Tracking a Rain-Induced Low-Salinity Pool in the South China Sea Using Satellite and Quasi-Lagrangian Field Observations
Abstract
:1. Introduction
2. Data and Method
2.1. Field Observations and Data Processing
2.2. Satellite Observations and Particle Tracking Simulations
2.3. Supporting Data
3. Results and Discussions
3.1. Environmental Context
3.2. Origin and Distribution of the LSP
3.3. Vertical Evolution of the LSP
3.4. The Impact of the LSP: The Temperature Inversion Layer
3.4.1. Features of the Temperature Inversion Layer
3.4.2. Formation and Impact of the Temperature Inversion Layer
4. Conclusions
- The LSP was formed by a previous rainfall event, which injected a large amount of freshwater into the upper ocean. Then the LSP drifted northeastward to our study region. This rainfall event was stronger than the second one, which could not affect the upper ocean to a deeper layer. Therefore, the LSP captured by our observations was attributed to the upstream formation of the Kuroshio loop and tracked by the northeastward advection. The conclusion was supported by both the PTS and HYCOM Analysis data.
- The local rainfall during the field observations only affected the upper 10 m of the water column, according to its double-halocline structure. With good development of nocturnal convection within 2 days, the LSP was mainly formed during the previous rainfall event and finally reached a depth of 20 m. However, the existence of an LSP can inhibit the downward development of convective mixing and limit the maximum depth of nocturnal convection.
- A thin temperature inversion layer formed between the bottom of the LSP and the seasonal mixed layer. The formation of the temperature inversion layer was attributed to the surface cooling at the basis of the barrier layer, where strong salinity stratification hindered vertical heat exchange at the base of the LSP. The stable salinity stratification with temperature inversion provided a favorable condition for developing diffusive convection, which was confirmed by the difference between the diapycnal diffusivities of the density and heat.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Satellite-Observed vs. HYCOM Analysis Sea Surface Salinity
References
- Soloviev, A.; Lukas, R. The Near-Surface Layer of the Ocean: Structure, dynamics and applications; Springer: New York, NY, USA, 2013. [Google Scholar]
- Drushka, K.; Asher, W.E.; Ward, B.; Walesby, K. Understanding the formation and evolution of rain-formed fresh lenses at the ocean surface. J. Geophys. Res. Ocean. 2016, 121, 2673–2689. [Google Scholar] [CrossRef] [Green Version]
- Soloviev, A.; Lukas, R. Observation of Spatial Variability of Diurnal Thermocline and Rain-Formed Halocline in the Western Pacific Warm Pool. J. Phys. Oceanogr. 1996, 26, 2529–2538. [Google Scholar] [CrossRef] [Green Version]
- Price, J.F. Observations of a Rain-Formed Mixed Layer. J. Phys. Oceanogr. 1979, 9, 643–649. [Google Scholar] [CrossRef] [Green Version]
- Anderson, S.P.; Weller, R.A.; Lukas, R.B. Surface Buoyancy Forcing and the Mixed Layer of the Western Pacific Warm Pool: Observations and 1D Model Results. J. Clim. 1996, 9, 3056–3085. [Google Scholar] [CrossRef]
- Webster, P.J.; Clayson, C.A.; Curry, J.A. Clouds, Radiation, and the Diurnal Cycle of Sea Surface Temperature in the Tropical Western Pacific. J. Clim. 1996, 9, 1712–1730. [Google Scholar] [CrossRef]
- Wijesekera, H.W.; Paulson, C.A.; Huyer, A. The Effect of Rainfall on the Surface Layer during a Westerly Wind Burst in the Western Equatorial Pacific. J. Phys. Oceanogr. 1999, 29, 612–632. [Google Scholar] [CrossRef]
- Hughes, K.G.; Moum, J.N.; Shroyer, E.L. Evolution of the Velocity Structure in the Diurnal Warm Layer. J. Phys. Oceanogr. 2020, 50, 615–631. [Google Scholar] [CrossRef]
- Lukas, R.; Lindstrom, E. The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res. Earth Surf. 1991, 96, 3343–3357. [Google Scholar] [CrossRef]
- Cronin, M.; McPhaden, M.J. Barrier layer formation during westerly wind bursts. J. Geophys. Res. Ocean. 2002, 107, SRF 21-1–SRF 21-12. [Google Scholar] [CrossRef]
- Katsura, S.; Sprintall, J. Seasonality and Formation of Barrier Layers and Associated Temperature Inversions in the Eastern Tropical North Pacific. J. Phys. Oceanogr. 2020, 50, 791–808. [Google Scholar] [CrossRef]
- Katsura, S.; Sprintall, J.; Bingham, F.M. Upper Ocean Stratification in the Eastern Pacific During the SPURSField Campaign. J. Geophys. Res. Ocean. 2021, 126, e2020JC016591. [Google Scholar] [CrossRef]
- Bingham, F.M.; Li, Z.; Katsura, S.; Sprintall, J. Barrier Layers in a High-Resolution Model in the Eastern Tropical Pacific. J. Geophys. Res. Ocean. 2020, 125, e2020JC016643. [Google Scholar] [CrossRef]
- Vialard, J.; Delecluse, P. An OGCM Study for the TOGA Decade. Part I: Role of Salinity in the Physics of the Western Pacific Fresh Pool. J. Phys. Oceanogr. 1998, 28, 1071–1088. [Google Scholar] [CrossRef]
- Walesby, K.; Vialard, J.; Minnett, P.J.; Callaghan, A.H.; Ward, B. Observations indicative of rain-induced double diffusion in the ocean surface boundary layer. Geophys. Res. Lett. 2015, 42, 3963–3972. [Google Scholar] [CrossRef]
- Soloviev, A.; Lukas, R. Sharp Frontal Interfaces in the Near-Surface Layer of the Ocean in the Western Equatorial Pacific Warm Pool. J. Phys. Oceanogr. 1997, 27, 999–1017. [Google Scholar] [CrossRef]
- Soloviev, A.; Lukas, R.; Matsuura, H. Sharp frontal interfaces in the near-surface layer of the tropical ocean. J. Mar. Syst. 2002, 37, 47–68. [Google Scholar] [CrossRef]
- Soloviev, A.; Matt, S.; Fujimara, A. Three-Dimensional Dynamics of Freshwater Lenses in the Ocean’s Near-Surface Layer. Oceanogr. Wash. DC 2015, 28, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Vinogradova, N.; Lee, T.; Boutin, J.; Drushka, K.; Fournier, S.; Sabia, R.; Stammer, D.; Bayler, E.; Reul, N.; Gordon, A.; et al. Satellite Salinity Observing System: Recent Discoveries and the Way Forward. Front. Mar. Sci. 2019, 6, 243. [Google Scholar] [CrossRef]
- Drushka, K.; Asher, W.E.; Sprintall, J.; Gille, S.T.; Hoang, C. Global Patterns of Submesoscale Surface Salinity Variability. J. Phys. Oceanogr. 2019, 49, 1669–1685. [Google Scholar] [CrossRef]
- Drushka, K.; Asher, W.; Jessup, A.; Thompson, E.; Iyer, S.; Clark, D. Capturing Fresh Layers with the Surface Salinity Profiler. Oceanography 2019, 32, 76–85. [Google Scholar] [CrossRef]
- Laxague, N.J.M.; Zappa, C.J. The Impact of Rain on Ocean Surface Waves and Currents. Geophys. Res. Lett. 2020, 47, e2020GL087287. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-C.; Oey, L.-Y. Rainfall-enhanced blooming in typhoon wakes. Sci. Rep. 2016, 6, 31310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Z.; Liu, D.; Masque, P.; Zhao, M.; Song, X.; Keesing, J.K. Phytoplankton Responses to Climate-Induced Warming and Interdecadal Oscillation in North-Western Australia. Paleoceanogr. Paleoclimatol. 2020, 35, e2019PA003712. [Google Scholar] [CrossRef]
- Ho, D.T.; Bliven, L.F.; Wanninkhof, R.; Schlosser, P. The effect of rain on air-water gas exchange. Tellus B Chem. Phys. Meteorol. 1997, 49, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Takagaki, N.; Komori, S. Effects of rainfall on mass transfer across the air-water interface. J. Geophys. Res. Ocean. 2007, 112, C06006. [Google Scholar] [CrossRef]
- Zappa, C.J.; Ho, D.T.; McGillis, W.R.; Banner, M.L.; Dacey, J.W.H.; Bliven, L.F.; Ma, B.; Nystuen, J. Rain-induced turbulence and air-sea gas transfer. J. Geophys. Res. Ocean. 2009, 114, C06006. [Google Scholar] [CrossRef] [Green Version]
- Ho, D.T.; Schlosser, P.; Hendricks, M.B.; Zappa, C.J.; McGillis, W.R.; Bliven, L.F.; Ward, B.; Dacey, J.W.H. Influence of rain on air-sea gas exchange: Lessons from a model ocean. J. Geophys. Res. Ocean. 2004, 109. [Google Scholar] [CrossRef]
- Liu, W.T.; Xie, X. Spacebased observations of the seasonal changes of south Asian monsoons and oceanic responses. Geophys. Res. Lett. 1999, 26, 1473–1476. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.-P.; Xu, H.; Saji, N.H.; Wang, Y.; Liu, W.T. Role of Narrow Mountains in Large-Scale Organization of Asian Monsoon Convection. J. Clim. 2006, 19, 3420–3429. [Google Scholar] [CrossRef]
- Zeng, L.L.; Chen, J.; Shi, P. Response of upper ocean salinity to precipitation during summer monsoon. J. Trop. Oceanogr. 2007, 26, 11–17. [Google Scholar]
- Zeng, L.; Du, Y.; Xie, S.-P.; Wang, D. Barrier layer in the South China Sea during summer 2000. Dyn. Atmos. Ocean. 2009, 47, 38–54. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Chen, X.Y.; Zhang, Y.L. Factors Influencing the Seasonal Variations of Mixed Layer Salinity in the South China Sea. Adv. Mar. Sci. 2013, 31, 180–187. [Google Scholar]
- Roget, E.; Lozovatsky, I.; Sanchez, X.; Figueroa, M. Microstructure measurements in natural waters: Methodology and applications. Prog. Oceanogr. 2006, 70, 126–148. [Google Scholar] [CrossRef]
- Bluteau, C.E.; Lueck, R.G.; Ivey, G.; Jones, N.L.; Book, J.W.; Rice, A.E. Determining Mixing Rates from Concurrent Temperature and Velocity Measurements. J. Atmos. Ocean. Technol. 2017, 34, 2283–2293. [Google Scholar] [CrossRef]
- Osborn, T.R. Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements. J. Phys. Oceanogr. 1980, 10, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Gregg, M.; D’Asaro, E.; Riley, J.; Kunze, E. Mixing Efficiency in the Ocean. Annu. Rev. Mar. Sci. 2018, 10, 443–473. [Google Scholar] [CrossRef]
- Osborn, T.R.; Cox, C.S. Oceanic fine structure. Geophys. Fluid Dyn. 1972, 3, 321–345. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Rio, M.-H.; Mulet, S.; Picot, N. Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophys. Res. Lett. 2014, 41, 8918–8925. [Google Scholar] [CrossRef]
- Lange, M.; Sebille, E.V. Parcels v0. 9: Prototyping a Lagrangian ocean analysis framework for the petascale age. Geosci. Model Dev. 2017, 10, 4175–4186. [Google Scholar] [CrossRef] [Green Version]
- Delandmeter, P.; van Sebille, E. The Parcels v2.0 Lagrangian framework: New field interpolation schemes. Geosci. Model Dev. 2019, 12, 3571–3584. [Google Scholar] [CrossRef] [Green Version]
- Skofronick-Jackson, G.; Petersen, W.A.; Berg, W.; Kidd, C.; Stocker, E.F.; Kirschbaum, D.B.; Kakar, R.; Braun, S.A.; Huffman, G.J.; Iguchi, T.; et al. The Global Precipitation Measurement (GPM) Mission for Science and Society. Bull. Am. Meteorol. Soc. 2017, 98, 1679–1695. [Google Scholar] [CrossRef] [PubMed]
- Robertson, R.; Hartlipp, P. Surface wind mixing in the Regional Ocean Modeling System (ROMS). Geosci. Lett. 2017, 4, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brainerd, K.E.; Gregg, M.C. Diurnal restratification and turbulence in the oceanic surface mixed layer: 1. Observations. J. Geophys. Res. Earth Surf. 1993, 98, 22645–22656. [Google Scholar] [CrossRef]
- Lombardo, C.P.; Gregg, M.C. Similarity scaling of viscous and thermal dissipation in a convecting surface boundary layer. J. Geophys. Res. Earth Surf. 1989, 94, 6273–6284. [Google Scholar] [CrossRef]
- Kara, A.B.; Rochford, P.A.; Hurlburt, H.E. An optimal definition for ocean mixed layer depth. J. Geophys. Res. Earth Surf. 2000, 105, 16803–16821. [Google Scholar] [CrossRef]
- De Boyer Montegut, C.; Madec, G.; Fischer, A.S.; Lazar, A.; Iudicone, D. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res. Ocean. 2004, 109, C12003. [Google Scholar] [CrossRef]
- Sutherland, G.; Reverdin, G.; Marié, L.; Ward, B. Mixed and mixing layer depths in the ocean surface boundarylayer under conditions of diurnal stratification. Geophys. Res. Lett. 2014, 41, 8469–8476. [Google Scholar] [CrossRef] [Green Version]
- Brainerd, K.E.; Gregg, M.C. Surface mixed and mixing layer depths. Deep Sea Res. I 1995, 42, 1521–1543. [Google Scholar] [CrossRef]
- Moulin, A.J.; Moum, J.N.; Shroyer, E.L.; Hoecker-Martínez, M. Freshwater Lens Fronts Propagating as Buoyant Gravity Currents in the Equatorial Indian Ocean. J. Geophys. Res. Ocean. 2021, 126, e2021JC017186. [Google Scholar] [CrossRef]
- Thadathil, P.; Suresh, I.; Gautham, S.; Kumar, S.P.; Lengaigne, M.; Rao, R.R.; Neetu, S.; Hegde, A. Surface layer temperature inversion in the Bay of Bengal: Main characteristics and related mechanisms. J. Geophys. Res. Ocean. 2016, 121, 5682–5696. [Google Scholar] [CrossRef]
- Ruddick, B. A practical indicator of the stability of the water column to double-diffusive activity. Deep Sea Res. Part A Oceanogr. Res. Pap. 1983, 30, 1105–1107. [Google Scholar] [CrossRef]
- Radko, T. Double-Diffusive Convection; Springer: New York, NY, USA, 2013. [Google Scholar]
- Nagai, T.; Inoue, R.; Tandon, A.; Yamazaki, H. Evidence of enhanced double-diffusive convection below the main stream of the Kuroshio Extension. J. Geophys. Res. Ocean. 2015, 120, 8402–8421. [Google Scholar] [CrossRef] [Green Version]
- George, J.V.; Vinayachandran, P.N.; Nayak, A.A. Enhanced Double-Diffusive Salt Flux from the High-Salinity Core of Arabian Sea Origin Waters to the Bay of Bengal. J. Phys. Oceanogr. 2021, 51, 505–518. [Google Scholar] [CrossRef]
- Sprintall, J.; Cronin, M.F. Upper ocean vertical structure. Encycl. Ocean Sci. 2001, 6, 3120–3129. [Google Scholar]
- Thadathil, P.; Gopalakrishna, V.; Muraleedharan, P.; Reddy, G.; Araligidad, N.; Shenoy, S. Surface layer temperature inversion in the Bay of Bengal. Deep Sea Res. Part I Oceanogr. Res. Pap. 2002, 49, 1801–1818. [Google Scholar] [CrossRef]
- Sprintall, J. SIDEBAR. Upper-Ocean Salinity Stratification During SPURS-2. Oceanography 2019, 32, 40–41. [Google Scholar] [CrossRef]
Values | Descriptions |
---|---|
RPTS | Gridded data of time integration of the rain rate along particles’ tracks |
RPTS·ship | RPTS along the R/V track |
Rlocal | Time integration of the rain rate along the R/V track |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Z.; Hu, Z.; Bai, X.; Liu, Z. Tracking a Rain-Induced Low-Salinity Pool in the South China Sea Using Satellite and Quasi-Lagrangian Field Observations. Remote Sens. 2022, 14, 2030. https://doi.org/10.3390/rs14092030
Cao Z, Hu Z, Bai X, Liu Z. Tracking a Rain-Induced Low-Salinity Pool in the South China Sea Using Satellite and Quasi-Lagrangian Field Observations. Remote Sensing. 2022; 14(9):2030. https://doi.org/10.3390/rs14092030
Chicago/Turabian StyleCao, Zhiyong, Zhendong Hu, Xiaolin Bai, and Zhiyu Liu. 2022. "Tracking a Rain-Induced Low-Salinity Pool in the South China Sea Using Satellite and Quasi-Lagrangian Field Observations" Remote Sensing 14, no. 9: 2030. https://doi.org/10.3390/rs14092030
APA StyleCao, Z., Hu, Z., Bai, X., & Liu, Z. (2022). Tracking a Rain-Induced Low-Salinity Pool in the South China Sea Using Satellite and Quasi-Lagrangian Field Observations. Remote Sensing, 14(9), 2030. https://doi.org/10.3390/rs14092030