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Abstract: Water yield (WY) refers to the difference between precipitation and evapotranspiration
(ET), which is vital for available terrestrial water. Climate change has led to significant changes in
precipitation and evapotranspiration on a global scale, which will affect the global WY. Nevertheless,
how terrestrial WY has changed during the past few decades and which factors dominated the WY
changes are not fully understood. In this study, based on climate reanalysis and remote sensing data,
the spatial and temporal patterns of terrestrial WY were revisited from 1981 to 2018 globally using an
improved Mann-Kendall trend test method with a permutation test. The response patterns of WY to
precipitation and ET are also investigated. The results show that the global multi-year mean WY is
297.4 mm/a. Based on the traditional Mann-Kendall trend test, terrestrial WY showed a significant
(p < 0.05) increase of 5.72% of the total valid grid cells, while it showed a significant decrease of 7.68%
of those. After correction using the calibration method, the significantly increasing and decreasing
areas are reduced by 10.52% and 10.58% of them, respectively. After the correction, the confirmed
increase and decrease in WY are mainly located in Africa, eastern North America and Siberia, and
parts of Asia and Oceania, respectively. The dominant factor for increasing WY is precipitation,
while that for decreasing WY was the combined effect of precipitation and evapotranspiration. The
achievements of this study are beneficial for improving the understanding of WY in response to
hydrological variables in the context of climate change.

Keywords: water yield; permutation method; precipitation; evapotranspiration

1. Introduction

Water yield (WY) is the difference between precipitation and evapotranspiration (ET)
and is an important indicator of regional water resource availability. Water forms the
foundation of terrestrial ecosystems and is both the basic element of life and the site for a
range of life activities [1]. In addition, water is a clean energy source [2–5]. Both greening
and hydropower generation are restricted by water resources. Excessive changes in the
availability of water resources may affect sustainable development in the local area. Thus,
the WY changes in response to climate change caused by human activities should be
seriously taken into account in this century for both humans and the biosphere [6].

According to the Sixth Assessment Report of the Intergovernmental Panel on Climate
Change [7], current global climate change is unprecedented. Climate change causes signif-
icant changes in the spatiotemporal distribution and circulation of precipitation and ET,
which affect WY [8]. On the one hand, climate change exacerbates the global imbalance
in precipitation patterns. Temporally, precipitation variability will increase with global
warming on all time scales [9]. Spatially, precipitation variability is predicted to increase
in the global humid zone (mainly in the tropical oceans, most monsoonal regions, and
mid-to-high latitude regions). That is, the overall spatial pattern of precipitation changes
shows a trend of “Dry gets drier, wet gets wetter” [10,11]. On the other hand, as an impor-
tant part of the land surface hydrological cycle, ET, which comprises transpiration from
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plants and evaporation from the ground [12], is regulated by both climate change and
land cover change. In general, meteorological factors were the dominant factors affect-
ing ET; temperature, radiation, wind speed, and precipitation all have important effects
on the interannual and seasonal variations of ET [13–15]. Further, vegetation cover also
plays an important role in regulating ET [16]. Based on paired watershed experiments
in small-scale watersheds, researchers have noted that vegetation restoration increases
ET and canopy interception and, therefore, reduces runoff [17]. Conversely, other studies
have shown that increased vegetation cover promotes the large-scale transport of water
vapor and regional-scale precipitation; thus, vegetation restoration positively influences the
hydrological cycle [18,19]. Considering the crucial role of WY and the complex effects of
precipitation and ET, how terrestrial WY has changed during the past few decades urgently
needs to be recognized for its prediction.

Previous studies have investigated the variations in WY in local areas [20,21]. However,
few systematic analyses of global precipitation and ET data have been carried out [22,23].
This is not conducive to identifying and monitoring global WY changes under a unified
standard framework. Linear regression is a commonly used method for estimating the
parameters of long-series hydraulic data [24]. Compared to linear regression, the Mann-
Kendall (MK) method does not need to meet a certain distribution to complete the statistical
test. In addition, the structural system is less disturbed by outliers. Thus, it is more applica-
ble and feasible than other methods that use a normal distribution test [25–28]. However,
recent studies have found that the MK test has the problem of multiple hypotheses testing.
This might lead to false positives and false interpretations of spatial patterns of change
under the effect of spatial autocorrelation mechanisms [29,30]. In other words, ignoring
the multiple hypothesis testing problems may overestimate the significance of the changes.
According to a recent work by Cortés et al. [31], the multiple hypothesis test problem can be
corrected using a cluster-based replacement test to clarify the spatiotemporal distribution
of land surface greening. This proposed method provides an effective way to eliminate
misjudged regions in the detection of long-term trends at regional and global scales.

Therefore, this study aimed to revisit the spatiotemporal patterns of terrestrial WY
worldwide from 1981 to 2018. The WY was calculated using precipitation and ET based
on long-term climate reanalysis data and remote sensing data. Significant changes in WY
were identified using both the MK test and the method by Cortés et al. [31]. Furthermore,
the study explored the response pattern of WY to precipitation and ET and the dominant
factors of WY change under different climate types and vegetation distribution classification
systems. This study will help to improve the understanding of WY in response to the
hydrological variables in the context of climate change.

2. Materials and Methods
2.1. Precipitation Dataset

The precipitation data for this study were derived from the Climate Research Unit Time
Series (CRU TS) v4.04 at the University of East Anglia (http://www.crudata.uea.ac.uk)
(accessed on 20 October 2020). The dataset was derived by interpolating the monthly
climate anomalies from extensive networks of weather station observations [32,33]. It
includes several climatic variables at a 0.5◦ spatial resolution over all land domains of the
world from 1901 to 2019, except Antarctica. In this study, monthly precipitation data from
1981 to 2018 were selected to calculate the annual precipitation in mm/a. This dataset has
been widely used in global and regional climate change studies because of its complete
coverage, high data resolution, and long-timescale [34–36].

2.2. Evapotranspiration Dataset

The land surface ET data used in this study were derived from the Global Land
Evaporation Amsterdam Model (GLEAM), a global land evaporation product (http://www.
gleam.eu) (accessed on 4 November 2019). GLEAM is a set of algorithms that separately
estimate the different components of terrestrial ET based on satellite observations as follows:

http://www.crudata.uea.ac.uk
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transpiration, interception loss, bare soil evaporation, snow sublimation, and open-water
evaporation. Central to this methodology is the use of the Priestley and Taylor evaporation
models [37,38]. In this study, the annual ET data (unit: mm/a) of the GLEAM v3.3a
version with a spatial resolution of 0.25◦ × 0.25◦ from 1981 to 2018 were selected. To
match the spatial resolution of the precipitation data, the ET data were aggregated to a
0.5◦ × 0.5◦ resolution.

2.3. Climate-Plant Types

In this study, each valid pixel was assigned to a climate-plant type, which was de-
fined by both the Köppen climate classification and the Moderate-resolution Imaging
Spectroradiometer International Geosphere Biosphere Program (IGBP) land cover type.
The Köppen-Geiger (KG) climate classification was first developed in the late 19th cen-
tury [39] and updated by Rudolf Geiger. The KG system classifies the climate into five
main classes (Table 1). The classification was based on the threshold values and seasonality
of monthly air temperature and precipitation. It is widely used and has been established as
a multidisciplinary standard for characterizing the climate of a region [40].

The MODIS land cover type dataset (MCD12Q1) from 2001 at a spatial resolution of
0.5◦ was used to identify the land cover in this study. The IGBP classification system used
in MCD12Q1 is an internationally common land use and land cover classification system.
It defines 17 categories of land cover types, including 11 categories of natural vegetation,
three categories of land use and land mosaic, and three categories of unvegetated land,
ranging from 180◦W to 180◦E and 64◦S to 84◦N [41]. The IGBP land cover classification
system reflects the characteristics of the physiological parameters of the land surface and
the dominant vegetation status of the land cover. This is typical of a land cover classification
system [42]. In this study, water regions were excluded.

Each of the climate-plant types was composed of climate and land cover types. For
example, tropical evergreen coniferous forest was referred to as A-ENF, where A indicates
a tropical climate and ENF indicates an evergreen coniferous forest (Table 1).

Table 1. Descriptions of the climate and plant types in this study are based on the Köppen-Geiger
climate classifications and the MODIS IGBP land cover types, respectively. The details regarding the
codes of Köppen-Geiger climate classifications are provided by Beck et al. [43].

Climate Types A (Tropical) B (Arid) C (Temperate)
D (Cold) E (Polar)

Land Cover Types

Evergreen Needleleaf Forest (ENF) Evergreen Broadleaf
Forest (EBF) Deciduous Needleleaf Forest (DNF)

Deciduous Broadleaf Forest (DBF) Mixed Forest (MIF) Open Shrublands (OSH)
Woody Savannas, Savannas (WSA) Grasslands (GRA) Croplands (CRO)

Cropland and Natural
Vegetation Mosaic (CNV) Snow and Ice (SNI) Barren or Sparsely Vegetated (BSV)

2.4. Statistical Analysis Strategy

For each pixel, WY was estimated as follows:

WY = P − ET, (1)

where WY, P, and ET are the annual water yield, annual precipitation, and annual ET
in mm/a, respectively. We used the MK trend test to reduce the effect of outliers [44].
This is commonly used as a test of significance for the Theil–Sen estimator, which is
a nonparametric method to estimate a monotonic trend from a time series. Temporal
autocorrelation was accounted for by AR correction. For a time series, each value is not
only related to the previous values, but also the resulting disturbance. Auto-regressive
(AR) model is a statistical correction approach to time series. Not accounting for temporal
autocorrelation could lead to increased false-positive rates. The procedure outlined by
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von Storch [45] was followed. The lag operator (lag-1) is an operator that converts the
previous value of a time series into the current value. Von Storch [45] pointed out that
when performing the MK test, the “pre-whitened” time series was much less troubled by
serial correlation. That is, the lag-1 autocorrelation is estimated first, and then the original
time series is replaced. For each pixel, the temporal autocorrelation was calculated at lag-1
as follows:

r̂ =
n·∑n−1

1 (xi − x)(xi+1 − x)

(n − 1)·∑n
1 (xi − x)2 , (2)

where n was the number of years, xi was the data for year i, and x was the multi-year
average. After that, the original time-series, xi, was replaced with the series, yi as follows:

yi = xi − r̂xi−1 (3)

The MK trend test was then performed on this new time series.
To correct for multiple hypothesis testing, a clustering-based permutation method was

applied (Figure 1). The permutation test established a threshold for overall significance
based on the number of contiguous (first-order queen neighbors) significant grid cells. The
motivation for this test was that the clusters formed by false positives were smaller than
those formed when a true increase or decrease in WY existed. A total of 3000 permutations
were performed to determine the threshold for statistical significance. At each permutation,
all grid cells were permuted jointly, that is, using the same set of permuted time indices.
This preserves the spatial correlation of the data. The MK trend test was performed on
the permuted data, and the largest cluster of significant grid cells was recorded. The
2700th of the 3000 largest recorded clusters (i.e., 90th percentile) was the threshold for
overall significance. In the original data, the number of grid cells for each significant region
was counted, and if it exceeded the threshold established by the permutation method, it
was declared that this region had a confirmed change. This method has been proven to
control the probability of false positives in the results and has higher statistical power than
comparable methods [31].
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For the grid cells with a confirmed significant change in WY, the response patterns
of WY to precipitation and ET were identified according to the relationships of their Sen’s
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slopes. Theil–Sen’s slope estimation is usually used to calculate trend values with MK test.
That is, Sen’s slope is first calculated, and then the MK test is used to determine the trend
significance. This method is computationally efficient, insensitive to measurement errors
and outlier data, and is often used in trend analysis of long time series data [28,46]. Here,
six response patterns were defined as follows: SWY+, SP+, and SET+ (Pattern I); SWY+, SP+,
and SET− (Pattern II); SWY+, SP−, and SET− (Pattern III); SWY−, SP−, and SET− (Pattern
IV); SWY−, SP−, and SET+ (Pattern V); SWY−, SP+, and SET+ (Pattern VI), where SWY+, SP,
and SET stand for the Sen’s slope of WY, precipitation, and ET, respectively.

Based on these six patterns, the dominant component leading to the variation in WY
was explored. For precipitation and ET varying in the same direction, that with a large
Sen’s slope was taken as the dominant factor. When the two were different, the one with a
significant sign was considered the dominant factor. If both were significant, precipitation
and ET were considered to act together in WY, whereas if neither were significant, they
were set to be determined.

3. Results
3.1. Annual WY at the Global Scale

The global 0.5◦ × 0.5◦ WY multiyear average (Figure 2a) from 1981 to 2018 was greater
than 0 mm in 86.16% of the terrestrial region. In addition, 7.15% of the regions had greater
than 1000 mm at 10◦ S–30◦ N in eastern Asia, Greenland, and the Amazon basin. The
maximum value of 5464.8 mm was located at (77.25◦W, 4.25◦N). In contrast, 13.84% of
the regions had an average WY of less than 0 mm. Among them, 4.82% were less than
−500 mm, located on the California Peninsula, the coast of Peru, and the coast of the
Arabian Peninsula. The minimum value of −1796.60 mm was located at (115.75◦E, 20.25◦S).
The spatial average of global WY over many years was 299.15 mm/a. The anomalies of
41.59% of the regions with a multi-year average WY greater than 0 mm were greater than 0
mm, while those of all regions with a multi-year average WY of less than 0 mm were less
than 0 mm (Figure 2b). There were obvious variations in eastern Asia, Europe, the low-and
mid-latitudes of Africa, the mid-latitudes of South America, eastern North America, and
mid-to high-latitudes.
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We obtained the annual trends in global land precipitation, ET, and WY from 1981 to
2018 (Figure 3). The results showed that the Sen’s slopes of annual precipitation, ET, and
WY were 0.4401, 0.2634, and −0.1188 mm/a, with p-values of 0.0071, 0.00001, and 0.5462
(obtained by the MK test), respectively. The average annual precipitation, ET, and WY
were 645.38, 220.50, and 229.15 mm/a. The maximum value of annual precipitation was
665.15 mm/a in 2011, and the minimum value was 616.68 mm/a in 1987. The maximum
values occurred in 1981, 1989, and 1996, while the minimum values occurred in 1987, 1991,
and 2001. The maximum value of annual ET was 230.52 mm/a in 2016, and the minimum
value was 211.33 mm/a in 1992. The maximum annual WY was 318.32 mm/a in 1996, and
the minimum value was 275.10 mm/a in 1987. The maximum difference between annual
precipitation and ET was 441.35 mm in 1999, and the minimum difference was 401.86 mm
in 1987.
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3.2. Inter-Annual Variability of WY

Considering the spatial differences, MK significance tests for each pixel were per-
formed, and 8801 grids with significant changes in global terrestrial WY were obtained
(Figure 4a). Not adjusting for multiple hypothesis testing could overestimate the global WY
change. Hence, after applying the correction, a confirmed change in 7872 grids was detected
(Figure 4b). Areas where there were grids with trend signals that were not strong enough
to be detected by the MK method but strong enough to be detected when performing no
correction were categorized as uncertain changes. A total of 10.6% of the origin significant
changing areas, which are called uncertain changing areas, were screened out after the
correction. The mean value of the global terrestrial WY Sen’s slope before the correction
was 0.4855, while after the correction, the mean value of the confirmed area was 0.5266 and
that of the uncertain area was 0.2496, both showing an overall increasing trend.
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Figure 4. Geographic distribution of significant trends in annual terrestrial water yield during
1981−2018, using the Mann-Kendal trend test, (a) before and (b) after correcting for multiple hypoth-
esis testing. Shades of blue (red) indicate a significant increasing (decreasing) trend at α = 0.05. Grid
cells with no statistical significance are shown in white.

Before applying the correction, 3756 grids (5.72%) showed a significant increasing
trend, and 5045 grids (7.68%) showed a significant decreasing trend. After correction,
3361 grids (5.12%) of the global terrestrial WY in the confirmed regions showed an increas-
ing trend, and 4511 grids (6.87%) showed a decreasing trend. The confirmed increasing
trend of terrestrial WY in each continent was 48.2% in Africa and 31.3% in Asia, whereas
the decreasing trend was 36.8% in Asia, 19.4% in North America, 18.6% in Africa, 12.8% in
South America, and 11.5% in Australia. In the uncertain areas of terrestrial WY, 395 grids
(0.60%) showed an increasing trend, and 534 grids (0.81%) showed a decreasing trend.
Among the increasing trend areas, 30.6% were in North America, and 27.2% were in Asia.
Decreasing trends were found in Asia (27.0%), North America (25.3%), and Africa (24.8%)
(Figure 5).

Based on the climate-plant types, the global terrestrial (Figure 6) WY Sen’s slope was
positive in EBF, WSA, and CNV in the tropical (A) climate zone, with a significant decrease
in WY in CRO and both an increase and a decrease proportionately in GRA. Moreover,
WY decreased in DBF, OSH, CRO, and BSV but increased in CNV, and both increased
and decreased proportionately in WSA and GRA in the arid (B) climate zone. In the
temperate (C) climate zone, WY decreased in ENF, EBF, MIF, OSH, GRA, and CRO, whereas
it increased in WSA and CNV, and WY both increased and decreased proportionately in
DBF. In the cold (D) climate zone, ENF, OSH, and GRA showed an increased and decreased
WY in proportion to each other, while DNF, DBF, MIF, WSA, CRO, and CNV showed an
increased WY. In the polar (E) climate zone, WY increased and decreased in OSH and GRA
in proportion to each other, while it showed an overall increase in SNI and a decrease
in BSV.
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3.3. WY in Response to Variabilities of Its Components

Based on the global terrestrial WY response to precipitation and the ET model (Figure 7),
Pattern I (SWY+, SP+, and SET+) was concentrated in Africa and Russia, and Pattern II
(SWY+, SP+, and SET−) in Africa. Further, Patterns I (59.3%) and II (40.4%) were widely
distributed in the areas with an increasing WY. Pattern IV (SWY−, SP−, and SET−) was
scattered around the globe, while Pattern V (SWY−, SP−, and SET+) was more clearly



Remote Sens. 2022, 14, 2009 9 of 17

distributed globally, with some parts of North America and southern South America.
Additionally, Pattern VI (SWY−, SP+, and SET+) was mainly concentrated in the eastern
part of Africa.
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Figure 7. Composite map of the sign of terrestrial water yield (WY), precipitation (P), and evapotran-
spiration (ET) trends. Colored areas indicate where WY significantly changed during 1981–2018 after
correcting for multiple hypothesis testing (α = 0.05). SWY, SP, and SET indicate the Theil–Sen’s slope
of WY, P, and ET, respectively. The symbols + and − indicate a positive and negative WY (P or ET)
trend during the study period, respectively.

Based on the climate-plant types, the WY response pattern to the variabilities of its
components was obtained (Figure 8). Areas in A-CRO, B-CRO, and C-CRO with Pattern V
accounted for the majority, whereas the D-CRO was associated with Pattern I. In the MIF
of different climate zones, different patterns occupied the following different proportions:
C-MIF with Pattern V, D-MIF with Pattern I, and E-MIF with Pattern V. The difference was
that the CNV and OSH in different regions showed the same pattern.
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Figure 8. Frequency distribution of composite patterns of terrestrial water yield (WY), precipitation
(P), and evapotranspiration (ET) trends by the climate-plant types (shown in Figure 6) across the grid
cells in which WY significantly changed during 1981–2018 after correcting for multiple hypothesis
testing (α = 0.05). SWY, SP, and SET indicate the Theil–Sen’s slope of WY, P, and ET, respectively.
The symbols + and − indicate a positive and negative WY (P or ET) trend during the study period,
respectively.

3.4. Dominating Factors for the Changes in WY

The spatial distribution of the dominant factors of global WY change (Figure 9) showed
that the area of the region where WY changes were dominated by precipitation accounted
for 31.5% and was distributed in central Africa, North America, and Siberia. The areas
dominated by a combination of precipitation and ET accounted for 61.2% and were dis-
tributed worldwide. The regions where WY changes were dominated by ET were found
on the western side of Africa. The regions with a significant increasing trend in WY were
dominated by precipitation (59.2%) and the combined effect (40.4%), while the regions with
a significant decreasing trend were mainly dominated by the combined effect (78.4%).
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Figure 9. Geographic distribution of dominators regulating terrestrial water yield (WY). Colored
areas indicate those where WY significantly changed during 1981–2018 after correcting for multiple
hypothesis testing (α = 0.05). Blue, yellow, and green indicate that WY was dominated by precipitation
(P), evapotranspiration (ET), and their combined effect (Combined), respectively.

Based on the climate-plant types, the main factors of WY variation were mapped
(Figure 10). The WY changes in regions with A-CRO, B-CRO, and C-CRO were dominated
by the combined effect, whereas D-CRO was dominated by precipitation. Similarly, C-
MIF and E-MIF were dominated by the combined effect, whereas D-MIF was dominated
by precipitation. The areas with A-CNV and C-CNV were dominated by precipitation
and combined effects, whereas the areas with B-CNV and D-CNV were dominated by
precipitation. The OSH in all climate regions was primarily a combined effect.
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Figure 10. Statistics for the dominating factors regulating terrestrial water yield (WY) by the climate-
plant types (Figure 5) across the grid cells in which WY significantly changed during 1981–2018
after correcting for multiple hypothesis testing (α = 0.05). Blue, yellow, and green indicate that WY
was dominated by precipitation (P), evapotranspiration (ET), and their combined effect (Combined),
respectively.

4. Discussion

Improving the understanding of changes in WY and the dominant drivers is essential
for assessing the impact of global climate change on the water cycle. Previous studies
have suggested that WY changes due to precipitation and ET in local areas. However,
spatiotemporal changes in WY in global terrines and their response patterns to precipitation
and ET have not yet been considered. In this study, a new step, correcting for multiple
hypothesis testing, was introduced. This study showed that the increasing and decreasing
trends in WY have changed around the world. Furthermore, the contribution of the WY
change was different in different regions.

The high values of the multi-year average WY were mostly concentrated in coastal
areas, while the low values were concentrated inland (Figure 2a). As for the trend of
“Dry gets drier, wet gets wetter”, we found (Figure 2b) that WY in all dry regions where
multi-year average WY was less than 0 mm/a was decreasing. It was a negative indicator
of local water resources [47]. However, for areas that are already rich in WY, it is still
necessary to pay attention to the climate change and land cover change to avoid the impact
of the decreasing WY somewhere. Some researchers [48] also pointed out that the impact
of climate change on global WY was reflected in wet and dry seasons.

The application of the correction based on clustering corrected the overestimation of
the degree of global WY change (Figure 4). After applying the correction, we found that
approximately 10% of the global areas that demonstrated a significant change in uncertainty
were eliminated. The extent of overestimation can be better understood by examining
climate zones and land-use types. The results showed that the uncertain areas were mainly
concentrated in non-woody plants, such as open shrublands, closed shrublands, and
savannas. Moreover, the number of uncertain grids was relatively high for arid desert, arid
steppe, and polar tundra climates. In addition, harsher climates and sparser vegetation
were observed. WY was mostly increasing in the tropical zone (15◦S–15◦N), while an overall
decreasing trend was observed near 30◦N and 30◦S (the global desert strip), respectively.
We also found that the area in the arid climate type appeared to have more decreasing
WY trends. In addition, it is worth noting that the changes were not symmetrical in the
northern and southern hemispheres. At high latitudes in the Northern Hemisphere, both
increasing and decreasing trends were observed (Figure 11). These might relate to the
global wind belts.

Global terrestrial WY during 1981–2018 showed a fluctuating downward trend (Figure 3).
Based on the latitudinal variation map of global terrestrial WY changes (Figure 4), WY at
low latitudes was dominated by an increasing trend, that at mid-latitudes in the northern
and southern hemispheres was dominated by a decreasing trend, and that at high latitudes
in the northern hemisphere had a proportion of increasing and decreasing trends. We
selected some typical regions for the discussion (Figure 12). All regions showed a consistent
WY increasing or decreasing trend, except central Africa (Figure 13). According to our
defined changing patterns and dominators, Canada (Figure 12(i)) showed a decreasing
trend in WY, caused by a decrease in precipitation and ET. Here, the multi-year average
WY was 95.96 mm/a, and Sen’s slope was −1.65 mm/a. Li et al. [49] also showed that
the most obvious decreasing trend of WY in Canada occurred in the northeastern and
southern mountains but was attributed to the decrease in precipitation and increase in
ET. The influence of glacier/permanent snowmelt from the Rocky Mountains and per-
mafrost degradation could be the potential factors in Northwest Canada because of global
warming [50,51]. In contrast, the decrease in WY in West Asia (Figure 12(ii)) was mainly
caused by a combination of decreased precipitation and increased ET. There was a quite
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low multi-year average WY (25.17 mm/a) where Sen’s slope was −1.57 mm/a. The combi-
nation of decreasing precipitation and increasing atmospheric demand led to a significant
increase in aridity in many subtropical areas [52]. Shirmohammadi et al. [53] suggested
that local land-use changes might have a higher impact on WY than climate change. The
conversion of rangeland and farmland to orchards would decrease WY. These land-use
changes affect WY by a structural change in the basin due to an increase in infiltration and
ET rates [54]. An overall drying trend in Southern Hemisphere semiarid regions has been
noted (since the 1950s for SE Australia [55]). In our results, the decrease in WY (Sen’s slope
was −2.16 mm/a) was due to decreased precipitation over most of southeastern Australia
(Figure 12(iii)). The substantially higher temperatures, which enhanced atmospheric evapo-
rative demand, coupled with below-average precipitation, resulted in a strong region-wide
drought throughout the entire southeastern Australia [56]. Moreover, it might be influenced
by sea surface temperature and its interactions with the atmosphere [57].
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Figure 11. Significant changes in annual terrestrial water yield according to the number of grid
cells in different altitude. Darker shades indicate the confirmed increasing (decreasing) trends that
remains after correcting for multiple hypothesis testing (α = 0.05), while lighter shades indicate
the uncertain trends, i.e., additional significant changes that are detected when no multiple testing
correction took place.

The increase in WY (Sen’s slope was 2.8573 mm/a) in Siberia (Figure 12(iv)) was
caused by an increase in precipitation, with a multi-year average WY of 323.94 mm/a.
Extra moisture could be redistributed to the surface through large-scale circulation, creating
precipitation in downwind regions. Lian et al. [58] suggested that spring moisture input
from the strongly greened upstream regions (Europe) with westerly winds helped to
maintain positive feedback of summer precipitation in Siberia when it became weaker. This
notable teleconnection resulted in a localized increased wetness trend. Remote correlation
is also applied to the Amazon region (Figure 12(v)). In our study, the Amazon region
was mostly characterized by an increase in WY due to increased precipitation and a
combination of increased precipitation and decreased ET. The multi-year average WY was
high (684.60 mm/a), and Sen’s slope was 7.87 mm/a. Warming from the tropical Atlantic
during the wet season triggered more latitudinal water vapor. Seasonal precipitation
was important for the maintenance of tropical rainforest ecosystems. Seager et al. [59]
suggested that the changes in WY induced by rising specific humidity, which accompanied
atmospheric warming, were offset by the slowdown of the tropical circulation to some
extent. The large area of the 10◦ N east-west strip-trending region of Africa (Figure 12(vi))
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showed a positive value of Sen’s slope in WY, with a multi-year average WY of 276.92 mm/a,
mostly due to increased precipitation. The increase in WY was partly caused by an increase
in precipitation and a decrease in ET. Possibly, the increase in WY was due to greening
locally or an increase in precipitation in the basin. Data in the study by Cortés et al. [60]
showed a significant trend of greening in the area north of the equator in Central Africa.
On one hand, some studies suggested that deforestation could increase WY [21], while
greening decreased WY by increasing ET [61,62]. On the other hand, Makarieva et al. [63]
argued that increasing ET could drive water vapor transport by changing atmospheric
pressure. The amount of water recovered to the ground depended greatly on the watershed
area that is, the larger the geographical area, the higher the recovery potential.
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Figure 12. Statistics for the confirmed trends of terrestrial water yield (WY) represented as the number
of grid cells by the latitude. Blue and red indicate a significant increase and decrease in WY during
1981–2018 after correcting for multiple hypothesis testing (α = 0.05), respectively. The red boxes
indicate the areas of interest, including parts of Canada (i), West Asia (ii), Australia (iii), Siberia (iv),
the Amazon (v), and Central Africa (vi).

This study had some limitations. First, the land cover change affected the land surface
water cycle, ET, and precipitation [64]. In our study, the IGBP for 2001, in the middle of
the study period, was selected as the classification map of the surface cover to minimize
the impact of land cover changes on data monitoring. Balist et al. [65] studied the changes
in the WY of the Sirvan River Basin in Iran from 2013 to 2019. They found that forests
decreased and built-up areas increased. Simultaneously, the precipitation decreased, and
temperatures increased in this area over a long period. Therefore, they concluded that
the effect of these factors on the WY is a complex process. Second, because we only
focused on monotonic trends for the whole period, segmentation might have occurred (e.g.,
increasing first, then decreasing), which led to overall nonlinear changes. Testing such
segmented trends while considering multiple hypothesis testing remains to be investigated.
Third, some regions were too small to be detected in our study. Therefore, analysis of
these smaller areas might reveal previously undetected trends. Fourth, we found that
significant clustering surrounds some insignificant grids. Noise in the trend might lead to
insignificance because there was no wall-to-wall ground-truth validation. Nevertheless, our
study explicitly showed that global terrestrial WY variability is influenced by precipitation
and ET, with different regions showing corresponding trends of increasing or decreasing
WY. This study provides a reference for how WY variability can be used for local water
management in the future.
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5. Conclusions

In summary, this study revisited significant changes in the terrestrial WY using an
improved MK test and investigated the response patterns of WY to precipitation and ET.
The traditional MK test showed that the terrestrial WY changed significantly over 13.4%
of continents, whereas 10.6% of which were removed because of their uncertainties in the
permutation test. The confirmed increasing trends of WY were located in Africa, eastern
North America, and Siberia, whereas the confirmed decreasing trends were concentrated in
Asia and Oceania. The dominant factors for the increase in WY were mainly precipitation,
while the combined effect of precipitation and ET accounted for most of the significant
decreases in WY.
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