observations
contaminated by snow and cloud were removed from the temporal MODIS data series
using the snow and cloud flag. Further, high-quality MODIS BRDF and albedo data labeled
by related pixel-based QA (0, 1, 2) were screened out from collected datasets. This could not
only ensure the acquisition of sufficient DOYs (days of the year) in 2019 with high-quality,
but also eliminate the impact of data with low quality to a great extent.

In addition, Re-projection is required between different datasets. MODIS products
with spatial resolution of 5600 m adopt longitude and latitude projection, while MODIS
products with spatial resolution of 500 m use Sinusoidal projection (Table 2) [49–51]. The
CDL uses Albers projection, while landsat-8 is UTM (universal transverse Mercator) pro-
jection [46,48]. When conversion was required between different types of datasets, re-
projection processing was performed: (1) in order to investigate the classification within
MODIS pixels (5600 m), MCD12C1 pixels were re-projected to MCD12Q1 products; (2) in or-
der to investigate the type complexity of MODIS pixels in detail, MCD12C1 and MCD12Q1
pixels were re-projected to CDL; (3) to assess the surface heterogeneity, MCD12C1 pixels
were re-projected to landsat-8 OLI images.

3. Method
3.1. Strategy of Spatiotemporal Smoothing

To obtain BRDF in multi-temporal scales, BRDF parameters of land surface are
smoothed in different temporal scales (8 days–16 days–1 month), see Figure 3a. As BRDF
can be represented by a kernel-driven linear model (Equation (1)), smoothed BRDF can
also be represented by these smoothed model parameters (Equation (2)), where fk is the
parameter of the isotropic, volumetric, geometric-optical kernel, scale is 8 days, 16 days, or
a month, respectively, and N is the number of scale periods. To maintain the consistency of
the temporal range, the number of days in the monthly scale is set to 32 days. It should be
noted that the MCD43A1 is named ‘daily’ though it is a nominal daily period and is the
weighted synthesis of surface reflectance under clear sky over a 16-day period.

f k
smoothed =

∑Scale
i=1

(
f i
k
)

N
(2)

For BRDF smoothing in multi-spatial scales (Figure 3b), as MODIS provides two
BRDF products (MCD43A and MCD43C) at different resolutions (500 m and 5600 m), we
directly extracted BRDF parameters from these datasets to represent BRDF before and after
spatial smoothing. Here, we obtained BRDF parameters before and after smoothing in
multi-spatiotemporal scales and the reflectance under any incident-view geometry could
be inversed based on a set of fixed BRDF parameters. In this paper, the research version
of the operating AMBLARS algorithm [22,30,52], provided by Boston University, was
used to retrieve reflectance under given incident-view geometries based on RossThick-
LiSparseR model.

According to the integral mode, MODIS-albedo can be defined as: black sky albedo
(BSA), which is the integration of BRDF in the view hemisphere with direct incident light
(Equation (3)); white sky albedo (WSA), which is the integration of BRDF in both incident
and view hemispheres with isotropic incident light (Equation (4)). In Equations (3) and (4),
θi and ∅i are zenith and azimuth angles of incident solar direction; θr and ∅r are zenith
and azimuth angles of view direction, and fr(θi,∅i; θr,∅r) is the BRDF function. Both the
BSA and WSA are based on a set of fixed kernel coefficients to integrate in hemispherical
or bi-hemispherical space. Theoretically, albedo obtained from BRDF parameters at the
coarse scale after spatial and temporal smoothing is consistent with the smoothed value of
albedo before smoothing (Equation (5), and θ and ∅ are the zenith and azimuth angle in
hemispherical or bi-hemispherical space).
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temporal scales; (b) Smoothing in spatial scales.
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As MODIS provides two albedo products (MCD43A3 and MCD43C3) at different
resolutions (500 m and 5600 m), we extracted albedo from MCD43A3 and smoothed daily
albedo in multi-temporal scales to represent the integration of the corresponding smoothed
BRDF, meanwhile we directly extracted albedo from MCD43C3 to represent the integration
of the corresponding smoothed BRDF in multi-spatial scales. The workflow of this paper is
shown in Figure 4.
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3.2. Differences of BRDF

In the view hemisphere, the principal plane, which is determined by the directions of
incident illumination and outgoing reflectance that intersect at the identical target, implies
typical anisotropy features, such as variations in reflectance in magnitude and shapes of
BRDF (Figure 5a). In this paper, the difference in BRDF is investigated by comparing the
magnitude and shape between BRDF principal planes. The average reflectance with an
interval of 1◦ from −70◦ (backward) to 70◦ (forward) was used to describe magnitude of
principal plane (Equation (6)).

To describe the change in BRDF shape, we took ±70◦, ±45◦, LSN (local solar noon),
zenith direction as characteristic directions and calculated differences in reflectance com-
pared to smoothed BRDF at characteristic directions (Figure 5b and Equation (7), where N
is the number of principal planes to be compared and j is ±70◦, ±45◦, LSN, 0◦, respectively,
and Fixed-Reflectance stands for the smoothed principal planes). Furthermore, the SD
(standard deviation) of differences of reflectance at characteristic directions is adopted to
measure the variation in the shape of BRDF (Equation (8)). If the distribution of differences
in reflectance in the six characteristic directions is relatively concentrated, it indicates that
the differences in reflectance in the six characteristic directions is relatively uniform and the
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difference between BRDF shapes is small, meanwhile the SD is smaller in this situation. On
the contrary, a larger SD means that the difference between the shapes of BRDF is greater.
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3.3. Differences of Albedo

Albedo is a hemispherical integration of BRDF, the magnitude and shape of BRDF
have potential impacts on albedo. MODIS-albedo products are available in two types: WSA
and BSA. Considering that WSA is highly correlated with BSA [53,54], we selected WSA as
the albedo before and after BRDF smoothing to serve for the difference comparison.

To explore differences in albedo caused by temporal smoothing of BRDF, as shown in
Figure 3a, first, smoothed monthly values of albedo for 12 months were calculated; then,
the smoothed albedo values at 16-day and 8-day scales within one month were calculated;
Lastly the daily albedo values were compared with the corresponding smoothed albedo
values in three broad bands: near-infrared (NIR), short wave (SW), and visible (VIS). We
selected the relative and absolute differences in albedo to describe the relationship between
them (Equations (9) and (10), where scales are 8 days, 16 days, and 32 days). Through the
absolute and relative differences in albedo, we can quantitatively analyze the difference in
daily albedo from smoothed albedo in a specific temporal scale.

When discussing the influence of BRDF spatial smoothing on the retrieval of albedo,
we extracted albedo at 500 m and 5600 m from MCD43A3 and MCD43C3 products, then
calculated the relative and absolute differences between them. Lastly, we counted the daily
differences to explore the magnitudes of the differences (Figure 3b). Albedo difference due
to BRDF spatial smoothing can be calculated by Equations (11) and (12), where N is the
number of MODIS-pixels at 500 m within one MODIS pixel at 5600 m.
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Relative di f f erencetemporal =
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)
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(9)
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∑scale

i=1 (|WSAi −WSAsmoothed|)
scale

(10)
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)
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(11)
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∑N
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(∣∣∣WSAi
500m −WSA5600m

∣∣∣)
N

(12)

3.4. Semi-Variogram

The spatial heterogeneity is related to the distribution and complexity of land cover,
and the different land cover is related to albedo differences. A semi-variogram model is
an effective way to describe heterogeneity of land cover, and its model parameters have a
certain corresponding relationship with the landscape pattern. Some studies have used
a semi-variogram function to evaluate the homogeneity of land cover and applied it to
assess the spatial representativeness of ground tower measurement points [55–58]. As the
landscape pattern may affect the distribution of spatial albedo, we analyzed the correlation
between the land surface heterogeneity described by semi-variogram parameters and the
differences in albedo due to BRDF spatial smoothing.

In order to evaluate the spatial heterogeneity within MODIS pixels, the surface albedo
at 30 m needed to be reconstructed based on landsat-8 images under cloud-free weather
in 2019. Among the 22 or 23 images over the whole year, we selected images from leaf-on
or leaf-off stages under cloud-free weather to compare the seasonality of the surface. To
completely cover MODIS pixels, we made a semi-variogram analysis of land cover within
6 km (slightly greater than 5600 m), centered on the selected study sites. The specific steps
were as follows:

(1) Pixels corresponding to the study sites were extracted from Landsat-8 OLI surface
reflectance products in band 2 to band 7;

(2) Narrowband-to-broadband parameters were used to produce albedo in three broad
bands (near-infrared, short wave, and visible) from Landsat-8 pixels. As the imaging
bands of Landsat OLI are different from the three broadbands in MODIS products,
narrowband-to-broadband conversion was required (Equations (13)–(15)), where α is
the albedo in the corresponding band [59,60];

(3) Equation (16) was used to calculate half the average-squared-difference between
pixels with three broadband albedos. The parameters of the semi-variogram model,
such as range and sill, were fitted by sequential half the average-squared-difference
(Equation (17)). In Equations (16)–(17), h is the lag distance, N(h) is the number of
pixel pairs corresponding to h, Zx is the albedo at location x, C0 is the nugget, C is the
sill, and a is the range.

Range (a) describes the correlation distance of point pairs in study sites. There is a
certain correlation between point pairs within range distance, and there is no correlated
attribute between point pairs beyond this distance. Range is of great significance to judge
spatial representativeness between different scales. Sill (C) describes the intensity of albedo
change, and a smaller sill represents a more homogeneous land cover. In this paper, the area
around the samples is fixed (6 km, covering 5600 m pixel), and sill (C) is used to analyze
the heterogeneity of land cover.

αVIS = 0.5621α2 + 0.1479α3 + 0.2512α4 − 0.0015 (13)

αNIR = 0.5911α5 + 0.3155α6 + 0.0731α7 + 0.0019 (14)
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αSW = 0.2453α2 + 0.0508α3 + 0.1804α4 + 0.3081α5 + 0.1332α6 + 0.0521α7 + 0.0011 (15)

γE(h) =
∑

N(h)
i=1 (Zxi − Zxi+h)

2

N(h)
∗ 0.5 (16)

γE(h) =

 C0 + C
(

1.5 h
a − 0.5

(
h
a

)3
)

0 ≤ h ≤ a

C0 + C h > a
(17)

4. Results and Analysis
4.1. Vegetation Index

EVIs shown in Figure 6a were calculated from the zenith reflectance provided by
MCD43A4. Then, the seasonal distribution of EVI could be counted according to spring
(March to May), summer (June to August), autumn (September to November) and winter
(December, January and February) (Figure 6b). EVI (enhanced vegetation index) can reflect
the growth and coverage of land cover and has a significant advantage in vegetation
saturation, atmospheric impact, and soil background compared with other vegetation
indexes [61–63]. It can be seen from Figure 6a,b that, generally, the EVIs of land cover in
spring and summer are higher than in autumn and winter, which indicates that vegetation
has a stronger growth state and higher coverage in spring and summer, which are more
suitable for growth. But for EBF, the EVI in spring is slightly lower than that in autumn.
This may be attributed to the change in EVI over the whole year being relatively mild for
EBF growing in four seasons, and that the EVI in winter is high, resulting in a high EVI in
autumn as the transition between summer and winter. For ENF, we only extracted data
without snow from June to November, while the EVI in summer is higher than autumn. For
DBF, Savannas, Grassland, and Cropland, EVI shows the obvious seasonal characteristic
that EVIs in spring and summer are higher.
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Figure 6. The distribution of daily vegetation index (EVI) and seasonal statistics of EVI for each
selected study site. (a) Vegetation index; (b) Statistics of seasonal EVI.

4.2. Spatial Heterogeneity

Figure 7a,b shows that the sill (C) values corresponding to the long horizontal lines
of the spherical model (one of the fitting methods for the semi-variogram) on day 205 of
2019 (DOY 205) in three broad bands (1226 × 10−6, NIR; 454 × 10−6, SW; 128 × 10−6 VIS)
are significantly lower than those on day 365 of 2019 (2196 × 10−6, NIR; 971 × 10−6, SW;
320 × 10−6, VIS). This is consistent with Figure 7c,d, which shows that the spatial hetero-
geneity of Savanna on day 205 of 2019 is lower than that on day 365 of 2019 (DOY 365). The
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reason can be explained as smaller sill (C) corresponding to lower spatial heterogeneity of
land cover, and sill (C) being an effective parameter to describe spatial heterogeneity.
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Figure 7. Semi-variogram curves and Landsat-8 OLI images (Savanna, band 7–5–3). (a) Semi-
variogram (Savanna, DOY 205); (b) Semi-variogram (Savanna, DOY 365); (c) Landsat-8 bands 7–5–3
(Savannas, DOY 205); (d) Landsat-8 bands 7–5–3 (Savanna, DOY 365).

Table 3 shows the parameters of the semi-variogram for each study site in leaf-on
and leaf-off seasons, corresponding to the growing and senescence seasons. For DBF,
Savanna and Grassland samples with four distinct seasons, sill (C) values in the senescence
season are significantly higher than those in the growing season. In the NIR and SW bands,
Cropland shows similar characteristic to other samples, but the heterogeneity of the VIS
band in winter (DOY352, 842 × 10−6) is lower than that in summer (DOY192, 1128 × 10−6)
due to crop rotation and other factors. Meanwhile, the spatial heterogeneity of samples
growing in four seasons is more complex. The sill (C) value of EBF on DOY319 within the
senescence season is smaller than on DOY207, which indicates that spatial homogeneity is
lower. However, heterogeneity of ENF in late autumn (DOY277) is higher than that in early
autumn (DOY247). This shows that variation in land surface heterogeneity with temporal
series is very complex. Therefore, we took the DOYs with Landsat8 OLI images to explore
the relationship between the albedo difference due to BRDF spatial smoothing and the
spatial heterogeneity.
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Table 3. Statistics of semi-variogram parameters for each study site.

Site Station DOY
NIR SW VIS

C0 (10−6) C (10−6) A (m) C0 (10−6) C (10−6) A (m) C0 (10−6) C (10−6) A (m)

EBF
leaf-on 207 108 544 690 49 247 690 20 112 690
leaf-on 319 72 218 510 26 107 540 7 73 660

DBF
leaf-on 86 276 1590 1350 82 555 1350 13 115 960
leaf-off 358 301 1750 1380 113 803 1380 25 293 1350

Savannas
leaf-on 205 249 1226 990 84 454 1020 27 128 1050
leaf-off 365 329 2196 1170 128 971 1140 37 320 1200

Cropland leaf-on 192 123 2464 960 80 1324 1050 70 1128 1140
leaf-off 352 142 3198 1410 80 1676 1500 46 842 1200

Grassland
leaf-on 176 63 347 1050 41 199 1050 23 95 1050
leaf-off 352 75 657 1560 44 358 1560 20 134 1560

ENF
leaf-on 247 115 1306 1020 53 539 1020 20 125 1050
leaf-on 277 158 2015 1110 76 873 1110 27 208 1080

4.3. Variation of BRDF Smoothing
4.3.1. Temporal Smoothing of BRDF

Figure 8 shows the principal planes after BRDF smoothing in one month compared
with daily BRDF over selected study sites. We took June of 2019, in which the EVI level
is high, as an example to show the variation in BRDF smoothing. It can be seen from
Figure 8 that, compared with daily BRDF, the magnitudes and shapes of smoothed BRDF
have changed after temporal smoothing. In addition, smoothed BRDF is almost in the
middle location of daily principal plane curves and the ability to capture features of BRDF
is reduced. To quantify the changes in BRDF, the difference in magnitude (Equation (6))
and standard deviation of multi-characteristic directions (Equations (7) and (8)) within
principal planes were to be counted (Figure 9).

Figure 9a,b shows that the magnitude difference is largest in the NIR band and lowest
in the VIS band for each selected study site, for example, the magnitude differences in the
NIR, SW, and VIS bands are 0.63%, 0.27%, and 0.09%, respectively, for ENF in 2019/06. The
standard deviation of each study site shows a similar characteristic in that the average SDs
in the NIR, SW, and VIS bands are 0.32, 0.20, and 0.14, respectively. This indicates that the
dispersion and shape change of BRDF are also gradually decreasing from the NIR and SW
to the VIS band in 2019/06, which is consistent with the information shown in Figure 8.

Figure 9c,d shows the statistics of average magnitude difference and standard devia-
tion in principal planes in 2019 for each study site. The average magnitude difference and
standard deviation are highest in NIR and lowest in VIS for each study site. This shows
that the spectral band is an important reason for the variation in BRDF. For land cover
types, each study site shows various levels of differences: the average difference in BRDF
magnitude in three broad bands is EBF 0.25%, DBF 0.41%, Savanna 0.39%, Grassland 0.35%,
Cropland 0.46%, and ENF 0.26%, and the average standard deviation is EBF 0.15, DBF 0.31,
Savanna 0.38, Grassland 0.32, Cropland 0.51 and ENF 0.34, respectively. This indicates that
variations exist in the magnitude and shape of BRDF after smoothing in multi-temporal
scales and the differences are related to land cover types and spectral bands.

4.3.2. Spatial Smoothing of BRDF

Figure 10 shows the comparison of BRDF principal planes at 5600 m with the BRDF
at 500 m over selected ENF and Grassland. From our study sites, we selected ENF and
Grassland to show the variation of BRDF after spatial smoothing as the largest and smallest
daily albedo difference occurred in ENF and Grassland respectively and the BRDF variation
is representative on the extreme day of albedo difference.
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Figure 8. Comparison of smoothed BRDF in the principal plane with the daily retrievals over selected
EBF (a), DBF (b), Savanna (c), Grassland (d), Cropland (e), and ENF (f) sites in June of 2019.
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Figure 9. Statistics of magnitude difference and standard deviation of BRDF principal planes due to
BRDF temporal smoothing in 2019/06 (a,b) and their annual average level for each study site (c,d).

Figure 10a shows the variations in BRDF shapes are largest in the NIR band and
smallest in the VIS band, meanwhile the locations of smoothed BRDF are not in the middle
of daily BRDF principal planes strictly of three broad bands for ENF. However, Figure 10b
shows variations in BRDF shapes of ENF are relatively stronger than those of Grassland
and the locations of smoothed BRDF are almost in the middle of daily BRDF principal
planes strictly of three broad bands for Grassland. To quantify the variations in BRDF,
the difference in magnitude (Equation (6)) and standard deviation of multi-characteristic
directions (Equations (7) and (8)) within BRDF principal planes needed to be counted
(Table 4).

Table 4. Differences in BRDF principal planes due to spatial smoothing for ENF and Grassland in
extreme DOYs.

Site Band DOY Magnitude (%) HotSpot (%) −45◦ (%) −70◦ (%) +45◦ (%) +70◦ (%) Zenith (%) SD

ENF
NIR 176 1.57 3.48 1.12 4.49 3.37 8.02 2.00 2.20
SW 180 0.85 1.59 0.68 2.25 1.52 3.62 0.96 0.97
VIS 180 0.39 0.79 0.31 1.2 0.72 1.87 0.48 0.52

Grassland
NIR 152 0.86 1.19 1.21 1.79 0.91 1.72 0.91 0.35
SW 153 0.37 0.74 0.63 1.09 0.62 1.08 0.55 0.22
VIS 260 0.29 0.65 0.38 0.83 0.46 0.74 0.53 0.16
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Figure 10. Comparison of smoothed BRDF principal plane at 5600 m with the retrievals at 500 m
within three broadbands on the extreme DOYs for ENF (a) and Grassland (b).

Table 4 shows that the magnitude differences in ENF are NIR 1.57%, SW 0.85%, and
VIS 0.39% on DOY176, DOY180, and DOY180, which are higher than NIR 0.86%, SW
0.37%, and VIS 0.29% on DOY152, DOY153, and DOY260 for Grassland. The SD of ENF
in three broad bands are NIR 2.20, SW 0.97, and VIS 0.52 which are also higher than
NIR 0.35, SW 0.22, and VIS 0.16 for Grassland. This indicates that smoothed BRDFs for
ENF have more discreteness and variability than Grassland due to spatial smoothing on
the corresponding days. Considering albedo is the hemispherical integration of BRDF,
variations in BRDF due to spatial smoothing has potential impact on albedo retrievals.
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4.4. Albedo Differences Induced by BRDF Smoothing
4.4.1. Albedo Differences Induced by BRDF Temporal Smoothing

Figure 11a–c shows the relative differences (Equation (9)) and absolute differences
(Equation (10)) in albedo due to BRDF temporal smoothing in multi-temporal scales (8 days,
16 days and 32 days) in three broad bands for each selected study site. As the smoothing
scale increases from 8 days to 16 days and 32 days, the albedo differences (relative and
absolute) compared to smoothed albedo also gradually increase. It indicates that a larger
temporal scale produces higher albedo difference, and BRDF at coarser temporal scale has
lower temporal representativeness.
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Figure 11. Statistics of albedo differences due to BRDF temporal smoothing in NIR (a), SW (b), VIS (c)
and the average monthly albedo differences (d) for each study site.

Figure 11d shows the statistic of average monthly albedo difference in three broad
bands for each selected study site. From the perspective of spectral band, the magnitude
of relative difference in the VIS band (7.17%) is the highest, followed by NIR (3.36%) and
SW (3.12%), while the absolute difference in the NIR band (0.67%) is the highest followed
by (0.40%) and VIS (0.27%). This indicates that albedo in VIS band is generally the lowest
among the three broad bands while albedo in the NIR and SW bands is relatively larger,
which is consistent with the characteristic that vegetation absorbs energy in VIS band and
strongly reflects in the NIR band. Thus, albedo differences in vegetation due to BRDF
smoothing in multi-temporal scales are highest in the NIR band absolutely, and largest in
the VIS band relatively.

From the perspective of land cover type, the relative and absolute differences in EBF in
the three broad bands are smaller than DBF, indicating that EBF-BRDF has better temporal
representativeness. Thus, EBF which is in low latitude and growing in four seasons shows
better stability than DBF. For DBF, Savanna, and Grassland growing in four seasons, the
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average relative differences in the three broad bands (NIR, SW, and VIS) are 6.29%, 3.71%,
and 2.49%, respectively. Considering Savanna is a collection of forest and grassland, while
Grassland brings lower differences than DBF, thus with the increase in deciduous forest,
the relative difference could be significantly increased. Both Cropland and Grassland are
sites with uniform land cover types and four distinctive seasons. However, the relative and
absolute differences in Cropland in three broad bands are higher than those of Grassland.
This may be due to the influence of artificial disturbance and crop rotation. ENF, which is
at high latitude and is growing in four seasons, only has data in half the year due to the
climate. ENF shows the highest relative differences in summer and autumn, meanwhile
their relative and absolute differences are significantly higher than those of EBF, indicating
that the temporal representativeness of ENF-BRDF is poor.

From the above analysis, BRDF smoothing at coarser temporal scales can produce
higher albedo differences, and the albedo differences of vegetation due to temporal smooth-
ing of BRDF are highest in the NIR band absolutely, and largest in the VIS band relatively.
Land cover type can significantly affect albedo differences. EBF, which is in low latitude
and growing in four seasons shows better temporal representativeness compared to other
forest samples (such as DBF and ENF), meanwhile the proportion of forest and artificial
disturbance are also influencing factors for albedo differences.

Figure 12a–d shows the monthly relative and absolute albedo differences which were
counted according to spring (March–May), summer (June–August), autumn (September–
November), and winter (December, January, and February). While ENF only has data from
June to November with snowless coverage, only data in summer and winter were counted.
It can be seen from Figure 12a–c that the seasonal characteristics and trends of relative
difference and absolute difference are consistent for each study site. We combined the data
in Figure 12a–c to obtain Figure 12d. The data for each season within Figure 12d comes
from the average values of the six study sites in Figure 12a–c.

Figure 12d shows that albedo differences due to temporal smoothing of BRDF in
spring and summer are significantly higher than those in autumn and winter in the three
broadbands (NIR, SW, and VIS). As EVI curves (Figure 6a) show that land covers in spring
and summer have stronger growing states and higher vegetation coverage for study sites
with obvious growing cycles. This indicates that the growing state of vegetation could
significantly affect albedo differences of land cover. Spring and summer, which are suitable
for vegetation growth, are more likely to lead to albedo differences, and BRDF is less
representative in spring and summer. The relative albedo differences of NIR 4.57% and
SW 3.96% in spring are higher than those in summer with NIR 3.73% and SW 3.63%. The
absolute differences of NIR 1.08% and SW 0.59% in spring are also higher than those in
summer with NIR 0.76% and SW 0.46%. This means that the temporal representativeness
of BRDF is lowest in spring in the NIR and SW bands. However, both the relative albedo
difference and absolute albedo difference in summer, with values of 10.67% and 0.37%, are
higher than those in spring with 7.13% and 0.35% for the VIS band. This indicates that the
temporal representativeness of BRDF is the lowest in summer in the VIS band, which may
be due to the highest vegetation index in summer and strong absorption by photosynthesis.
Autumn and winter are insensitive to albedo differences due to temporal smoothing, BRDF
in autumn and winter are more representative. Thus, albedo differences show obvious
seasonal characteristics due to BRDF temporal smoothing.

Table 5 shows the extreme monthly albedo differences of albedo due to BRDF temporal
smoothing at all study sites. The smoothed BRDF from daily to monthly phase in three
broad bands (NIR, SW, and VIS) could produce relative differences of 11.3%, 12.5%, and
27.2%, and absolute differences of 0.025, 0.012, and 0.013. Thus, albedo differences due to
temporal smoothing of BRDF are significant and should not be ignored.
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Table 5. Extreme monthly differences in albedo due to BRDF temporal smoothing in all study sites.

Band
Relative Difference Absolute Difference

Maximum (%) Site Month Maximum Site Month

NIR 11.3 ENF 6 0.025 Cropland 3
SW 12.5 ENF 6 0.012 Grassland 5
VIS 27.2 DBF 7 0.013 Cropland 6

4.4.2. Albedo Differences Induced by BRDF Spatial Smoothing

Figure 13 shows the daily relative and absolute albedo difference due to spatial
smoothing of BRDF from 500 m to 5600 m for each selected site (Equations (11) and (12)).
Figure 14 shows statistics of the relative and absolute differences at annual level in the three
broad bands (NIR, SW, and VIS). Combining the data from the two figures, the average
absolute difference in NIR (1.33%) is higher than SW (0.81%) and VIS (0.51%), while the
average relative difference in VIS (12.53%) is higher than NIR (6.70%) and SW (6.37%).
This is consistent with the characteristic of green vegetation with higher albedo in the NIR
band and lower albedo in the VIS band as photosynthesis needs to absorb visible light,
which also indicates that albedo differences due to spatial smoothing are affected by the
spectral band.
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in three broad bands.

Regarding land cover types, both the annual relative and absolute albedo differences
of Grassland are smallest in all study sites. Thus, Grassland-BRDF had the best spatial
representativeness. Compared with Grassland, albedo differences for the three forest sites
(EBF, DBF, and ENF) are complex and higher. With increasing latitude, the relative albedo
differences become greater. This shows that spatial representativeness of EBF-BRDF is
higher than DBF and ENF.

From DBF, to Savanna, to Grassland, with the decrease in forest proportion, the relative
and absolute differences gradually decrease. This indicates that forest effectively increases
the albedo difference. However, with similar roughness and uniform land cover types,
the albedo differences for Cropland are significantly higher than Grassland due to the
disturbance of human activities. Thus, albedo differences due to spatial smoothing of BRDF
are influenced by characteristics of vegetation and land cover types.

Table 6 shows the maximal daily relative and absolute albedo differences for each
selected sites due to spatial smoothing of BRDF. The highest relative differences of 36.5%,
37.1%, and 94.7% and absolute differences of 0.037, 0.024, and 0.018 occurred in NIR, SW,
and VIS after spatial smoothing of BRDF.

Figure 15 shows the statistical analysis of sill (C) values combined with albedo dif-
ferences and RMSE on the DOYs with coverage by Landsat-8 images. There is a high
correlation between sill values and absolute differences or RMSE, while the overall cor-
relation coefficients in the three broad bands is 0.8876 and 0.8674, respectively. Thus, the
heterogeneity of land cover is related to albedo difference. The higher the surface hetero-
geneity, the higher the Sill value, the lower the spatial representativeness of BRDF at coarser
scales, and the larger the albedo difference.
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Table 6. Maximum daily albedo differences due to BRDF spatial smoothing for each study site.

Site Band DOY Absolute Difference DOY Relative Difference (%)

ENF
VIS 305 0.018 180 94.7
NIR 176 0.037 176 36.5
SW 176 0.024 180 37.1

Cropland
VIS 126 0.017 126 18.5
NIR 125 0.034 11 14.1
SW 11 0.020 11 13.2

Grassland
VIS 122 0.009 122 9.41
NIR 122 0.018 122 6.49
SW 122 0.011 122 6.12

Savannas
VIS 97 0.010 217 20.8
NIR 101 0.027 6 11.8
SW 101 0.015 6 10.1

DBF
VIS 92 0.009 158 27.2
NIR 134 0.030 33 17.4
SW 134 0.017 32 14.4

EBF
VIS 199 0.009 199 83.8
NIR 65 0.029 65 13.8
SW 65 0.020 65 15.0
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5. Discussion

It is a feasible approach to introduce BRDF priori knowledge into the estimation of
surface albedo at fine resolutions, but there is a potential for apparent uncertainty existing in
the derived albedo values, especially when BRDF priori knowledge at coarse scales is used
in fine resolution albedo calculations. This work focused on several typical case studies
to investigate its variation. Our results show that BRDFs of different land cover types can
produce captured differences into the retrieval of albedo after spatiotemporal smoothing.
Moreover, the differences have the seasonal characteristic that differences in spring and
summer are higher in temporal smoothing and heterogeneity so that the overall correlation
coefficient between sill values and absolute differences is also high. In spatial smoothing,
the direct causes are changes in land surface condition in the spatial and temporal scale,
such as the spatial continuity of surface biophysical characteristics, various rhythmic cycles
of land surface biomes with the change of seasons, and as well as residual uncertainties
left in the nominal corrected input observations [40,64–66]. Though observations within a
16-day period are enhanced on the most recent day of the retrieval date, it should be noted
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that the time–angle trade-off scheme preserves land surface signatures from other days in
the nominal daily BRDF retrieval.

Regarding analysis of albedo differences due to BRDF temporal smoothing, the tem-
poral smoothing of BRDF shows obvious scale effect and seasonality. With the increase in
smoothing scale, the albedo differences gradually increase (Figure 11a–c). This conclusion
is applicable to the three broad bands (NIR, SW, and VIS) for each study site. Generally,
the absolute differences caused by temporal smoothing of BRDF in the NIR band are the
largest, while the relative differences in the VIS band are the largest (Figure 11d). This may
be related to the biophysical characteristic of vegetation that it needs to absorb light in the
VIS band, meanwhile the light in NIR band could be strongly scattered by leaf structure. In
addition, the impact of BRDF temporal smoothing shows certain seasonal characteristics,
with elevated variation in spring and summer due to the vigorous growth of vegetation
(Figure 12d), and limited variation in autumn and winter due to lesser temporal changes
over land surface.

The impact of spatial BRDF smoothing on albedo implies certain spectral features
accompanied by connections with spatial heterogeneity. The absolute differences caused by
spatial BRDF smoothing show the highest values in the NIR band and the highest relative
differences in the VIS band (Figure 14). This is consistent with the biophysical characteristics
of the vegetation analyzed above, that photosynthesis needs to absorb visible light and
produce higher reflectance in the NIR band. Compared with flat grassland, forest effectively
increased the differences. In addition, we reconstructed the land surface albedo at 30 m
based on Landsat8-OLI images to analyze the spatial heterogeneity of land covers. The
results show that the spatial heterogeneity of land cover is related to the albedo differences
due to spatial smoothing of BRDF (Figure 15).

6. Conclusions

Several studies have introduced BRDF priori knowledge into albedo retrievals smoothed
at different scales. This paper investigated the effects of smoothed BRDF on albedo dif-
ferences through case studies over six North American regions using operational MODIS-
BRDF/Albedo products. Our results show that: (1) as the BRDFs smoothed temporally
from daily to monthly, and spatially from 500 m to 5600 m, variations in the magnitude
and shapes during BRDF smoothing can be captured, with potential relationships with
spectral band, land cover types, and characteristic of vegetation. (2) Temporally smoothed
BRDF in NIR, SW, and VIS could lead to apparent relative differences of estimated albedo
to smoothed values of 11.3%, 12.5%, and 27.2% and detectable absolute differences of 0.025,
0.012, and 0.013. Further, albedo differences show an obvious seasonal characteristic that
differences in spring and summer are significantly higher than those in autumn and winter
in the three broadbands. (3) Spatially smoothed BRDF from 500 m to 5.6 km in NIR, SW, and
VIS bands could lead to albedo achieving apparent relative differences to smoothed values
of 36.5%, 37.1%, and 94.7% and detectable absolute differences of 0.037, 0.024, and 0.018,
while albedo differences due to BRDF spatial smoothing are related to heterogeneity of land
cover and the overall correlation coefficient between sill values and absolute differences
in the three broad bands was 0.8876. The introduction of BRDF priori knowledge of land
cover is an important way to produce albedo at high resolution. This work demonstrated
that smoothed BRDF after temporal and spatial smoothing can introduce variations in
the magnitude and shape of BRDF, and the uncertainty propagating into albedo retrieval
is obvious. Thus, it is necessary to avoid the smoothing process in quantitative remote
sensing communities, especially when immediate anisotropy retrievals are available at the
required spatiotemporal scale.
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