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Abstract: Updated and accurate land cover maps are essential and crucial for sustainable crop
production and efficient land management. However, accurate and efficient land cover mapping is
still a challenge for agricultural regions with complicated landscapes. This study proposed a novel
spectral-phenological based land cover classification (SPLC) method to identify the land cover for
fragmented agricultural landscapes, with less requirement of ground truth data. The SPLC method
integrated a pixel-based support vector machine (SVM) algorithm for cropland and various non-
cropland classification, and a phenology-based automatic decision tree algorithm for identification
of various crop types. It was then tested and applied in two typical case areas (i.e., Jiyuan in
the upstream and Yonglian in the downstream) of Hetao Irrigation District (Hetao) in the upper
Yellow River basin (YRB), northwest China. The field survey sampling data and the regional
visual interpretation maps were jointly used to evaluate the accuracy of land cover classification.
Results indicated that stable phenological rules can be established for crop identification even with
complex planting patterns, and the SPLC method performed well in land cover mapping in case
areas. Four high-accuracy land cover maps were produced for Jiyuan in 2020 and 2021, Yonglian
in 2021, and Hetao in 2021. The overall accuracies (OA) can reach 0.90–0.94 based on evaluation
with abundant ground truth data, and land cover maps agreed well with the visual interpretation
maps in space. Overall, the case application validated the applicability and efficiency of the SPLC
method in land cover mapping for regions with fragmented agricultural landscapes, and also
implied the potential use in other similar regions.

Keywords: land cover classification; crop mapping; phenology; fragmented agricultural landscapes;
Sentinel-2 satellite

1. Introduction

Most of the urgent challenges humanity is facing today are directly or indirectly related
to agricultural production [1]. With global population growth and dietary changes, agricul-
tural production needs to be increased and improved to ensure global food security. The
increased food production may undermine many ecosystem services on a global scale [2].
Therefore, to avoid the loss of ecosystem services, it is an essential prerequisite to keep the
balance of all services provided by the ecosystem, which demands reliable and accurate
agricultural monitoring to investigate land management practices and ensure sustainable
crop production [3]. For this purpose, detailed spatial information about the land cover in
agricultural areas is needed for decision-makers, scientists, and local managers [4]. The
remote sensing technology has been widely and successfully applied in producing land
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cover maps with reasonable precision and high efficiency [5–9]. However, since agricultural
land is strongly affected by the spatial and temporal dynamics within and between each
growing season, crop mapping is still a very challenging task, especially for regions with
fragmented agricultural landscapes [10]. It is noteworthy that the recent emergence of
remote sensing satellites with high spatial and temporal resolutions may have the potential
to capture the agricultural land use dynamics and improve crop mapping accuracy.

The supervised classification method is the predominant approach in land cover iden-
tification, with remarkable performance in remote sensing image classification. Traditional
supervised classification is based on information on spectrum, texture, and typical physio-
logical features (e.g., vegetation index) [11–13]. Each pixel is distinguished and classified as
a specified type of land cover. This method requires the training data from sampling, and
its accuracy is strongly dependent on sampling data richness. Moreover, due to image- or
time-specific limitations, this type of method is more suitable for classifying non-cropland
land coverages with stable surface characteristics [14]. Whereas croplands usually vary
strongly within short time intervals and crop planting pattern varies as well in different
years. Thus, reference data collection and training datasets must be re-prepared when
applied in different periods, which is costly and inefficient. Therefore, developing an
automated algorithm, which can provide stable classification rules without re-training and
re-validation for different seasons/years, is very attractive for land cover classification,
particularly in long-term applications.

The phenological changes occurring in the growing period are crop-type specific,
and the life cycles of beginnings and endings differ depending on the crop types [10].
The use of multi-temporal image-based phenology has played an important role in crop
classification [15–17]. Some researchers extract phenological information by analyzing
multi-temporal profiles, and then study the seasonal dynamic differences of different
crop types to select the optimum imaging date for classification [18–21]. Other studies
explicitly derive quantitative phenological metrics and build classification rules based
on crop calendars and crop conditions at each phase of the growing period [22–24]. Phe-
nological metrics have the advantage of strong physiological meaning. The rules based
on phenological metrics are thus more robust than those using statistical thresholds, and
the latter is more dependent on specific datasets with more uncertainties, along with also
being harder to generalize [25]. However, it is still a challenge to establish the applica-
ble/general rules for fragmented agricultural landscapes with diverse crop types. The use
of satellite remote sensing time series-based phenological information may be capable of
accelerating the development of rules on a large regional scale and improving the stability
of rules over time [14].

In recent years, different satellite data sources, such as the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) [22,26], Landsat TM/ETM+/OLI [27,28], and SPOT [18],
have been widely used in land cover classification. However, satellite images with the
coarse spatial resolution are usually not preferable for crop identification in heteroge-
neous agricultural fields, which may lead to mixed pixel problems (e.g., MODIS) [22]. On
the other hand, the lower temporal resolution may result in lower accuracy due to the
difficulties in capturing the seasonal dynamics of cropland and extracting phenological
metrics (e.g., with Landsat or SPOT) [29]. Since 2015, the Sentinel series satellites have
been launched in succession with relatively high resolutions in both space and time. The
regular revisiting intervals and relatively high spatial resolution (10 m) offer a unique
opportunity to systematically monitor crops at an approximately weekly repeat cycle [30].
Previous studies have indicated that the vegetation index (VI) series derived from optical
Sentinel-2A/2B could present a complete temporal profile of different land cover types,
and the retrieved phenological metrics are comparable with local agro-metrological obser-
vations. Some studies have adopted the metrics of Sentinel-2A/2B data to identify the land
cover types [1,13,24]. However, to our knowledge, the successful use in heterogeneous and
fragmented agricultural landscape mapping is still rarely reported.
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Taking into account the considerations above, the assumption is made that: (1) using
sufficiently high spatial-temporal resolution remotely sensed data from satellites might be
able to identify certain distinct phenological metrics for different crops, even with complex
and diverse planting patterns; and (2) the stable and long-lasting classification rules may
be able to be established based on phenological metrics, even without field-survey data.
Therefore, the objectives of this study were: (1) to introduce a novel spectral-phenological
based land cover classification (SPLC) method to realize the efficient regional-scale land
cover identification, particularly for complicated fragmented agricultural landscapes; and
(2) to further conduct a case test with Sentinel-2 time series data in a typical agricultural
region in the upper Yellow River basin (YRB) of northwest China. A pixel-based algorithm
is firstly developed to identify cropland and non-cropland land cover types based on
optimum spectrum, texture, and Land Surface Water Index (LSWI) threshold time series
dataset. Then, an automatic decision tree phenology-based method is developed to re-
alize the classification of various crop types. The proposed SPLC method that does not
need reference (field surveys) data could fully implement the knowledge of land cover
characteristics and crop phenology into improving classification performance.

2. Methodology
2.1. Study Area and Datasets
2.1.1. Hetao and Two Case Areas

The Hetao Irrigation District (Hetao), located in the upper Yellow River basin (YRB) of
northwest China, is selected as a typical study area with fragmented agricultural landscapes
(Figure 1). It is one of the most important agricultural production bases in China, covering
an area of 1.12 Mha. Similar to other agricultural areas in northwest China, Hetao has
an arid to semi-arid continental climate, with sufficient light and heat resources in the
plant growing season but a relatively short frost-free period [31]. A variety of crops are
thus planted and grown with high yield/quality and economic values, but with only
single-season planting per agricultural year; meanwhile, there is often a large, scatted
distribution of natural vegetation patches, due to secondary soil salinity or desertification
problems [32]. Irrigation is necessary for crop growth, with water mainly diverted from
the Yellow River. In addition to the small farmland size, the landscapes have a typical
feature of the fragmentary distribution of various farmlands and natural patches [32]. This
pattern of complicated fragmented agricultural landscapes is also a representative of most
agricultural areas in northwest China [9,33,34].

In Hetao, the main land use types are cropland and natural land, which account for
51% and 19% of the total area, respectively. The natural land here is a general term for
grassland, woods, shrubs, swamps, and abandoned farmlands. It is distributed in flakes
within or surrounding the cropland. The remaining parts are distributed with dune (13%),
residential area (13%), and water body (4%, including a tail water lake) [35]. The cropland
has been divided into small fields and distributed to different smaller holders, due to the
special “farmland use rights”. The crop pattern presents a complicated and fragmented
distribution in space, with wheat, maize, sunflower, and vegetables (e.g., watermelon,
tomato, and pepper) grown. In addition, the crops planted in a certain field will also be
changed every 1–3 years to improve soil fertility and help control pests and diseases. As a
result, the landscapes are highly fragmented and composited by a mosaic pattern of small
mixed croplands and natural vegetable patches [32].

In this study, two case areas in Hetao were selected: (1) one case area named Jiyuan
is located in the upstream (western) area of Hetao (40◦45′–40◦52′N, 106◦59′–107◦07′E),
which covers an area of 8490 ha; and (2) the other case area named Yonglian is located
in the downstream (eastern) area of Hetao (41◦01′–41◦08′N, 107◦59′–108◦02′E), covering
an area of 2940 ha. Sunflower and maize are both the major crops in the two case areas,
with wheat or vegetables mainly grown in other cropland areas. Jiyuan can be seen as the
representative area in the up-and midstream Hetao where the irrigation water allocation
is more sufficient and convenient. The planting structure is more complex and diverse
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(with more salt-intolerant crops) than the downstream region, due to less soil salinization.
Yonglian could be a representative area in the downstream Hetao with less and later
irrigation water allocation and later planting dates. It has a relatively simple cropping
pattern (with more salt-tolerant sunflower planted) because of severe soil salinization over
a long time [32,36].
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Yonglian).

2.1.2. Datasets

(1) Satellite data and preprocessing
The surface reflectance data from Sentinel-2 satellite were adopted in this study,

being available from Sentinel-2 Level-2A product developed and distributed by ESA
(https://scihub.copernicus.eu, accessed on 28 March 2022). Sentinel-2 satellites carry
an optical sensor called the Multi-Spectral Instrument (MSI) which acquires data with
13 spectral bands of variable spatial resolution (10–60 m). The combination uses of optical
satellite Sentinel-2A and Sentinel-2B could provide image data at an interval of 3–5 days.
In this study, all of the images during the period from 100 to 280 day of the year (DOY,

https://scihub.copernicus.eu
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Julian day number) were selected, which covered the growing seasons of all crop types. All
bands were resampled to 10 m spatial resolution.

Spectral indices that were sensitive to vegetable greenness and water status were used
to capture the physiological differences of land cover types and characterize the growth
profile of individual crop types. The Normalized Difference Vegetable Index (NDVI,
Equation (1)) [37] and Land Surface Water Index (LSWI, Equation (2)) [38] are two widely
used vegetation indices (VIs) and were adopted in this study. They were calculated from
the red, near-infrared (NIR), and shortwave infrared (SWIR) spectral bands based on the
time series surface reflectance data from Sentinel-2 (Equations (1) and (2)).

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(1)

LSWI =
ρNIR − ρSWIR
ρNIR + ρSWIR

(2)

The NDVI reflects the degree of vegetable greenness, and LSWI is sensitive to the
land surface moisture from both vegetables and soils. We reconstructed the time series VIs
data at a 5-day interval by temporal resampling (using linear interpolation). The temporal
resampling should be effective and has no significant impact on the classification accuracy,
according to the results of Pelletier et al. [39]. For phenological analysis, the Savitzky–Golay
(S–G) filter proposed by Fischer et al. [40] was used to further smooth the NDVI time
series to eliminate some small fluctuations. LSWI time series data were not smoothed
for phenological analysis, because LSWI is sensitive to vegetable water and soil moisture
affected by rainfall and snowfall [24].

(2) Sampling and verification data
Field surveys were carried out to collect ground samples during the two years 2020

and 2021 (Figure 2). The location and the crop type of each sample were recorded using the
Global Positioning System (GPS) in the field along the route. The samples involved all land
cover types in the study area of Hetao. As a result, 189 samples were collected in Jiyuan
in 2020; and 251, 146, and 163 samples were obtained in Jiyuan, Yonglian, and Hetao in
2021, respectively (Table 1). After the field surveys, all the ground samples were visually
checked using high-resolution images in Google Earth and Sentinel-2 RGB images. The
Planet RGB (R: Red, G: Green, and B: Blue) satellite images (with 3 m spatial resolution)
were obtained for Jiyuan on August 5th and Yonglian on July 30th. The true land cover
maps were made by visual interpretation of the Planet RGB data, with the combination of
field surveys and experiences. They could be used to further test and verify the reliability
of the SPLC method.

2.2. Description of SPLC Method

The main principle of the SPLC method and its workflow for land cover classifica-
tion are provided in Figure 3. The SPLC method mainly consisted of two calculation
parts: (1) the support vector machine (SVM) algorithm was used to identify the crop-
land and each of the non-cropland land cover types, on the basis of optimal spectrum,
texture, and LSWI time series data. This step could well eliminate the interference of
non-croplands on the crop type classification; and (2) the decision tree algorithm was
adopted to identify various crop types with establishing the stable phenological rules,
which were based on the phenological metrics extracted from NDVI time series data.
A detailed description of the SPLC method was provided in the following sections.

2.2.1. Maps of Non-Cropland Land Cover Types as Masks in the Algorithm

The land cover types could be grouped into five categories in Hetao: residential area,
natural land, water body, dune, and cropland. Different land cover types had different
spectral and texture characteristics, and the differences were especially obvious in August
when crops often grew vigorously. Therefore, the Sentinel-2 data on August 9th was filtered
as the optimal bands (blue, green, red, red edge, NIR, and SWIR), and used to calculate
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the texture information for classification. Meanwhile, the seasonal dynamics of LSWI data
from Sentinel-2 were systematically studied for the cropland (i.e., integration of wheat,
maize, sunflower, and vegetables), and various non-croplands (i.e., residential area, natural
land, water body, and dune) in two case areas (Figure 4). The LSWI = 0.2 was seen as the
threshold to divide the cropland and the non-cropland because it was found that LSWI
was larger than 0.2 for crops during the main growing period in the study area. The LSWI
dataset was reclassified with the pixel value equal to 1 (if LSWI > 0.2) and equal to 0
(if LSWI ≤ 0.2), respectively. This treatment could better reflect the differences of LSWI
between croplands and non-croplands. Finally, the optimal spectrum and texture data and
the LSWI time series data were combined and used as the input dataset (i.e., dataset #1) for
classification (Figure 3).
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The SVM algorithm was then adopted to identify the cropland and each of the non-
cropland cover types (i.e., water body, dune, residential area, and natural land), using
dataset #1. The high-quality regions of interest (ROIs) training samples were obtained
through visual interpretation of the Worldview-3 images that were provided by Google
Earth (Table 2). Note that the ROIs could be readily available by visual interpretation
without any field surveys. The pixels, which were identified as croplands, were to be
extracted and used for further crop classification.
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Table 1. Overview of ground truth data in two case areas and Hetao.

Year Water Body Dune Natural
Land

Residential
Area Wheat Maize Sunflower Vegetable

Jiyuan
(2021)

Polygon
(ROI) 15 10 25 25 20 54 65 37

pixel 156 85 225 219 161 575 591 320

Yonglian
(2021)

Polygon
(ROI) 3 / 25 22 / 32 43 21

pixel 21 / 225 198 / 264 353 193

Jiyuan
(2020)

Polygon
(ROI) 10 10 15 20 19 46 39 30

pixel 113 85 135 174 156 409 435 252

Hetao
(2021)

Polygon
(ROI) 21 25 16 34 16 16 16 19

pixel 186 287 144 1016 144 144 144 171
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Figure 4. Seasonal dynamics of Sentinel-2-based LSWI (a) for cropland, water body, natural land,
dune, and residential area. (b–f) show the WorldView-3 images for cropland, water body, natural
land, dune, and residential area in September 2021, respectively.

Table 2. Overview of the training samples for classification of the croplands and various non-
croplands in the first step of the SPLC method.

Year Water Body Dune Natural Land Residential Area Cropland

Jiyuan
(2021)

Polygon
(ROI) 5 8 15 17 69

pixel 65 72 135 153 607

Yonglian
(2021)

Polygon
(ROI) 3 / 25 30 30

pixel 21 / 225 255 270

Jiyuan
(2020)

Polygon
(ROI) 5 8 15 17 88

pixel 65 72 135 153 850

Hetao
(2021)

Polygon
(ROI) 213 117 118 500 515

pixel 1917 1053 1062 4500 4635

2.2.2. Crop-Classification Based on Phenological and Pixel Patterns

The NDVI temporal profile analysis, widely used to identify the cropping phenological
characteristics [41,42], was conducted using the TIMESAT toolbox [43]. NDVI increases
from the green-up stage, reaches the maximum during the peak growing stage, and reduces
gradually until crop maturity or harvest [44]. Due to the large uncertainty in one-year time
series data, replicated time series NDVI data spanning three years were used in this study
to extract seasonal parameters. With the TIMESAT toolbox, the NDVI time series data were
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first fitted to a S-G function, and then phenological metrics were extracted to make up the
dataset #2 (Figures 3 and 5). The three phenological metrics included the start of the season
(SOS, or green-up date), the end of the season (EOS, or senescent date), and the growing-
season length (GSL). These features were defined by using the commonly used algorithms
and NDVI time series data [43]. The pixels that were clearly identified as croplands in the
first step were to be further classified into different crop types. The classification principle
was based on the phenological metrics which were generally crop-specific and different
for different crop types. The stable classification rules were established with signature
analysis of phenology for each crop. The decision tree algorithm was then developed for
crop classification based on the obtained phenology-based rules. The typical case of this
algorithm for Hetao is presented in Figure 6.
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Table 3. Parameters of the decision tree and their calibrated values in two case areas.

Threshold Parameters
(Day)

Description

Initial and Calibrated Values

Initial
(by Experiences

and Surveys)

Calibrated
(Jiyuan)

Calibrated
(Yonglian)

Lw_1
The growing-season length to identify

the first type of wheat 140 130 130

Sw_2
The start of the season to identify

the second type of wheat 120 130 130

SV_1
The start of the season to identify

the first type of vegetable 180 190 200

SV_2
The start of the season to identify

the second type of vegetable 150 150 160

EV_3
The end of the season to identify

the third type of vegetable 270 260 260

LM_S
The growing-season length to identify

maize and sunflower 110 100 95
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Figure 6. The decision tree rules for crop classification. The meaning of the parameters and their
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In Hetao, the crops can be divided into four major types: wheat, maize, sunflower, and
vegetable. The phenological characteristics for these crop types are provided in Figure 7,
on the basis of systematic field surveys. The initial values of the threshold in the rules
were determined with field surveys. The ground sample data of crops were then overlaid
with the three phenological metric layers to carry out a signature analysis. The SOS of
wheat occurred mostly in late April to early May. Meanwhile, due to the intercropping
of wheat–maize or wheat–sunflower in the study area, the growing-season length (GSL)
of this type of wheat was larger than other crop types. The SOS of maize was mostly in
June. The SOS of sunflower was slightly later than maize, while the GSL was shorter than
that of maize. There were many types of vegetables planted in Hetao, so the phenological
characteristics were more complicated than those for other crop types. Generally speaking,
it can be divided into two main categories. The first kind of vegetables (e.g., watermelon
and tomato) was sown in later June and harvested in late August, so the SOS of this kind
of vegetables was late, and the GSL was relatively short. Another kind of vegetables
(e.g., squash (Cucurbita pepo L.) and pepper) had similar phenological characteristics to
sunflower, which was sown in mid-June and harvested in mid-to-late September (Figure 8).
Based on the above systematic field surveys and signature analysis of phenological metrics,
the thresholds for the decision tree algorithm were finally defined (Table 3).
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Figure 8. Signature analysis of crops (wheat, maize, sunflower, and vegetable) at each phenology
metric layer using the histogram statistics method (a–c). The training samples used in this analysis
are shown in Figure 2. (d–g) show the field photos for wheat, maize, sunflower, and vegetable,
respectively, taken in July and August 2021.

2.3. Assessment of Classifier Performance

The ground truth sample data (Table 1) collected in 2020 and 2021 was used for
accuracy evaluation. A confusion matrix was created to evaluate the accuracy of the
classification by using indicators of producer’s accuracy (PA), user’s accuracy (UA),
and overall accuracy (OA). Then, the identified land cover maps by the SPLC method
were further assessed by comparing them with the true land cover maps by visual
interpretation in space, both for Jiyuan and Yonglian (in 2021). In addition, the total area
for each land cover type was calculated for the SPLC method and compared to those
for the visual interpretation method. After detailed testing in two case study areas, the
SPLC method was further validated in the entire Hetao region using the ground truth
sample data in 2021 (Table 1).

3. Results and Discussion
3.1. Overall Classification Accuracy
3.1.1. Accuracy Evaluation Using Reference Data

Four land cover maps (i.e., Jiyuan in 2020 and 2021, Yonglian in 2021, and Hetao in
2021) were produced by the SPLC method. The calibrated values of threshold parameters
for phenological rules were obtained by slight adjustments of the initial ones (Table 3).
There were little differences in parameter values between Jiyuan (upstream Hetao) and
Yonglian (downstream Hetao), with a maximum difference of 10 days (e.g., Sv_1). Two
case testing indicated that the phenological metrics were stable enough to be used for crop
classification. The evaluation results of the confusion matrix are presented in Table 4.
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Table 4. The confusion matrix of land cover identification accuracy (PA: producer’s accuracy; UA:
user’s accuracy).

Accuracy Water
Body Dune Natural

Land
Residential

Area Wheat Maize Sunflower Vegetable

Jiyuan
(2021)

PA 0.82 0.91 0.98 0.89 0.98 0.99 0.98 0.78
UA 1.00 0.91 0.95 0.95 0.97 0.96 0.92 0.94

Overall Accuracy: 0.94

Yonglian
(2021)

PA 0.86 / 0.87 0.87 / 0.93 0.76 0.99
UA 1.00 / 0.87 0.88 / 0.94 0.99 0.74

Overall Accuracy: 0.90

Jiyuan
(2020)

PA 0.86 0.98 0.98 0.89 0.95 0.94 0.82 0.78
UA 1.00 0.93 0.96 0.97 0.78 0.85 0.93 0.85

Overall Accuracy: 0.91

Hetao
(2021)

PA 1.00 0.93 0.89 0.98 0.92 0.89 0.95 0.90
UA 1.00 0.84 1.00 0.97 0.92 0.96 0.88 0.94

Overall Accuracy: 0.94

In the two case areas, results showed that the various non-cropland cover types
(i.e., water body, dune, residential area, and natural land) could be effectively identified in
the first step of the SPLC method. The OA values reached from 0.90 to 0.94 for the three
land cover maps, and meanwhile, the PA and UA of non-cropland land cover types were
both over 0.82. These indicated good performance in the classification of these land cover
types. For crop identification, the maize was accurately identified with all values of UA
and PA being greater than 0.9 except for the UA in 2020 of Jiyuan (0.85). This resulted from
the phenological characteristics of maize being more obvious than those of other crop types.
Sunflower and wheat had relatively lower accuracies than maize, except for the UA of
wheat in Jiyuan in 2020 and the PA of sunflower in Yonglian in 2021, which were both lower
than 0.8. The other UA and PA values were over 0.8 for three land cover maps. Vegetables
had the lowest inversion accuracy, with about half of accuracy evaluation values lower
than 0.8. This can be attributed to the phenological metrics of vegetables being relatively
not so determined compared with those of other crops. Various varieties and different
irrigation and field management measures further made the phenological metrics more
undetermined for vegetables.

Furthermore, the evaluation results of the confusion matrix (Table 4) indicated the
good performance in the land cover classification for the entire Hetao region. The OA value
reached 0.94, and the PA and UA for all land cover types were greater than 0.84 in Hetao.
These further verified the reliability of the proposed SPLC method on large regional scales.

3.1.2. Performance of the Classifier at the Spatial Scale

The comparison of land cover maps by the SPLC method and that by visual interpre-
tation are shown in Figures 9 and 10 for Jiyuan and Yonglian, respectively. It was obvious
that the results of the SPLC method had very high similarity with the visual interpretation
maps in space. Furthermore, four typical regions in Jiyuan and three regions in Yonglian
were respectively selected to evaluate the accuracy of the SPLC method for different land
cover types. Comparison results indicated that different non-cropland land cover types
were identified with high accuracy, especially for water body areas (Figures 9f and 10c).
It is worth noting that accurate identification of non-croplands in the first step effectively
removed the negative influences on the further classification of various crop types. The
spectral characteristics of natural lands with high soil salinity levels were similar to those
of residential areas, which led to the misclassification between natural lands and residential
areas. In addition, some narrow roads, drainage ditches, and canals were still not yet well
identified, because the spatial resolution of the Sentinel-2 images (10 m) was lower than
that of the Planet images (3 m) for visual interpretation. For the crop maps, most sunflower,
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maize, and wheat fields were accurately identified; and meanwhile, the accuracy for veg-
etables was relatively low due to less clear phenological characteristics for vegetables. In
Yonglian, some sunflower fields in the visual interpretation map were misclassified as other
types by the SPLC method. This was mainly because soil salinization, which was often
in sunflower fields or their local parts, would result in low emergence and survival rates.
Therefore, the characteristics in the internal pixels of some sunflower fields may be similar
to other land cover types (e.g., natural land and vegetables). This resulted in the problem
of mixed classification. Moreover, many small and scattered fields could be accurately
identified with the SPLC method (Figures 9 and 10), compared to the visual interpretation
method, because it may be not possible or realistic to identify these scattered fields one by
one using manual visual interpretation.
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Figure 10. Land cover classification maps for Yonglian in 2021: (a) for visual interpretation, and (b) 
for SPLC method. Three sample areas (c–e) were selected to show the zoom-in views. 

The statistical areas of all land cover types for the SPLC method were presented and 
compared with those for visual interpretation in 2021 (Figure 11). The statistical areas cal-
culated by the two methods agreed with each other. There was a significant linear rela-
tionship between the results of the two methods, producing a coefficient of determination 
(R2) of 0.97 and a coefficient of regression (b) of 1.0 in Jiyuan (2021), and R2 = 0.85, b = 0.84 
in Yonglian (2021). This further implied that the SPLC method had high accuracy in two 
case areas, and thus had good regional applicability in Hetao. In addition, the total area 
of sunflower (946 ha) in Yonglian was about 25% lower than that estimated from the visual 
interpretation map (1262 ha) (Figure 11), mainly due to the high similarity in phenological 
metrics between several salted-affected sunflower fields and natural lands as explained 
above. In addition, the image comparisons of the local area in Hetao also showed that the 
accuracy of the classification results was reliable (Figure 12). 

 
Figure 11. A comparison of the statistical area for different land cover types by SPLC method and 
visual interpretation method for Jiyuan and Yongliang in 2021. 

Figure 10. Land cover classification maps for Yonglian in 2021: (a) for visual interpretation, and
(b) for SPLC method. Three sample areas (c–e) were selected to show the zoom-in views.

The statistical areas of all land cover types for the SPLC method were presented
and compared with those for visual interpretation in 2021 (Figure 11). The statistical
areas calculated by the two methods agreed with each other. There was a significant
linear relationship between the results of the two methods, producing a coefficient of
determination (R2) of 0.97 and a coefficient of regression (b) of 1.0 in Jiyuan (2021), and
R2 = 0.85, b = 0.84 in Yonglian (2021). This further implied that the SPLC method had high
accuracy in two case areas, and thus had good regional applicability in Hetao. In addition,
the total area of sunflower (946 ha) in Yonglian was about 25% lower than that estimated
from the visual interpretation map (1262 ha) (Figure 11), mainly due to the high similarity
in phenological metrics between several salted-affected sunflower fields and natural lands
as explained above. In addition, the image comparisons of the local area in Hetao also
showed that the accuracy of the classification results was reliable (Figure 12).
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Figure 12. Land cover classification map for Hetao in 2021: (a) for SPLC method. Five regions, de-
noted as (b–f) in (a), were selected randomly. The zoom-in views in (a) for the five regions are shown 
in (b2–f2). The 10 m spatial resolution views from Sentinel-2 images in August 2021 are shown in 
(b1–f1). 

Our method could achieve better or similar accuracies compared with other similar 
studies [10,22,45]. Although some studies had acquired higher accuracies, their classifica-
tion targets were usually easier to differentiate due to significantly different characteris-
tics, or the relatively simple and uniform crop planting structure in the study area [24,46]. 
Furthermore, compared with other studies in Hetao [42,47,48], the SPLC method may 
have several improvements or advantages: (1) compared with the study that classified all 
land cover types together [47], the non-cropland land cover types and crop types were 
identified by the SPLC method in two steps. Therefore, the negative impacts of other non-
cropland land covers on crop identification (especially the lush natural land grown with 
salt-tolerant vegetation) were avoided as much as possible; (2) the classification rules es-
tablished based on the three phenological metrics (SOS, EOS, and GSL) were more effec-
tive for crop classification. Compared with the classification methods which used other 
phenological metrics [42,48], the mixed classification was significantly reduced and the 
accuracy of crop classification was improved; (3) the land cover classification with more 
crop types was considered and realized in our study; (4) compared with other methods, 
which were based on ground truth training sampling [42,47], the ground sampling work 
was not required when using the SPLC method. This could save time and labor costs, and 
meanwhile avoid the possible negative impacts of the quality of training points on the 
classification accuracy. 

  

Figure 12. Land cover classification map for Hetao in 2021: (a) for SPLC method. Five regions,
denoted as (b–f) in (a), were selected randomly. The zoom-in views in (a) for the five regions are
shown in (b2–f2). The 10 m spatial resolution views from Sentinel-2 images in August 2021 are shown
in (b1–f1).

Our method could achieve better or similar accuracies compared with other similar
studies [10,22,45]. Although some studies had acquired higher accuracies, their classifica-
tion targets were usually easier to differentiate due to significantly different characteristics,
or the relatively simple and uniform crop planting structure in the study area [24,46].
Furthermore, compared with other studies in Hetao [42,47,48], the SPLC method may
have several improvements or advantages: (1) compared with the study that classified all
land cover types together [47], the non-cropland land cover types and crop types were
identified by the SPLC method in two steps. Therefore, the negative impacts of other
non-cropland land covers on crop identification (especially the lush natural land grown
with salt-tolerant vegetation) were avoided as much as possible; (2) the classification rules
established based on the three phenological metrics (SOS, EOS, and GSL) were more effec-
tive for crop classification. Compared with the classification methods which used other
phenological metrics [42,48], the mixed classification was significantly reduced and the
accuracy of crop classification was improved; (3) the land cover classification with more
crop types was considered and realized in our study; (4) compared with other methods,
which were based on ground truth training sampling [42,47], the ground sampling work
was not required when using the SPLC method. This could save time and labor costs, and
meanwhile avoid the possible negative impacts of the quality of training points on the
classification accuracy.
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3.2. Analysis of Land Cover Mapping Results

The spatial distribution of land covers in Jiyuan and Yonglian (during 2021) are
presented in Figures 9b and 10b, respectively. For Jiyuan, the cropland (wheat, maize, sun-
flower, and vegetables) accounted for about 73.9% of the total area, followed by residential
area (14%), natural land (10.3%), dune (1.1%), and water body areas (0.7%). In Yonglian,
the cropland was the dominant land cover type, accounting for about 60% of the total area.
Natural land reached 566.5 ha, which was close to the area of residential land (563.2 ha).
Water bodies only occupied 0.1% of the total area. Note that large areas of natural land
with salt-tolerant vegetation were both distributed in the northern parts of the two case
areas. This was due to the relatively high soil salinity levels caused by less irrigation and
lower drainage effects in northern downstream regions.

Sunflower was the main crop type, accounting for about 48% and 58% of cropland area
in Jiyuan and Yonglian, respectively. The planting area of maize was the second largest,
accounting for about 30% of the total cropland area both for Jiyuan and Yonglian. In Jiyuan,
the area of wheat was 620.2 ha, which was only 9% higher than that of vegetables (569.0 ha).
These two crop types both occupied a small proportion of croplands (i.e., 10% for wheat
and 9% for vegetables), and most of them had a scattered distribution in the area. There
was no wheat planted in Yonglian, and a small part (about 11%) of the area was grown with
vegetables. Wheat and vegetables were mainly planted in Jiyuan, while the vast majority
of cropland in Yonglian was planted with sunflower. This was because the soil salinity was
higher in the downstream Hetao (e.g., Yonglian), and lower in up-and midstream Hetao
(e.g., Jiyuan) [49]. The spatial distribution of crops was almost consistent with soil salinity
distribution. The croplands with serious salinity problems were usually planted with more
salt-tolerant sunflower which had satisfactory economic benefits in salt-affected croplands.
The less salt-tolerant crops (maize, wheat, and vegetables) were mainly distributed in
non-salted or slightly salt-affected lands, with timely and adequate irrigation.

In addition, the land cover spatial distribution in Jiyuan was more fragmented than
that of Yonglian, with different land covers intertwined (Figures 9 and 10). This is because
farmers can grow flexibly and diversely with more irrigation allocation and better water
conveyance services in Jiyuan upstream of Hetao. Besides, the local managers had carried
out a lot of land transfer and integration work in recent years in Yonglian, due to less popu-
lation/production and stronger demand for intensive planting in the downstream Hetao.
Several large demonstration farms were also built in the case area of Yonglian, and thus the
planting pattern in Yonglian was relatively simple and uniform in some local places.

The land cover map of Hetao was produced for the year 2021, as shown in Figure 12.
The cropland (wheat, maize, sunflower, and vegetables) accounted for about 54.8% of the
total area in Hetao, followed by residential area (25.8%), dune (10.1%), natural land (4.9%),
and water body (4.4%). Note that large areas of dune were distributed in the western
Hetao which was adjacent to the eastern part of the Wulanbuhe desert (Figure 1). Most
of the water bodies were sporadically distributed in Hetao, while the largest one (i.e., the
Wuliangsu Lake) was located in the east region as a tail water lake. Results indicated that
maize was the main crop type in Hetao, accounting for about 44% of the total cropland area.
Meanwhile, the planting area of sunflower was the second largest area, being about 35% of
the total cropland area. The areas of vegetables and wheat both occupied a small proportion
of croplands (i.e., 8% for wheat and 13% for vegetables), and most of them had a scattered
distribution in Hetao. Meanwhile, wheat was mainly planted in the upstream regions. In
addition, results of the entire Hetao region further indicated that the spatial distribution of
land cover was more fragmented in the upstream area than that in the downstream area
(Figure 12). Land cover distribution and fragmentation degree were largely affected by the
irrigation and salt salinity conditions as discussed above, resulting in significant spatial
differences between the upstream and downstream areas of Hetao.
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3.3. Implications and Improvements

Case testing showed that using the SPLC method could efficiently identify the frag-
mented land covers with various crop types. In particular, once the phenological rules are
established, the SPLC method can be used to make land cover maps in other seasons/years,
without the need for ground truth sampling. Based on the optimal spectrum, texture,
and LSWI time series data, the SVM algorithm could be used to identify the cropland
and various non-cropland land cover types. This algorithm uses the ROIs (obtained from
Google Earth) as training samples, and thus saves economic and time costs. The thresholds
used for the LSWI time series data have been well applied in other regions (e.g., [23,44]),
which may imply that our cropland and non-cropland land cover types classification al-
gorithm may have good regional applicability. Moreover, the high accuracy classification
of non-croplands in the first step can efficiently remove the possible negative effects of
non-croplands on further crop classification.

The crop classification rules are developed by selecting the unique phenological
metrics of different crop types. For a given area, the environmental factors of crop planting,
such as topography, climate, planting, and management activities, are relatively stable
and consistent over normal years. The SPLC method adopts an automated decision tree
algorithm with stable classification rules for crop mapping. Therefore, it is promising to
use the SPLC method to map the crop classification distribution in other seasons/years,
without the requirement of ground truth sampling data and re-training and re-validation.
This could save time and labor costs, and avoid the possible negative impacts of the quality
of training points on the classification accuracy. With respect to the crop mapping in other
regions and crop types, the SPLC method could be applied by properly adjusting the
classification rules and the thresholds of phenological metrics with local sampling/survey
data or known metric information. It seems to be feasible, since the potential differences in
the phenological metrics of different crops under different environmental conditions can be
addressed. This has also been supported by some previous studies on using phenology-
based approaches to map various dominant crop types (e.g., paddy rice, oat, maize, and
soybean) at 10-m or coarser spatial resolutions [10,14,50]. Currently, various machine
learning and deep learning models are explored for crop classification [27,51]. This crop
classification framework can be updated by integrating the phenological metrics and the
machine learning models to map crop types in the follow-up investigations.

In addition, the study area has an arid climate with infrequent cloud cover, so adequate
numbers of good observations are available by Sentinel-2 image data. However, the images
from single sensors are not enough in some regions with more frequent cloud cover, so
the harmonization of the images from different sensors is thus necessary [52,53]. With
the development of the fusion methods, the blending of time series images with high
spatial and temporal resolution could be obtained, and the crop mapping algorithms will
be developed at the field scale over large spatial domains.

4. Conclusions

A novel spectral–phenological land cover classification (SPLC) method that was pro-
posed for efficient land cover identification in fragmented agricultural landscapes was
presented in this paper. The SPLC method was developed based on the integration of the
time series optical images (Sentinel-2A/B), support vector machine (SVM), and decision
tree algorithm. It was well tested and applied in two case areas (i.e., Jiyuan in upstream
and Yonglian in downstream) of Hetao Irrigation District (Hetao) of the upper Yellow River
basin, Northwest China. Case testing indicated that the first step of the SPLC method was
able to identify the cropland and various non-cropland land cover types, using the SVM
algorithm and the input data of optimal spectrum, textures, and LSWI time series. This step
could efficiently remove the possible negative effects of non-croplands on the subsequent
crop classification. For crop identification, analyses showed that stable classification rules
could be established by using the phenological metrics retrieved from the NDVI time series.
In addition, the evaluation in the entire Hetao further validated the reliability of the SPLC



Remote Sens. 2022, 14, 2045 18 of 20

method in land cover classification for fragmented agricultural landscapes. Finally, four
land cover maps at 10-m spatial resolution for Jiyuan in 2020 and 2021, Yonglian in 2021,
and Hetao in 2021 were produced with high accuracy. The main advantages of the SPLC
method can be concluded as: (1) it could be used to map crop classification distribution
in other seasons/years, without requirements of ground truth sampling data, once the
classification rules are established; and (2) it was capable of avoiding mixed classification
problems due to its strong physiological meaning. Overall, the potential of high temporal
and spatial resolution satellite remote sensing data in extracting phenological metrics and
realizing crop classification was fully presented in this study, especially for regions with
complex agricultural landscapes. The proposed SPLC method could also be applied for
crop mapping in other agricultural regions with complicated land covers, by properly
adjusting the classification rules and the thresholds of phenological metrics.
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