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Abstract: Urban resilience to natural disasters (e.g., flooding), in the context of climate change, has
been becoming increasingly important for the sustainable development of cities. This paper presents a
method to assess the urban resilience to flooding in terms of the recovery rate of different subdistricts
in a city using all-weather synthetic aperture radar imagery (i.e., Sentinel-1A imagery). The factors
that influence resilience, and their relative importance, are then determined through principal com-
ponent analysis. Jakarta, a flood-prone city in Indonesia, is selected as a case study. The resilience of
42 subdistricts in Jakarta, with their gross domestic product data super-resolved using nighttime-light
satellite images, was assessed. The association between resilience levels and influencing factors, such as
topology, mixtures of religion, and points-of-interest density, were subsequently derived. Topographic
factors, such as elevation (coefficient = 0.3784) and slope (coefficient = 0.1079), were found to have the
strongest positive influence on flood recovery, whereas population density (coefficient = −0.1774) a
negative effect. These findings provide evidence for policymakers to make more pertinent strategies to
improve flood resilience, especially in subdistricts with lower resilience levels.

Keywords: urban resilience; flooding; recovery; SAR; nighttime light satellite imagery; Jakarta

1. Introduction

Climate change and continued urbanization have increased the vulnerability of cities
to floods, especially for those along a coast and low-lying cities [1–3]. The improvement
of urban resilience to flooding, to reduce losses and accelerate post-disaster recovery, is a
multifaceted challenge for policy makers [4,5]. Therefore, building a more resilient urban
system against floods is of great significance not only for the safety of residents’ lives and
property, but also for the sustainability of a city.

In order to address the urban flooding challenges, many approaches and projects have
been conducted. Flood-control infrastructures (e.g., dams, canals, and embankments) are
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widely used in cities to effectively prevent urban floods, but these infrastructures cannot
cope with extreme conditions that exceed their initial design capability. The damage caused
by floods includes property losses, resident casualties, and the destruction of infrastructure,
in addition to social instability and high recovery costs [6,7]. Thus, simply studying the
causes, processes, and mechanisms of disasters and engineering defense measures in
disaster management can no longer meet the needs of disaster prevention and reduction;
the effects of disasters on human society must also be scrutinized. The discharge/emission
of industrial wastewater and waste gas may be used to monitor the recovery of people’s
lives and local industrial production during a post-disaster period, which reflects the
recovery capability and resilience of a city [8]. Therefore, attention has gradually been
shifted from studying only hazard factors to examining the effect of the vulnerability of
hazard-effected infrastructure on disaster formation [9,10]. As a corollary, the concept of
resilience is used to assess the effect of urban flooding. Sponge city projects [11], water-
sensitive urban design, and low-impact development are also implemented to improve
urban resilience.

In general, resilience can be defined as “the ability of an individual, community, city
or nation to resist, absorb or recover from a shock (such as an extreme flood), and/or
successfully adapt to adversity or a change in conditions (such as climate change or an
economic downturn) in a timely and efficient manner” [12]. As for urban resilience, urban
infrastructure is closely related to urban resilience, and provides references for assessing
urban resilience to natural disasters [13,14]. According to previous studies [8,15,16], urban
variables to represent factors to evaluate resilience, and can be divided the variables into the
four dimensions of society, environment, community, and economy. The social dimension
focuses on describing the demographic indicators, as these are a key component of society.
Areas with a high population density have a higher disaster-defense capability than those
with a low population density. In addition, the process of recovery from natural disasters
is more rapid in areas with a large proportion of males. The religious factor is also taken
into account in demographic indicators, as it is generally believed that the greater the
concentration of people of the same religion in an area, the more united is the community,
and thus the more rapid is the post-disaster reconstruction in the area than in less united
areas [17,18]. The environmental dimension describes the effect of the natural environment
and ecology on urban resilience. Climate and geographical factors are added to datasets
to explore how to enhance urban resilience using geographic information systems (GIS)
techniques [19,20]. Urban resilience is not only affected by the infrastructure and planning
within a city, but also related to natural external factors (e.g., monsoon, mountains, and
temperature) [21]. For example, green space counters the deterioration of urban ecological
conditions [22], and lower elevation and slope improves road accessibility and rescue-work
efficiency [23,24]. The community dimension aims to assess the resistance of communities
before the flood disaster and their response capacity afterward. For example, the number of
hospitals and shelters can be used to assess a community’s ability to deal with emergency
events [17,25]. In addition, the higher the educational level of a community’s residents, the
more scientifically and efficiently the community can deal with disaster events [18]. The
fourth dimension focuses on economic indicators. Areas with a high GDP per capita and a
high POI density will have more financial resources for post-disaster reconstruction after
floods than those with lower values of these indicators. Similarly, areas with a high road
density have a stronger traffic capacity and more well-developed industries, which means
post-disaster rescue operations are easier to perform in these areas than in less road-dense
and industry-containing areas [26–28]. In addition, space and structure environment are
mainly considered in the context of disaster prevention, whereas the dimensions of society
and risk management are the focus of post-disaster reconstruction.

The duration and scope of floods, in addition to the losses they cause, must be con-
sidered when examining urban resilience to floods [29,30]. Resilience frameworks were
previously evaluated through infrastructure-recovery indicators, such as building recon-
struction, restoration of public facilities, and productivity recovery [13,31]. Although such
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infrastructure-recovery indicators are widely used as an indirect reflection of urban re-
silience [32], the period of flood submergence, namely the time and speed of flood recession,
is also a critical aspect of resilience. Few studies have presented a complete urban-resilience
evaluation system from the perspective of flood accumulation and release, though the scale
and time of floods directly determines the level of infrastructure damage [33,34]. This is
mainly due to the difficulty of obtaining relevant data to measure or calculate a continuous
flood process, especially in developing countries and poor areas [35]. This poses a challenge
to establishing indicators that directly measure flood recovery.

The wide scanning range, low cost, real-time information acquisition, and periodic
surface coverage of satellite remote-sensing technology has led to its acceptance as an
efficient and appropriate means of extracting and monitoring the changes and areas of
floods across various spatiotemporal scales [36,37]. In optical remote-sensing applications,
National Oceanic and Atmospheric Administration/Advanced Very High Resolution Ra-
diometer time-series data and Moderate Resolution Imaging Spectroradiometer (MODIS),
Landsat, and GaoFen satellite data have been used to dynamically monitor water infor-
mation [38–40]. The continuous and strong absorption of water in the near-infrared and
short-wave infrared regions in remote-sensing images has led to the development of differ-
ent water-detection indexes, such as the normalized differential water index (NDWI) [41],
the modified normalized difference water index (MDNWI) [42], the automated water
extraction index (AWEI) [6], and the water index (WI) [43]. Although the spatial and
temporal resolutions of optical remote-sensing images are constantly improving, their data
quality is easily affected by climate conditions, especially clouds [44]. Synthetic aperture
radar (SAR) is a remote-sensing microwave sensor that is capable of continuous operation
and is sensitive to water [45,46]. European Remote-Sensing Satellite-1 SAR images were
used to distinguish flood information based on active contour models comprising grayscale
and textural features, and the results showed that this method extracts flood boundaries
with high accuracy [47]. Wang, et al. [48] used Sentinel-1A (S1A) data to extract the range
of Ebinur Lake, Xinjiang, China, from February 2017 to February 2018 with an accuracy of
99.4%. Moreover, a new water index based on Sentinel-1 data was also used to dynamically
monitor changes in water area [49].

The aim of this study was to examine how to improve the resilience of cities by
combining remote-sensing technology with factors from different resilience domains. We
attempted to evaluate and analyze urban resilience via a case study of Jakarta, Indonesia,
where floods are common in summer. Thus, we used the Otsu model and remote-sensing
data to calculate the flood area of 42 different subdistricts in Jakarta on 25 April and 3 May
2019, respectively to compare the speed of flood recession from each of these subdistricts.
We also collected the data of factors related to floods in each subdistrict of Jakarta, and used
principal component analysis (PCA) to quantify the relative importance of these factors,
and their correlations with the speed of flood recession.

2. Materials and Methods
2.1. Study Area

Jakarta is one of the biggest cities in Southeast Asia and also the political, economic,
and cultural center of Indonesia. Its urban area is approximately 740 km2, with a popu-
lation of more than 10 million. Jakarta is composed of six regions, namely East Jakarta,
West Jakarta, South Jakarta, North Jakarta, Central Jakarta, and the Thousand Islands.
Because the last region has very few people and buildings, it was not included in this
study (Figure 1).

In recent years, the increasing unplanned development of the city has caused many
urban problems. For example, the vegetative coverage across Jakarta has become very
low because of excessive urbanization (Figure 2a) [50]. In addition, as Jakarta is heavily
polluted and freshwater resources are scarce, residents overexploit underground water
without the government’s permission, thereby causing the surface of Jakarta to sink every
year [51–54]. Consequently, secondary disasters caused by land subsidence frequently occur
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during urban floods. Moreover, Jakarta is considered one of the most susceptible cities to
floods worldwide due to its low elevation and land subsidence, and the heavy rain that it
experiences. The average elevation of Jakarta is only 7 m (Figure 2b) according to the Digital
Elevation Model (DEM) of this city, and 40% of its area is below sea level [55–57]. Some
studies and projects of evaluating flood risk have been conducted in Jakarta. For example,
the World Bank in partnership with the government of Daerah Khusus Ibukota (DKI)
Jakarta conducted a case study in 2011 regarding urban challenges in a changing climate,
and the results showed that the greatest climate and disaster-related risk facing Jakarta
would be flooding, which may impose very high human and economic costs on the city [2].
Another study investigated the role of social media (Twitter) for civic co-management
during monsoon flooding in Jakarta [1]. In addition, a subsequent study utilized Twitter
data to assess the effect of residents’ flood evacuation shelters in Jakarta [3]. Nevertheless,
assessing urban resilience to flooding in Jakarta using multi-source data that include SAR
satellite images is still lacking.

Table 1 shows the three most extensive floods that have occurred in Jakarta in the
past two decades, which caused substantial property damage and many casualties. In
addition, Jakarta is close to the equator, and has an average annual temperature of 32 ◦C.
Consequently, it has a tropical rainforest climate with rainy and dry seasons, with at least
6 months of rain each year. Finally, Jakarta is adjacent to the Java Sea, and 13 rivers traverse
the city, which is another factor that makes it vulnerable to floods.
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Table 1. Damage caused by three of the worst floods in Jakarta [58,59].

Year Inundation Area (km2) Displaced Population Economic Loss (USD)

1996 264 30,000 137 million
2007 400 500,000 572 million
2013 463 40,000 775 million

2.2. Data and Methodology
2.2.1. Remote Sensing Imagery

Sentinel-1 is the first satellite series developed by the European Space Agency for
environmental and safety monitoring. The satellite Sentinel-1A (S1A) was launched in
April 2014, and some of its parameters are shown in Table 2.

Table 2. Sentinel-1A parameters.

Mode Resolution (m2) Swath (km) Polarization

Strip Map 4 × 5 80 VV + VH or HH + HV
Interferometric-Wide swath 5 × 20 240 VV + VH or HH + HV

Extra-Wide swath 25 × 80 400 VV +VH or HH + HV
Wave mode 20 × 5 20 × 20 HH or VV

Note: HH = horizontal transmit, horizontal receive, HV = horizontal transmit, vertical receive, VH = vertical
transmit, horizontal receive, and VV = vertical transmit, vertical receive.

S1A data, a C-band with an Interferometric Wide Swath-Ground Range Detected
model (IW-GRD), and VV polarization were obtained from the Google Earth Engine (GEE)
platform. GEE is an excellent geographic big-data cloud-computing platform comprising a
large database of common satellite data, such as data from Landsat, MODIS, and S1 [60].
These satellite data are available pre-processed and free of charge (Table 3). For example,
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GEE subjects S1A data to thermal-noise elimination, radiation calibration, topographic
correction, and then logarithmic-scaling (10 × log10 (x)) conversion to decibel.

Table 3. Data used in this study.

Data Source Year

Satellite Sentinel-1A (S1A) Google Earth Engine (GEE) 4 March, 25 April, and 3 May 2019

Road density and number of hospitals and
shelters (subdistricts)

Badan Penanggulangan Bencana Daerah
(https://bpbd.jakarta.go.id/profile accessed

on 15 June 2021)
2018

Digital Elevation Model (DEM) (8 m) and
slope calculated by DEM

Seamless Digital Elevation Model (DEM) dan
Batimetri Nasional (https:

//tanahair.indonesia.go.id/demnas/#/
accessed on 10 April 2022)

2016

Land-cover data (10 m)

the open source data website of Tsinghua
University of China

(http://data.ess.tsinghua.edu.cn/?%20
tdsourcetag=s_pcqq_aiomsg accessed on 10

April 2022)

2017

Population density, sex ratio, and religion
data (subdistricts)

Badan Pusat Statistik (http://www.bps.go.id
accessed on 15 June 2021) 2015

Gross domestic product (GDP) data
(districts)

Badan Penanggulangan Bencana Daerah
(https://bpbd.jakarta.go.id/profile accessed

on 15 June 2021)
2015, 2016, 2017, 2018, 2019

Points-of-interest (POI) data
Baidu Map Services

(http://lbsyun.baidu.com/ accessed on 15
June 2021)

2019

National Polar-orbiting Partnership Visible
Infrared Imaging Radiometer Suite

(NPP/VIIRS) nighttime-light data (500 m)

the National Oceanic and Atmospheric
Administration

(https://www.ngdc.noaa.gov/eog/viirs
accessed on 15 June 2021)

2015, 2016, 2017, 2018, 2019

There was no rainfall in Jakarta for 10 days before and after 4 March 2019. Jakarta
experienced heavy rain and floods on 25 April, and the weather was clear again on 3 May.
Therefore, S1A images of Jakarta on 4 March, 25 April, and 3 May 2019 were selected for this
study (Figure 3), as they corresponded to time-points before, during, and after the flood.

2.2.2. Urban Fundamental Datasets

We collected many basic urban variables to represent factors to evaluate resilience,
and divided the variables into the four dimensions of society, environment, community,
and economy. Table 4 lists all of the variables selected for the experiment. Because the units
of measurement for the basic data are not uniform, it is essential to standardize each set of
experimental data. The data used in this study are shown in Table 3.

The Indonesian government publishes GDP data for five districts of Jakarta (East Jakarta,
West Jakarta, Central Jakarta, South Jakarta, and North Jakarta), but not for their 42 subdistricts.
Therefore, we estimated the GDP data of subdistricts by combining the nighttime-light data
with the GDP data of the five districts (Figure 4). There is a strong correlation between the
nighttime-light data and regional GDP [61,62], and the National Polar-orbiting Partnership
Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) is more suitable than the Defense
Meteorological Program Operational Line-Scan System at the city scale [63]. Thus, NPP/VIIRS
nighttime-light data were used to estimate the GDPs of the 42 subdistricts.

https://bpbd.jakarta.go.id/profile
https://tanahair.indonesia.go.id/demnas/#/
https://tanahair.indonesia.go.id/demnas/#/
http://data.ess.tsinghua.edu.cn/?%20tdsourcetag=s_pcqq_aiomsg
http://data.ess.tsinghua.edu.cn/?%20tdsourcetag=s_pcqq_aiomsg
http://www.bps.go.id
https://bpbd.jakarta.go.id/profile
http://lbsyun.baidu.com/
https://www.ngdc.noaa.gov/eog/viirs
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Table 4. Variables representing the four dimensions of urban resilience.

Dimension Label Measure

Community Dimension
Number of hospitals Number of hospitals per subdistrict
Number of shelters Number of shelters per subdistrict

Educational background High school degree or above (%)

Environmental
Dimension

DEM Mean DEM
Slope Mean slope

Land cover Land cover

Social Dimension
Population density Population/area

Sex ratio Male/female
Religion Religious population

Economic Dimension
GDP GDP per capita

POI density POI per subdistrict
Road density Road network density



Remote Sens. 2022, 14, 2010 8 of 23

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 22 
 

 

2.2.2. Urban Fundamental Datasets 
We collected many basic urban variables to represent factors to evaluate resilience, 

and divided the variables into the four dimensions of society, environment, community, 
and economy. Table 4 lists all of the variables selected for the experiment. Because the 
units of measurement for the basic data are not uniform, it is essential to standardize each 
set of experimental data. The data used in this study are shown in Table 3. 

Table 4. Variables representing the four dimensions of urban resilience. 

Dimension Label Measure 

Community Dimension 
Number of hospitals Number of hospitals per subdistrict 
Number of shelters Number of shelters per subdistrict 

Educational background High school degree or above (%) 

Environmental Dimension 
DEM Mean DEM 
Slope Mean slope 

Land cover Land cover 

Social Dimension 
Population density Population/area 

Sex ratio Male/female 
Religion Religious population 

Economic Dimension 
GDP GDP per capita 

POI density POI per subdistrict 
Road density Road network density 

The Indonesian government publishes GDP data for five districts of Jakarta (East Ja-
karta, West Jakarta, Central Jakarta, South Jakarta, and North Jakarta), but not for their 42 
subdistricts. Therefore, we estimated the GDP data of subdistricts by combining the 
nighttime-light data with the GDP data of the five districts (Figure 4). There is a strong 
correlation between the nighttime-light data and regional GDP [61,62], and the National 
Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) is 
more suitable than the Defense Meteorological Program Operational Line-Scan System at 
the city scale [63]. Thus, NPP/VIIRS nighttime-light data were used to estimate the GDPs 
of the 42 subdistricts.  

 
Figure 4. Nighttime-light image (a), gross domestic product (GDP) of five districts (b), and simu-
lated GDP of 42 subdistricts (c). 

Figure 4. Nighttime-light image (a), gross domestic product (GDP) of five districts (b), and simulated
GDP of 42 subdistricts (c).

We built a linear regression model based on the nighttime-light data and GDP data
of the five districts from 2015 to 2019 (Figure 5). The R2 of the model was 0.95, indicating
that most of the observed variation could be explained by the model. All of the parameters
were significant at the 95% level. We applied the model to the 42 subdistricts (Table 5), and
then collated the predicted GDP values of the subdistricts of every district (Figure 6). A
comparison with the actual values showed that the mean absolute percentage error was less
than 6.7%, suggesting the high accuracy of estimation using the nighttime light satellite.
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Table 5. Gross domestic product (GDP) predictions for 42 subdistricts.

District Sub-District Mean Lights Value Predicted GDP
(Million USD)

North Jakarta

Cilincing 69.06 1.08
Kelapa Gading 81.44 2.96

Koja 94.84 4.99
Pademangan 80.47 2.81
Penjaringan 75.38 2.04

Tanjung Priok 83.28 3.24

Central Jakarta

Cempaka Putih 77.71 2.39
Gambir 83.72 3.30

Johar Baru 75.29 2.02
Kemayoran 77.58 2.37

Menteng 82.11 3.06
Sawah Besar 78.40 2.49

Senen 110.53 7.38
Tanah Abang 84.09 3.36

West Jakarta

Cengkareng 70.99 1.37
Grogol Petamburan 76.14 2.15

Kalideres 63.71 0.26
Kebon Jeruk 68.86 1.05
Kembangan 65.44 0.52

Palmerah 76.23 2.17
Taman Sari 80.81 2.86

Tambora 73.89 1.81

East Jakarta

Cakung 68.15 0.94
Cipayung 63.00 0.15

Ciracas 63.89 0.29
Duren Sawit 68.45 0.98

Jatinegara 71.35 1.42
Kramat Jati 68.73 1.03

Makasar 65.73 0.57
Matraman 72.47 1.59
Pasar Rebo 64.05 0.31

Pulo Gadung 71.69 1.48

South Jakarta

Cilandak 68.15 0.94
Jagakarsa 64.04 0.31

Kebayoran Baru 76.23 2.16
Kebayoran Lama 70.20 1.25

Mampang Prapatan 71.72 1.48
Pancoran 69.98 1.22

Pasar Minggu 66.41 0.67
Pesanggrahan 66.77 0.73

Setiabudi 78.49 2.51
Tebet 71.22 1.40

2.2.3. Threshold Calculation

The area of flooding is a key evaluation factor for the assessment of urban resilience.
Because SAR has a longer wavelength than optical images, this technology can penetrate
thick clouds, such as those that exist during continuously rainy conditions, to obtain surface
water information, thereby achieving real-time monitoring of the area of flooding. Moreover,
SAR is highly sensitive to water bodies; due to the microwave-scattering principle, the pixel
value of an SAR image is determined by the echo intensity of every pixel. The reflection of
water mainly comprises specular reflection, as water surfaces are smoother than non-water
surfaces. Therefore, the backscatter coefficient of water is less than that of land or vegetation,
and it appears as a dark tone in the image. At present, water extraction using SAR images
is based on textural information, terrain features, independent component analysis, and
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threshold segmentation. The Otsu model used in this study is a threshold-segmentation
method and is one of the most efficient and widely used models [64,65]. The mathematical
principle of the Otsu algorithm is described below.
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First, the proportions of background and target pixels are calculated by
Equations (1) and (2), as follows:

ω1 =
N1

sum
(1)

ω2 = 1 − ω1 =
N2

sum
(2)

where N1 is the total number of background pixels, ω1 is the percentage of the sum of
the background pixels, N2 is the total number of target pixels, ω2 is the percentage of the
target pixels, and sum is the total number of pixels.

Then, the average gray value of pixels in water and non-water areas can be calculated
using Equations (3) and (4), respectively:

µ1 =
t

∑
i=0

i × r( i|C 0) =

t
∑

i=0
i × Pi

t
∑

i=0
Pi

=
µ(t)
ω1

(3)

µ2 =
M−1

∑
i=t+1

i × Pr( i|C 1) =

M−1
∑

i=t+1
i × Pi

M−1
∑

i=t+1
Pi

=
µ − µ(t)
ω2

(4)

where µ1 is the average grayscale of the background, µ2 is the average grayscale of the
target, t represents the threshold, M is the maximum gray value of the image, C0 represents
water, and C1 is non-water.

At last, assuming that the gray value range of the image is [0, 1, 2, . . . , M], the
cumulative gray value from 0 to M is as given by Equation (5), follows:

µ = µ1 × ω1 + µ2 × ω2 (5)

The between-class variance is calculated by Equation (6), as follows:

g = ω1 × (µ − µ1)2 +ω2 × (µ − µ2)2 (6)
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C0 is [0, 1, . . . , t] and C1 is [t + 1, t + 2, . . . , M]. When t is calculated from 0 to M,
the entire process iterates a total of M times. The between-class variance g is the optimal
segmentation threshold when the value of t corresponds to the maximum.

Therefore, if DN < t in the image (where DN is the value of the backscatter coefficient of
the S1A image), the pixel is identified as water; otherwise, the pixel is identified as non-water.

2.2.4. Recovery Rate and Factors’ Weighting

We found that the scattering signal of some smooth roads, roofs, and houses at specific
angles would be misinterpreted as water when water was extracted using the backscatter
signal of surface targets, and thus the area of water would be overestimated. Therefore, the
water area before flooding was subtracted from that during flooding and that after flooding.
Mathematical operations were performed on each pixel such that the error generated by
the scattering signal of non-water objects at a given location could be minimized.

Based on the same time interval, the mathematical expression of flood recovery rate
per unit area is defined as the following formula:

V =
Spost − Spre

Sing − Spre
(7)

where Spre, Sing, and Spost are the area covered by water before, during, and after flooding
in Jakarta, respectively, and V represents the flood recovery rate.

Correlation analysis was performed between each factor and the recovery rate. The
original factors were reduced to three independent principal component variables using
PCA, and then Equation (8) was used to calculate the coefficients (Cj) of each factor in the
linear combination of different principal components.

Cj =
Fij√
CTi

(8)

where Fij is the coefficient of the factor in each principal component (where i is the number
of principal components and j is the number of factors) and CTi is the characteristic root of
the corresponding principal component.

The final step was to assign a weight coefficient to each factor. The weight coefficient
differs from the characteristic root coefficient calculated in Equation (8), as it is a quan-
titative reflection of the positive or negative effect of each factor on the result, whereas
the characteristic root coefficient only represents the proportion of each factor in every
principal component. In some studies, linear regression was used to construct mathe-
matical expressions of the relationships between factors and dependent variables. The
linear regression method has also been widely used to calculate the weight coefficients of
factors [27]. This is considered appropriate when factors are independent of each other
and the covariance of any two observation residuals is zero. Given the multicollinearity
in the factors, the PCA approach was used in this study to reduce the dimension of the
factors, and three new independent variables were obtained. The weight coefficients of
each factor in the results were deduced from the component matrix and characteristic root
by Equation (9), as follows:

Wxi =
C1xi × Var1+C2xi × Var2+C3xi × Var3

Var1+Var2+Var3
(9)

where C1xi , C2xi , and C3xi represent the coefficients of xi in the first, second, and third
principal components, respectively. Var1, Var2, Var3 are the characteristic roots of the first,
second, and third principal components, respectively.

A schematic diagram of the proposed methodology is shown in Figure 7.
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3. Results
3.1. Water Body Extraction

Based on the abovementioned Otsu algorithm, S1A data were used to extract the
relevant water body information before (4 March), during (25 April), and after (3 May) a
flood in Jakarta (Figure 8). There was no rainfall on 4 March nor on the previous 10 days,
but the results suggested that there were water bodies in some areas northwest, northeast,
and west of Jakarta because there are some large lakes and rivers in those areas, as shown
by Google Earth. The heavy rain on 25 April caused a backflow of seawater and caused
lakes and rivers to overflow. Figure 9 shows that most of the city, except for the central
region, was flooded by this event. One week later, the floods in most areas had receded,
but some residual flooding remained on 3 May.

The severity of the floods in these 42 subdistricts was divided into five levels based
on the flooded area (Table 6), namely non-flooded, slightly flooded, moderately flooded,
extensively flooded, and very extensively flooded. East Jakarta and West Jakarta suffered
the most damage, as shown in Figure 9, which was consistent with the results of local
official media reports.

In the same time interval, the flooded area before and after the flood in each subdistrict
was calculated. The residual flood area in each subdistrict was calculated accordingly, and
the results were then classified according to the statistical methods in Table 7. The central
part of Jakarta (e.g., the Pademangan, Taman Sari, Matraman, and Senen regions) and parts
of western Jakarta (e.g., the Tebet, Jatinegara, and Kramat Jati regions) had the smallest area
of residual flooding, as shown in Figure 10. The areas near the sea in the north (e.g., the
Kalideres, Penjaringan, and Cengkareng regions) and near the sea in the west (e.g., the
Koja, Cilincing, and Cakung regions) had the largest residual flooded areas.

3.2. Correlation Analysis

In addition to the recovery rate, urban basic conditions are key factors for measuring
urban resilience. They have a direct effect on the recovery rate from floods, and different
factors in the data have different influences on this effect. For example, the elevation of
Jakarta (as represented by a DEM) has a greater effect on the recovery rate than does road
density, and the population density has a negative impact on the recovery rate, while the
number of hospitals and shelters shows no effect on the same. Therefore, it is necessary
to analyze the correlation between the recovery rate and urban basic condition, and then



Remote Sens. 2022, 14, 2010 13 of 23

remove factors that are irrelevant to the results. The correlation analysis results (α = 0.05)
for the whole area are shown in Figure 11.

The calculation of the correlations between the recovery rate and twelve factors from the
four dimensions of society, environment, community, and economy showed that nine factors
were strongly correlated with the dependent variable (recovery rate), and the remaining three
factors (sex ratio, number of hospitals, and number of shelters) were not correlated with
recovery rate. Therefore, the latter three factors were removed in the subsequent calculation,
and the remaining nine factors were included in the statistical analysis.
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Figure 9. The severity of flooding in 42 sub-districts of Jakarta.

Table 6. Levels based on the flooded area.

Flooded Area (km2) Level

1 or less Non-flooded
1–3 Slightly flooded
3–5 Moderately flooded
5–7 Extensively flooded

7 or more Very extensively flooded
Note: the levels classified based on the equal interval method.
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Table 7. Classification and level of flood recovery rate by residual flood area.

Residual Flood (km2) Level

0.5 or less Fastest recovery
0.5–1.0 Faster recovery
1.0–1.5 Fast recovery
1.5–2.0 Slow recovery

2.0 or more Slowest recovery
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Figure 11. Correlations between the recovery rate (y), religion (x1), education level (x2), mean digital
elevation model (x3), mean slope (x4), gross domestic product (x5), road density (x6), mean green
area (x7), points-of-interest density (x8), and population density (x9).

3.3. Coefficient of Each Factor

To quantify the effects of these factors on the results, PCA was used to calculate
the coefficient of each factor, where the larger the magnitude of the coefficient, the more
important the factor and the greater its effect on the result. First, the Kaiser–Meyer–Olkin
(KMO) and Bartlett tests for the nine factors were calculated, as shown in Table 8. The
loading matrix is provided in Figure 12. It is generally believed that a KMO measure greater
than 0.7 indicates that the selected factor is suitable for PCA. A small p-value (Sig. = 0.000)
indicates that the correlation coefficient matrix of the factor is significantly different from
the identity matrix, thereby confirming that the original variable is suitable for PCA.

Table 8. Kaiser–Meyer–Olkin (KMO) and Bartlett tests.

KMO 0.757

Bartlett’s Test of Sphericity Approx. chi-square 176.426
Sig. 0.000
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Figure 12. Factor loading.

The characteristic roots of the first three principal components and their corresponding
contributions and cumulative contributions are shown in Table 9. The characteristic roots of
the first, second, and third principal components were all greater than 1, and the cumulative
contribution rate was 87.25%, which reflected most of the information of the original nine
factors. Therefore, these three principal components were used to replace the original
factors. We then calculated the coefficients of each factor in each linear combination of
principal components (Figure 13). This process is essential for calculating factor coefficients
via PCA.

Table 9. Principal component analysis.

Index Component 1 Component 2 Component 3

Characteristic Root 4.4430 1.7990 1.6100
Contribution 0.4937 0.1999 0.1789

Cumulative Contribution 0.4937 0.6936 0.8725
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Finally, the coefficient of each factor was calculated, as shown in Table 10. The order of
coefficients was DEM > road density > slope > green area > religion > POI density > GDP >
degree of education > population density.

Table 10. Coefficient of each factor.

Factor POI
Density Religion Degree of

Education DEM Slope GDP Road
Density

Green
Area

Population
Density

Coefficient 0.2793 0.2823 0.1267 1.1174 0.3188 0.2052 0.3282 0.2947 −0.1774

4. Discussion
4.1. Influence of Microwave Remote Sensing Images on the Accuracy of Extraction of Flood Data

In the detection of the flood disaster that occurred in April 2019, an S1A SAR image
was used to calculate the backscattering-coefficient characteristics of remote-sensing images
of each subdistrict of Jakarta, to determine the segmentation threshold of the extracted
flooded and non-flooded areas. Combined with DEM and land cover data, the results
showed that the SAR image data were greatly affected by terrain slope and vegetation.
Taking the binary image extracted on 4 March as an example (Figure 8a) and comparing
it with Google Earth data, it was found that the proportion of blue raster images with a
value of 1 in the south of Jakarta is higher than that in the north. This might have occurred
because in areas with higher slopes, the surface morphology not only changes the surface
microwave radiation characteristics, but also redistributes the hydrothermal energy on
the surface. Thus, surface morphology is a key factor in the spatial heterogeneity of areas
with higher slopes. The surface radiation-capacity deviation caused by topography is
approximately 15 K [66]. Moreover, the terrain is shaded each other, thereby forming a
radar shadow on the image, which is misinterpreted as a water body.

Vegetation appeared uneven and black in the microwave remote-sensing images, and
was interpreted by the threshold segmentation algorithm as water bodies, as shown in
Figure 14. This occurred because microwave radiation is reflected multiple times in the
vegetation canopy, thereby causing microwave signals to propagate in different directions.
However, most of the resulting signals are not received by the sensor. The vegetation
index obtained using microwave remote-sensing data is somewhat correlated with the
normalized difference vegetation index calculated from optical remote-sensing data [67,68].
Thus, slope and vegetation will result in a flooded area being calculated as larger than it
actually is. Therefore, we performed a displacement calculation to determine the flood
area, i.e., the area obtained during the flood minus that before the flood, to minimize the
error due to terrain and vegetation.

4.2. Indicator Selection for Different Cases

It is difficult to find one indicator or a set of indicators that can be used as a standard
to measure urban resilience, because urban planning, geographical location, and climate all
have a major influence on urban resilience. The development of a resilience framework
can be based on indicators that require evaluation, rather than available indicators [69].
Indicators of different dimensions must be used for different cities and disasters. There is no
consensus on the indicators that affect resilience, which is a challenge for the development
of the theoretical framework of resilience. It was found in this study that DEM and slope
data had the greatest effect on flood recovery among all of the relevant factors, due to the
large difference in elevation between various regions of Jakarta and its very low average
elevation. Moreover, the high degree of religious diversity in Jakarta was found to play a
significant role in flood recovery. Generally, people of the same religion were more united
than those of different religions, and thereby the former dealt with emergencies with greater
efficiency than the latter. However, we found that the flood recovery rate decreased as
the population density increased. This is due to the fact that the living areas of the rich in
Jakarta are of low population density, whereas those of the poor are of high population
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density. Thus, floods cannot be dealt with in a timely manner in the very crowded and
deficient areas of the poor.
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4.3. Strategies for Improving Urban Flood Resilience

Priority can be given to factors related to urban resilience in future urban planning, and
corresponding policies and measures should then be formulated. Specifically, environmental
indicators are recommended as the first option to improve urban resilience in Jakarta, such
as strictly controlling groundwater extraction that causes surface subsidence. Economic
indicators are also very important for urban construction and development; the government
must provide more rescue resources and policy support to regions with poor infrastructure for
construction and economic development. Traffic conditions in underdeveloped road-network
areas must also be improved, such that relief can be provided more rapidly.

Floods are the most common natural disaster and pose a great threat to most cities
prone to waterlogging. Thus, making a scientific and rational flood control and disaster
reduction plans is urgently needed. Based on the selected indicators and the evaluation
results of resilience to floods, the following suggestions for improving the flood resilience
are provided. First, the driving force of urban development and residents’ well-being
depend largely on local economy, and urban flooding prevention and mitigation facilities
and post-flooding reconstruction efforts are also inseparable from the city’s financial sup-
port. Therefore, improving the level of local economy is a key step to improve the city’s
flood resilience. Second, infrastructure is crucial for the normal operation of the city. In
particular, infrastructure plays a significant role in pre-disaster resistance and post-disaster
recovery. Finally, eco-city is a main direction of sustainable and green development of
cities. With the continuous expansion of urban areas and the increasing urban population,
the contradiction between ecological conservation and development has become apparent.
Greenland, lake areas and river courses should be restored to enhance water absorption
and water-fixing capacities during heavy rains and floods.
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5. Conclusions

This study used remote-sensing data combined with multiple dimensions of urban
factors to calculate and analyze the differences and causes of urban resilience in different
regions. The S1A data on three dates were used to extract the flooded area, and the changes
in these areas, using the Otsu method. In addition, urban basic data such as the POI, GDP,
and DEM were used to analyze the correlation between the flooded area and the recovery
rate (Sig. < 0.05). Irrelevant data were then removed and the remaining data were used as
factors for urban resilience. Finally, PCA was employed to reduce the dimensionality of
high-dimensional factors, and the original nine factors were replaced by three principal
components (total explanation > 90%). The weight coefficient of each factor was calculated
by the characteristic root, variance contribution of the principal components, and the
loading matrix of the original factor.

Remote sensing overcomes the problem of obtaining large-scale flood boundaries,
especially for areas without meteorological and hydrological stations, which improves
the accuracy of flood-flow calculations and provides a more accurate basis for disaster
reduction and preventing floods. In addition, the data we used in this study can be
provided to support flooding projects, such as sponge city, water-sensitive urban design,
low-impact development. Moreover, this method provides a new direction for the selection
of indicators for the evaluation of resilience frameworks, and to guide urban responses to
natural disasters.

The limitations of experimental conditions indicate that there is still room for improve-
ment of study. For example, new indicators could be added to improve the correlations
between various factors and flood-recovery rates, such as climate factors that are directly
related to the occurrence of floods (real-time precipitation, precipitation time, etc.) and
factors related to community-street flood drainage (length of urban underground water
pipes, number of sewer covers, length of the dike, urban communication coverage, etc.).
Furthermore, this study mainly measured regional resilience from the perspective of urban
post-disaster recovery, but urban vulnerability and property loss (i.e., the number of build-
ings damaged and number of casualties) may also be used as dimensions to measure urban
resilience. Subsequent studies will attempt to add these data (if available) to the urban
infrastructure database, and examine their contributions to urban resilience.
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